| Background | Model<br>୦୦୦ | Results<br>000000 | Conclusions | Suggestions |
|------------|--------------|-------------------|-------------|-------------|
|            |              |                   |             |             |
|            |              |                   |             |             |

## Evolution of complexity in RNA-like replicator systems

#### Nobuto Takeuchi Paulien Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

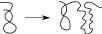
Alife XI, 5th August 2008

N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NWO


B 1 4 B 1

| Background  | Model | Results | Conclusions | Suggestions |
|-------------|-------|---------|-------------|-------------|
| <b>●</b> 00 |       |         |             |             |

## Evolution of Complexity in replicators

$$X_j + \emptyset \xrightarrow{X_k} 2X_j$$

Individual-based complexity

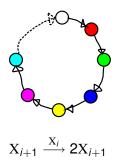


Population-based complexity

 $\rightarrow$ 

N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands


Evolution of complexity in RNA-like replicator systems

Supported by NWO

(E) → (E)

| Background<br>○●○ | Model<br>୦୦୦ | Results<br>oooooo | Conclusions | Suggestions |
|-------------------|--------------|-------------------|-------------|-------------|
|                   |              |                   |             |             |

## Hypercycle



[Eigen & Schuster '79]

→ E → < E →</p>

N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

| Background<br>○○● | Model<br>০০০ | Results<br>000000 | Conclusions | Suggestions |
|-------------------|--------------|-------------------|-------------|-------------|
|                   |              |                   |             |             |

## Evolution of Replicator Systems

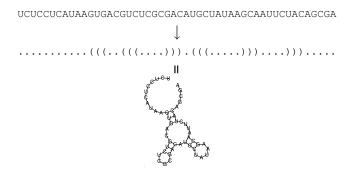
Replicator network + Random perturbation

Evolution of invidual replicators

Genotype  $\longrightarrow$  Phenotype  $\longrightarrow$  Interactions

N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands


<ロ> <同> <同> < 回> < 回> < 回> = 三

Evolution of complexity in RNA-like replicator systems

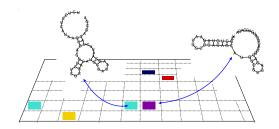
| Background | Model | Results | Conclusions | Suggestions |
|------------|-------|---------|-------------|-------------|
|            | 000   |         |             |             |

## RNA folding Genotype-Phenotype Mapping

Sequence  $\rightarrow$  Structure (i.e. genotype  $\rightarrow$  phenotype)



N Takeuchi, P Hogeweg


Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

| Background | Model | Results | Conclusions | Suggestions |
|------------|-------|---------|-------------|-------------|
|            | 000   | 000000  |             |             |

## Evolution of RNA-like Replicator Systems (Takeuchi & Hogeweg '08)

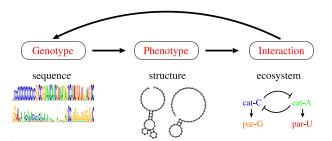
#### $Phenotype \rightarrow Interactions$



Complex: 5'-end  $\rightarrow$  3'-end

Replication: if phenotype correct

N Takeuchi, P Hogeweg


Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NWO

| Background | Model | Results | Conclusions | Suggestions |
|------------|-------|---------|-------------|-------------|
|            | 000   |         |             |             |

## Evolution as a Cycle of Multi-level Processes



N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NWO

크

★ 문 → ★ 문 →

| Background | Model<br>୦୦୦ | Results<br>●ooooo | Conclusions | Suggestions |
|------------|--------------|-------------------|-------------|-------------|
|            |              |                   |             |             |

## Evolution of Patterns in ( $\mu = 0.015$ )

 Population of Sequences



# Genotype & Phenotype

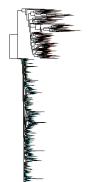


Space & Time

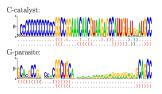


C-cat

N Takeuchi, P Hogeweg


Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems


| Background | Model<br>୦୦୦ | Results<br>o●oooo | Conclusions | Suggestions |
|------------|--------------|-------------------|-------------|-------------|
|            |              |                   |             |             |

## Evolution of Patterns in ( $\mu = 0.013$ )

 Population of Sequences



# Genotype & Phenotype



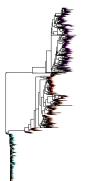
Space & Time



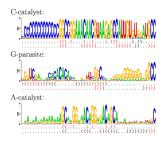


• B > < B</p>

N Takeuchi, P Hogeweg


Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems


| Background | Model<br>୦୦୦ | Results<br>oo●ooo | Conclusions<br>oo | Suggestions |
|------------|--------------|-------------------|-------------------|-------------|
|            |              |                   |                   |             |

## Evolution of Patterns in ( $\mu = 0.008$ )

Population of Sequences



### Genotype & Phenotype





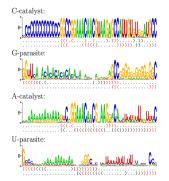




(4) E (4) E (4) E

#### N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands


Evolution of complexity in RNA-like replicator systems

| Background | Model<br>୦୦୦ | Results<br>ooo●oo | Conclusions<br>oo | Suggestions |
|------------|--------------|-------------------|-------------------|-------------|
|            |              |                   |                   |             |

## Evolution of Patterns in ( $\mu = 0.004$ )



### Genotype & Phenotype

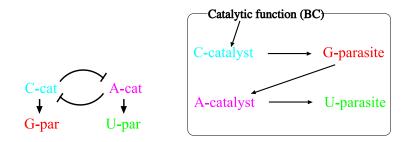








★ 문 → ★ 문 →


N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

| Background | Model | Results | Conclusions | Suggestions |
|------------|-------|---------|-------------|-------------|
|            |       | 000000  |             |             |

## Chain reaction of niche generation & speciation



N Takeuchi, P Hogeweg

Image: A matrix Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NWO

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

| Background | Model | Results<br>○○○○○● | Conclusions | Suggestions |
|------------|-------|-------------------|-------------|-------------|
|            |       |                   |             |             |

## Mutation rate & Diversity

#### Greater mutation rates weaken parasites

(Kaneko & Ikegami '92; Hogeweg & Takeuchi '03 & '07)

#### Weaker parasites, less diversity

N Takeuchi, P Hogeweg

Image: A matrix Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NWO

3

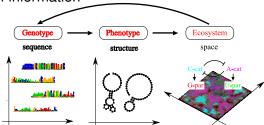
★ 문 → ★ 문 →

| Background | Model | Results | Conclusions | Suggestions |
|------------|-------|---------|-------------|-------------|
|            |       |         | 0           |             |

## Conclusions (prebiotic evolution)

- Parasites can promote diversity
  - previously considered as destabilizing
- The system is stable because of evolutionary safeguard
  - evol. harmful parasites
    - $\rightarrow$  evol. escape catalyst
    - $\rightarrow$  stabilization of the system as a whole
- Greater mutation prohibits diversity
  - cf. error-threshold

N Takeuchi, P Hogeweg


Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

| Background | Model<br>000 | Results<br>000000 | Conclusions<br>○● | Suggestions |
|------------|--------------|-------------------|-------------------|-------------|
|            |              |                   |                   |             |
| ~          |              |                   |                   |             |

## General conclusion

- Evolution of diversity (ecological organization)
- Evolution of information



information  $\rightleftharpoons$  (ecological) organization

 $\blacksquare \rightarrow$  Evolution of complexity

N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NVO

- E

| Background | Model | Results | Conclusions | Suggestions |
|------------|-------|---------|-------------|-------------|
|            |       |         |             | <b>●</b> 0  |

## Suggestion for Wet Experiments

Current state of art:

- Strong link between molecules & performance of molecules
  - e.g. ligation of primer for PCR, water-in-oil emulsion
  - $\longrightarrow$  prevent unwanted evolution (parasites)
  - $\longrightarrow$  prohibit interactions
  - $\longrightarrow$  good for engineering

N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NWO

- E > - E >

| Background | Model | Results | Conclusions | Suggestions |
|------------|-------|---------|-------------|-------------|
|            |       |         |             | 00          |

## Suggestion for Wet Experiments

#### Suggestions:

- Allow interactions between molecules
  - e.g. selection for production of fluorescent molecules [metabolism rather than replication]
- Spatial extension
  - e.g. chip with small reaction wells, micro-fluidic device
  - $\longrightarrow$  can accommodate unwanted evolution
  - → might exhibit evolution of complex interacting molecular systems
  - $\longrightarrow$  significant for biology

N Takeuchi, P Hogeweg

Theoretical Biology/Bioinformatics Utrecht University The Netherlands

Evolution of complexity in RNA-like replicator systems

Supported by NWO