Evolution of RNA-like Replicators —Roles of Parasites—

Nobuto Takeuchi

National Center for Biotechnology Information National Library of Medicine National Institutes of Health USA

Origin of Information Processing

Symposium on the occasion of the PhD defense of Folkert K. de Boer Utrecht University May 15, 2012

Individual-based and ecosystem-based solutions

(Prebiotic) Evolution of complexity in RNA-like replicator systems

Individual-based solution

Long genome

ecosystem-based solution

Coexistence of multiple replicator species

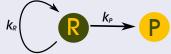
Individual-based and ecosystem-based solutions

(Prebiotic) Evolution of complexity in RNA-like replicator systems

Individual-based solution

Long genome

⇒ Error threshold


ecosystem-based solution

Coexistence of multiple replicator species ⇒ parasites

Why do parasites pose a problem?

Let's consider simple replicator system

System with 1 replicase & 1 parasite

Well-mixed system with continuous population

$$\dot{R} = k_R R^2 \theta - dR$$

 $\dot{P} = k_P R P \theta - dP$

- If $k_P > k_R$, parasites out-compete catalysts
- Parasites can drive replicator system to extinction

Problem seems even worse

Replication is instantaneous (simplification)

No complex formation

$$2R \stackrel{k_R\theta}{\rightarrow} 3R$$

$$R + P \stackrel{k_P\theta}{\rightarrow} R + 2P$$

• If $k_R < k_P$, system goes extinct

Replication is not instantaneous (more realistic)

Complex formation

$$2R \xrightarrow[1-k_R]{k_R} C_R \xrightarrow{\kappa \theta} 3R$$

$$R + P \xrightarrow[1-k_P]{k_P} C_P \xrightarrow{\kappa \theta} R + 2P$$

• Even if $k_R > k_P$, system can go extinct

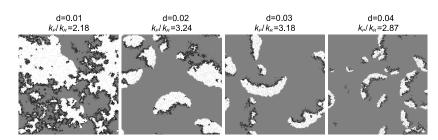
To sum up

- To catalyze replication is disadvantageous
- Parasites have selective advantage over catalysts
- Catalysts tend to evolve toward becoming parasites

So,

 Parasites pose a problem to the evolution of replicator systems

Let's consider alternative model

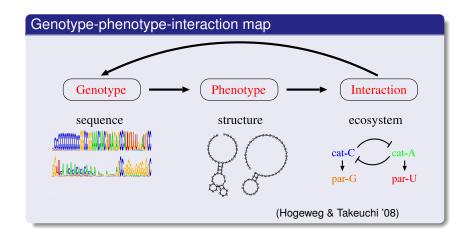

Ordinary differential equation model

- Well-mixed
- Global interactions
- Infinite population (continuous population)
 - → deterministic dynamics

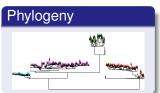
Stochastic cellular automata model

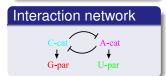
- Spatial extension
- Local interactions
- Locally finite population (discrete population)
 - → stochastic dynamics

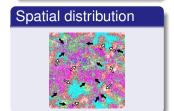
Spatial self-organization changes the picture

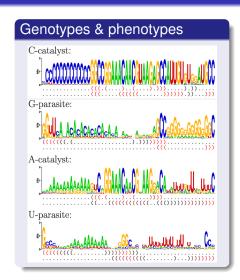


(Takeuchi & Hogeweg '07)


To sum up


 Parasites pose a problem, to which a replicator system responds by spatial self-organization


What sort of replicator system evolves?



Pattern generation by evolution

(Takeuchi & Hogeweg '08)

To sum up

 Parasites pose a problem, to which a replicator system responds by evolving complex ecosystem.

Why do parasites pose a problem, again?

To be a catalyst or to be a template

Replication is not instantaneous

$$2R \stackrel{k_R}{\underset{1-k_R}{\longleftarrow}} C_R \stackrel{\kappa\theta}{\rightarrow} 3R$$

 There is trade-off between serving as a catalyst and serving as a template

This trade-off lies at the core of RNA world hypothesis

RNA world

- Genetic information → RNA
- Chemical catalysis → RNA

Co-embodiment of template and catalyst in one molecule

DNA-protein world (RNA!)

- Genetic information → DNA
- Chemical catalysis → proteins (& RNA)

Division of labor between templates and catalysts

How would such division of labor evolve?

Proteins, dedicated catalysts (vs. RNA)

- Superior catalyst
- Inferior template

DNA, dedicated templates (vs. RNA)

- Superior templates?
 - \rightarrow More stable to hydrolysis However, see (Forterre '05)
 - ightarrow But inferior in template-directed polymerization (Zhang et al. '12)
- Inferior catalyst??
 - → No experimental evidence (Silverman '08)

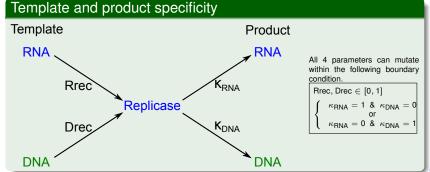
How could dedicated templates evolve in the RNA world?

Model of replicator system with DNA

Replicator system

$$R + T \rightleftharpoons C \xrightarrow{\emptyset} R + T + T'$$
$$R, T \to \emptyset$$

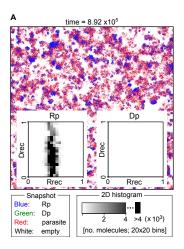
R: replicase, T: template, C: complex, Ø: substrate


Models assumes 2 types of molecules

- RNA-like molecules (RNA, for short)
 - can be a template
 - can be a catalyst
- 2 DNA-like molecules (DNA, for short)
 - can be a template
 - cannot be a catalyst

Model of replicator system with DNA

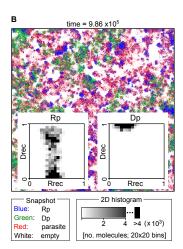
DNA and RNA provide for 4 types of replication

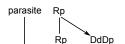

- RNA-dependent RNA polymerization (RNA replication)
- RNA-dependent DNA polymerization (reverse transcription)
- DNA-dependent RNA polymerization (transcription)
- DNA-dependent DNA polymerization (DNA replication)

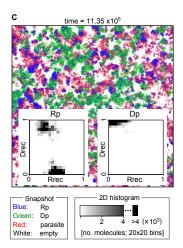
Additional notes

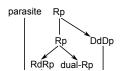
- DNA molecules cannot function as catalysts, but can contain information on catalysts
- The model also assumes parasites.

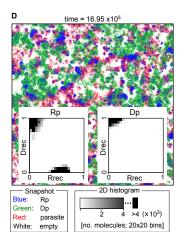
Initial condition

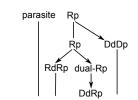


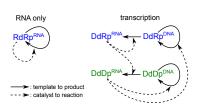

parasite Rp

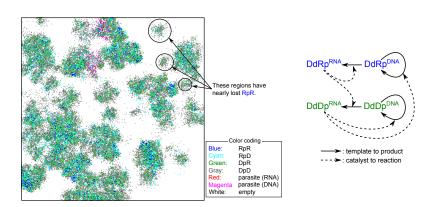

template to product
 catalyst to reaction

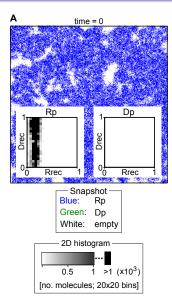

DNA polymerase invades



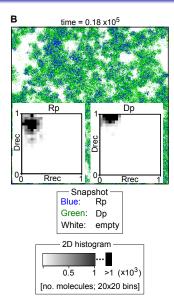

RNA polymerase speciates



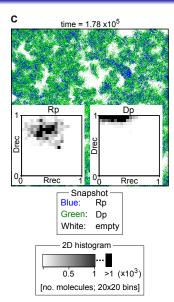

Transcriptase evolves

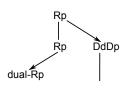


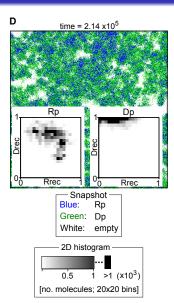
Dynamics of transcription system

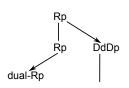


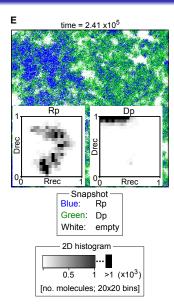
To sum up

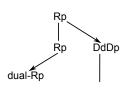

 Parasites pose a problem, to which a replicator system responds by evolving the division of labor between templates and catalysts

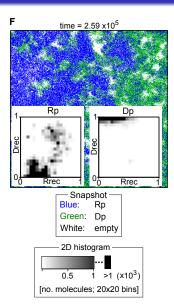


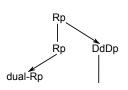

Rp

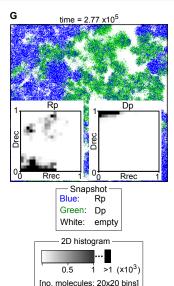


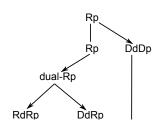


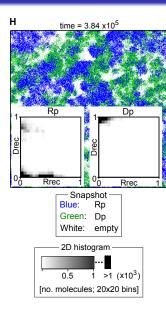


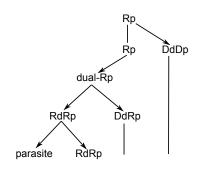












Conclusion

 Parasites pose a problem to the evolution of preconceived complexity (such as hypercycles), to which a replicator system responds by actually evolving complexity.