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Chapter 9

Hodgkin-Huxley model
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Introduction

Hodgkin-Huxley model :
• detailed model for nerve action potential

Perfect illustration of Systems Biology approach:
• carefully observe and think about the system
• perform detailed measurements on the system
• construct models for the system components
• integrate these models into a larger level model
→ model that generates action potentials
→ explains different phases action potential
→ predicts existence of voltage gated channels

Furthermore:

• famous example of Theoretical biology approach

• shows Theoretical biology has a long tradition

• demonstrates importance: Nobel prize 1963!
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Background: Neurons

Where:

Incoming signals: dendrites and cell body

Outgoing signals: axon

What:

Intracellular signal: electrical

Intercellular signal: chemical

From: Campbell & Reece
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Background: Concentration and Charge Differences

Resting conditions:

From: Campbell & Reece

Inside: more K+, more A-
Outside: more Na+, more Cl-

So both concentration differences and charge differences

Charge difference produces transmembrane potential of -70mV

So cell acts as a battery!
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Background: Ionic Currents

Channels in membrane allow for ionic currents.

From: Campbell & Reece

Ionic currents transport ions across membrane through channels

This changes the charge difference / transmembrane potential
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Background: Action potentials

Action potential:

change in transmembrane potential due to ionic currents

From: Campbell & Reece

Apparently some opening and closing of channels going on.
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Back in time

To appreciate how major Hodgkin and Huxleys accomplishment was:

In those days:
• whole membrane assumed to get permeable to all ions
• specific ion protein channels not yet discovered
• no fine-scale voltage clamp technique
• computers were not yet invented

Their solution:

• be really smart

• use very large axon of the squid

• use mechanical calculating device and compute for weeks
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Being smart: Nernst potentials

Current only occurs if membrane (channel) is open

If occuring, what is driving force behind current:
• concentration differences (down gradient)
• charge differences (to opposite charge)
→ electrochemical gradient

Current is zero if voltage equals Nernst potential:

VK =
1

z
ln
Ko

Ki

K+ is then in equilibrium

So approximation of current size is:

IK = gK(VK − V )

with gK = 1/R (I = V/R)
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Being smart: What really happens?

We can compute that:

VNa = ±50mV

VK = ±− 80mV

Now look again at what happens during action potential:

From: Campbell & Reece

Apparently, first Na+ current, then K+ current!
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Being smart: Separate INa and IK

Complete membrane was thought to change in permeability:

Cm
dV

dt
= I = ∆V/Rm = gm∆V

Key insight: Vm first approaches ¯VNa (depol.) then V̄K (repol.)
Implication: Na+ and K+ current flows are independent
Prediction: presence of separate membrane channels for different ions

Cm
dV

dt
= INa + IK + Irest = gNa( ¯VNa − V ) + gK(V̄K − V ) + grest( ¯Vrest − V )

Approach: measure and model different currents separately (to avoid

interference) and put them back together later for complete model
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Measuring separate currents

• Suppress other currents, avoiding interference.

• Clamp membrane voltage to a constant value.

• Measure current size and time dynamics.

• Do this for different voltage values.

From: Campbell & Reece
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Measuring the IK current

Observations:
• voltage increase produces IK current
• plateau level of current depends on voltage
• time dynamics of current depends on voltage
• current increases in sigmoid fashion

Prediction:

IK channel has multiple gates that open in response to voltage
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Modeling the IK current

Modeling a gated current:

IK = gK(EK − V )

gK = GK ×O
O = n4

dn/dt =
n∞ − n
τn

= αn(1− n)− βnn

GK max. cond. if all channels are open

O the fraction of open IK channels

n the fraction of open channel gates

n∞(V ) steady state value of gate

τn(V ) time constant of gate

αn(V ) opening rate of gate

βn(V ) closing rate of gate
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Fitting the IK model to the data

Fit needed for GK and αn(V ) and βn(V ):

GK = 36
αn(V ) = 0.01 V+10

e(V+10)/10−1

βn(V ) = 0.125eV/80

Looks horrible, but just increasing and decreasing functions
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Measuring the INa current

Observations:
• voltage increase produces INa current
• peak current depends on voltage
• time dynamics depends on voltage
• current increases in sigmoid fashion
• currents shuts itself down again

Prediction:

INa channel has both multiple activation gates and an inactivation gate
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Modeling the INa current

Modeling a double gated current:

IN = gN(EN − V )

gN = GNO

O = m3h

dm/dt = αm(1−m)− βmm
dh/dt = αh(1− h)− βhh

GNa max. cond if all channels are open

O fraction of open channels

m fraction of opened activation gates

h fraction of still open inactivation gates
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Fitting the INa model to the data

Fit needed for GN , αm(V ), βm(V )

GN = 120
αm = 0.1 V+25

e(V+25)/10−1

βm = 4eV/18

Just increasing and decreasing graphs
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Fitting the INa model to the data (2)

Fit needed for αh(V ), βh(V )

αh = 0.07e(V/20)
βh = 1

e((V+30)/10)+1

Just increasing and decreasing graphs
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Hodgkin-Huxley model

To model the action potential we need to bring the currents together:

dV/dt = 1
Cm

[
120m3h(VN − V ) + 36n4(VK − V ) + 0.3(VR − V )

]
dm/dt = αm(V )(1−m)− βm(V )m

dh/dt = αh(V )(1− h)− βh(V )h

dn/dt = αn(V )(1− n)− βn(V )n

with VN = −115, VK = 12, and VR = −10.5989.

So we obtained a system of 4 ODE’s

Stable equilibrium (V ' 0,m ' 0.05, h ' 0.6, n ' 0.3): rest potential.
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Using the model: simulate an AP

Note that in HH-model rest potential is 0mV and AP is −90mV !
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a Action potential: voltage dynamics

b Gate dynamics
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Using the model: obtaining insights

Observations (biological):
• INa activates first, causes depolarization, determines threshold
• repolarization caused by decrease of INa and increase of IK
• refractoriness caused by slow recovery of n and h gates

Observations (technical):

• m gate is much faster than the other gates

• h and n gate are almost exactly complementary
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Neuron Action Potential Generation
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Simplifying the model

Quasi steady state assumption: m gate is much faster

Taking:

dm/dt = αm(1−m)− βmm = 0

Gives:

m = αm
αm+βm

Conservation assumption: n and h are ∼ complementary

Taking:

n+ h ' 0.91

Gives:

n = 0.91− h

This leaves us with a 2-variable (V and h) model.
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Nullclines and Phase space
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• Stable equilibrium

• V nullcline determines activation threshold

• AP is excursion through phase space

• Inactivation h gate occurs after while

• Refractoriness caused by recovery h gate

→ h much slower than V
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FitzHugh-Nagumo model

A phenomenological model is

dV

dt
= −V (V − a)(V − 1)−W and

dW

dt
= ε(V − bW ) ,

V represents voltage
W follows V , causes inactivation, refractoriness

As ε is small, W is a slow variable.

The dW/dt = 0 nullcline is W = V/b.

The dV/dt = 0 nullcline is W = −V (V − a)(V − 1).
It intersects the x-axis at V = 0, V = a and V = 1.

26



Nullclines
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Similar to simplified HH model (V and W axis mirrored)

• Stable equilibrium

• V=a activation threshold

• AP is excursion through phase space

• Inactivation W on right branch dV/dt = 0

• Refractoriness W on left branch dV/dt = 0

→ W much slower than V
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Behavior in time
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Behavior resembles action potential.

W gate is opposite to h gate, in rest/closed 0 open > 0.

V maximum is scaled at 1, W maximum thus is scaled at 1/b.

http://www.scholarpedia.org/article/FitzHugh-Nagumo model
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Summary

Hodgkin-Huxley model
Key insight: different currents through separate channels
Approach: measure and model them separately, then combine them

Ugly equations are just to fit data precisely. Key is opening and closing
of gates that control open state of channels.

Different currents and gates control different phases of the action poten-
tial: depolarization, repolarization, refractoriness

Model can be simplified from 4 to 2 equations

The model predicted voltage sensitive, time dependent transmembrane
protein channels.
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Summary

Fitzhugh-Nagumo model:
reaching a similar 2 variable model by considering necessary ingredients:
• below a threshold no real excitation occurs
• beyond a threshold excitation must occur
• after excitation refractoriness must occur
→ excitable medium

(V − a) term ensures threshold at a
slow W repressing V ensures refractoriness

Note how voltage axis runs in opposite direction!
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Chapter 10

Spatial patterns
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Chapter goals

• explain why we get spatial patterns in biology
• illustrate patterns of different space and timescales
• illustrate dynamic wave patterns and stationary patterns
• explain how we can model spatial processes: PDEs and CAs
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Patterns in space

Homogeneous situation:
the same things happen at the same time everywhere
happens for well mixed systems: differences disappear fast

we can describe what happens everywhere by describing the
dynamics in a single point: no need to include space in model
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But.....

Biological systems are rarely homogeneous.
Often just used as a simplifying assumption.

Examples:
• Cells: reactions occur on membrane, in cytoplasm or organelle
• Populations: more likely to mate with neighbour than distant other
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Patterns in space II

Patterned situation:
at different points in space different things happen
but dynamics in different points are co-dependent
(due to diffusion, migration, flow, etc between points)

• system dynamics 6= single point dynamics
• system dynamics 6= independent dynamics in two points
→ need to describe dynamics in all points
→ need to include how local points affect each other
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Biological patterns

Patterns occur on very different space and timescales:

Cell polarization, skin pigmentation, ecosystem patterns:
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Biological patterns II

Patterns can vary dynamically: wave patterns

Patterns can be stationary (after initialisation)
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Biological patterns III

Patterns can have all kinds of shapes:

Dynamic patterns are often waves or spirals

From: hopf.chem.brandeis.edu/.../ResearchAreas.htm

Stationary patterns are often spots or stripes

From: Kefi et al, Theoretical Ecology 2009
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Including space in models

To include space in models we need to
• model the dynamics in each individual point in space
• and couple the dynamics of variables in nearby points

Simplest spatial coupling:
Diffusion: flow of particles from high to low concentrations

Note:
We can use diffusion term also to model migration of animals
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How to model diffusion

Assume a 1D cable of points with a concentration gradient:

J−1 = D ci−1−ci
∆x

= D∆c
∆x

J+1 = D ci−ci+1

∆x
= D∆c

∆x

Dif = J−1−J+1

∆x
= ∆J

∆x
=

∆D∆c

∆x

∆x
= D∆2c

∆x2

So to model diffusion we need second derivative of concentration to space
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ODE’s and PDE’s

ODE: ordinary differential equation:

dN

dt
= f(N)

we assume that N depends on t but not x

PDE: partial differential equation:

∂N

∂t
= f(N) +D

∂2N

∂x2

N depends on both t and x
equation is applied per point in space
diffusion term couples different locations
so partial rather than normal derivates
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Example of a spatial model

Action potential propagation along axon:
∂V/∂t = −V (V − a)(V − 1)−W +D∂2V/∂x2

∂W/∂t = c(V − bW )

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
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only voltage (i.e. ions) diffuses
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Alternative spatial models

PDE models assume that variables, space and time are all continous.
This is appropriate if numbers are high and processes are regular.

Biology often deals with a finite number of discrete organisms / cells
/molecules occupying distinct positions and moving / replicating / etc at
distinct time points. Cellular automata models (CAs) are very suitable
for studying such dynamics.

CA model ingredients:
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Game of Life

Illustrates how simple rules can lead to complex processes!
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Majority Voting

Do what majority around you does: patch formation.
Resembles certain vegetation pattern dynamics.
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Diffusion Limited Aggregation

Freeze if one of your neighbors if frozen.
Resembles growth of minerals, snowflakes and corals
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Chapter 11

Dynamic spatial patterns: waves and spirals
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Action potential propagation

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
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Excitable media

A neuron is an example of an excitable medium.

General excitable medium properties:
• threshold
• all or none response
• refractoriness
• wave propagation

Wave propagation results from:
• passive spread of activation to nearby spot
• exceeding of the threshold at this spot
• generation of new active response
• refractoriness prevents immediate return
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Model wave propagation in excitable medium

Add diffusion to the FHN-model:
∂V/∂t = −V (V − a)(V − 1)−W +D∂2V/∂x2

∂W/∂t = c(V − bW )

• activating wavefront
• refractory wavetail
http://www.scholarpedia.org/article/FitzHugh-Nagumo model
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Wave propagation in 1D
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Wave propagation in 2D: Curvature

∂V/∂t = −V (V − a)(V − 1)−W +D(∂
2V
∂x2 + ∂2V

∂y2 )

∂W/∂t = c(V − bW )

Curvature affects the local propagation speed of waves.
Net effect of this is the straigthening of wavefronts.
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Wave propagation in 2D: Wave break and free ends

Presence of inexcitable obstacle or refractory region cause
the wave to break and produce a free wave end.
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Wave propagation in 2D: Spiral Formation

So what happens next if we have a free wave end?

Curvature at free wave end locally slows propagation, causing
curling back of the wave and spiral wave formation

Note the direction of curling and wave propagation!
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Wave propagation in 2D: waves, spirals and turbulence

target waves spirals turbulence

propagation reentry alternans

Planar waves: single trigger produces single wave: terminates
Spirals and turbulence: reentry allows for reexcitation: perpetual
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CA instead of PDE model

We can model an excitable medium also with a CA:

From: http://www.cnd.mcgill.ca/bios/bub/CAs.html
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Cardiac tissue

The heart is an electro-mechanical pump:
Cells generate and conduct action potentials
Cells contract in response to action potentials

Fast wave propagation ensures timed, coordinated contraction
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Cardiac arrhythmias

Arrhythmias: abnormalities in rate and / or coordination of cardiac con-
traction, caused by abnormality of the excitation wave.

normal sinus rhythm ventricular tachycardia ventricular fibrillation

Tachycardia: increased contraction rate, incomplete filling with blood,
less efficient pumping

Fibrillation: increased rate, no coordination, hardly any pumping, lethal
within minutes
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Cardiac arrhythmias - Hypothesis

Spiral waves and turbulence (multiple spirals) underlying arrhythmias
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Experimental proof of hypotheses

http://www.vet.cornell.edu/news/FentonCherry/Media/main.html
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Curing Fibrillation: Using our knowledge

Use knowledge about excitable media to:
• invent new cures
• understand existing ones

We are going to do this in werkcollege
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Other excitable media: Dictyostelium discoidum

Cellular signalling system:
• c-AMP produced in response to stress by cells
• c-AMP acts as a chemoattractant for other cells
• c-AMP makes cells produce more c-AMP
• c-AMP production becomes refractory
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Chapter 12

Stationary spatial patterns: spots, stripes and colors
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Development

How do the different cells know which celltype to become?
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Cell differentiation

• All cells in the body have the same DNA, the same genes.
• Cellular properties are mainly determined by proteins.
• Cells can thus differentiate by expressing different gene subsets.
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How does a cell know which genes to express?

Should be:
• not too static: different cells should express different genes.
• not too dynamic: a celltype should maintain its typical expression.

This requires:
• mechanisms generating differences: patterning mechanisms
• mechanisms maintaing different states: alternative attractors
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Patterning: The French Flag model

How a morphogen gradient can lead to multiple domains.
First proposed by L. Wolpert in the 1960’s

Key ingredient:
different concentration thresholds defining a different cellular response.
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Patterning: The French Flag model 2
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Note: implicit diffusion of M, and Th > Tl
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Patterning: The French Flag model 3

How do we get these concentration and spatial profiles?

dA
dt

= 0 gives us:

A = a
d

M4

M4+T 4
h

likewise dB
dt

= 0 gives us:

B = a
d

T 4
l

M4+T 4
l

and dC
dt

= 0 gives us:

C = a
d

M4

M4+T 4
l

T 4
h

M4+T 4
h

To get concentrations for x position rather than M concentration:
1) M(x) = Mmaxe−bx: produces M concentration from x value
2) above equations: produces A,B,C from M concentration
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Multiple attractors: Positive feedback, cooperativity and
saturation

Assume gene A stimulates it’s own expression: positive feedback

dA

dt
= bA− dA

Single equilibrium A = 0 even if b >> a

Now assume A stimulates itself non-linearly: cooperativity

dA

dt
= bA2 − dA

Two equilibria A = 0 and A = d/b, only A = d/b is stable

Next assume A stimulates itself in saturating fashion:

dA

dt
= a

A

A+ h
− dA

Two equilibria A = 0 and A = (a− dh)/d, only A = (a− dh)/d is stable

So, not sufficient for multiple attractors and hence celltypes
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Multiple attractors: Positive feedback, cooperativity and
saturation

Finally, combine positive feedback, cooperativity and saturation:

dA

dt
= a

A2

A2 + h2
− dA

Three equilibria: A = 0, A =
a

d
−
√

a

d

2−4h2

2
and A =

a

d
+
√

a

d

2−4h2

2

First and last equilibrium stable: bistability!
Initial conditions (French Flag!) determine final state
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Alternative attractors: Positive feedback and cooperativity (2)

Assume genes A and B stimulate each others expression cooperatively:

dA

dt
= a B2

B2+h2 − dA

dB

dt
= a A2

A2+h2 − dB

Equilibria not easy to solve, but we can draw nullclines:
A = a

d
B2

B2+h2 and B = a
d

A2

A2+h2

Also results in bistability!
One state: A and B both not expresssed
Other state: A and B both expressed
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Alternative attractors: Positive feedback and cooperativity (3)

Assume genes A and B repress each others expression cooperatively:

dA

dt
= a h2

B2+h2 − dA

dB

dt
= a h2

A2+h2 − dB

Equilibria not easy to solve, but we can draw nullclines:
A = a

d
h2

B2+h2 and B = a
d

h2

A2+h2

Also results in bistability!
One state: A expressed B not
Other state: B expressed A not
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Pattern initialisation and maintenance

In development different cell types:
• have to be initialized
• have to be maintained

So to model this we need to incorporate:
• a morphogen initializing differences
• alternative attractors maintaining them

M(x) = Mmaxe−bx

dA

dt
= max(a M2

M2+h2 ,
h2

B2+h2 )− dA

dB

dt
= a h2

M2+h2 × h2

A2+h2 − dB

Note input integration difference:
• A: max: M or not-B sufficient to locally express A
• B: ×: M or A sufficient to locally supress B

Not so easy to analyse!, so do it in phases:
• in beginning A and B 0, M not
• at end A and B not 0, M 0
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Drosophila development

Patterning of the anterior-posterior axis in the drosophila embryo.

Entangled hierarchy of different regulatory gene classes.
Results in a body plan that is both segmented and differentiated.
First step is morphogen gradient based.
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Drosophila development 2

Unravelling of this first step produced:

Indeed:
• morphogen (Bcd, Cad) initializes differences
• mutual repression maintains differences
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Wrap up

On Monday very nice guest lecture by Prof. Paulien Hogeweg.
Content of this lecture is also part of course and can be asked in exam.

After the lecture is the last werkcollege to obtain your bonuspoint.
There is also time to ask me and assistents general questions about all
parts of the course.
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