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Chapter 4

Limit cycles



The “classical” Lotka-Volterra model
Consider the classical Lotka-Volterra predator-prey model.{ dR

dt = aR − bNR
dN
dt = cNR − dN

with a = 1, b = 0.5, c = 0.25, d = 0.43.
Note: no density-dependence, no saturation of predators.
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zero self-feedback due to horiz./vert. null-clines!

neutrally stable equilibrium: center point

initial conditions determine amplitude oscillations
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Let us consider a more realistic LV-model

First, we include density dependent growth of the prey:

{ dR
dt = rR(1− R

K )− bNR
dN
dt = cNR − dN

Second, we include a saturated functional response:{ dR
dt = rR(1− R

K )− bNF
dN
dt = bNF − dN with F =

R
h + R

Substituting F = R
h+R this gives us:

{ dR
dt = rR(1− R

K )− bNR
h+R

dN
dt = bNR

h+R − dN

Let us study this system for:

b = 0.5, d = 0.43, h = 0.1, r = 1 and different values of K .
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Equilibria of the realistc LV-model
Let us find equilibria:

Start with the second, simpler equation:
bNR
h+R − dN = 0 gives us N = 0 and R = dh

b−d ≈ 0.61

Substitute N = 0 in dR
dt = 0:

rR(1− R
K ) = 0 gives us R = 0 and R = K

Substitute R = dh
b−d in dR

dt = 0: r dh
b−d (1−

dh
b−d
K )− bN dh

b−d
h+ dh

b−d
= 0

Rewrite as: r(1−
dh

b−d
K )− bN

h+ dh
b−d

= 0

Reorder into: r(1−
dh

b−d
K ) = bN

h+ dh
b−d

Finally this gives us: N = r
b (1−

dh
b−d
K )(h + dh

b−d ) ≈ 1.43(1− 0.61
K )

Thus the equilibria are:
(0, 0), (0, K ),
( dh

b−d , r
b (1−

dh
b−d
K )(h+ dh

b−d )) ≈ (0.61, 1.43(1− 0.61
K )) ≈ (0.61, 1.43− 0.88

K )
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Null-clines of the realistic LV-model

Let us determine the null-clines of this system:

dR
dt = rR(1− R

K )− bNR
h + R = 0

null-cline 1: R = 0
null-cline 2: N = r

b (1−
R
K )(h + R) = (1− R

K )(0.2+ 2R) (parabola)
intersection points: (K , 0) and (−h, 0) = (−0.1, 0)
location of top R = −h+K

2

dN
dt =

bNR
h + R − dN = 0

null-cline 1: N = 0
null-cline 2: R = dh

b−d ≈ 0.61



R null-clines and prey vectorfield

R null-clines arre:
R = 0 and N = r

b (1−
R
K )(h + R) = (1− R

K )(0.2+ 2R)

Resulting in the picture:

Determine the prey vectorfield relative to N = (1− R
K )(0.2+ 2R):

• below it there are few predators so prey will increase: ←
• above it there are many predators so prey will decrease: →
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N null-clines and predator vectorfield

N null-clines are:
N = 0 and R = dh

b−d ≈ 0.61

Resulting in the picture:

Determine the predator vectorfield relative to R ≈ 0.61:
• left of it there are few prey so predators will decrease: ↓
• right of it there are many prey so predators will increase: ↑
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Parameter change in LV-model
What happens if we start at low K and gradually increase K?

How many qualitatively different situations do you expect?

First, assume K < 0.61
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Next, assume K > 0.61
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But this is not the end of the story!
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Parameter change in LV-model

There are three different situations for the non-trivial equilibrium!

For 0.61 < K < 1 we have a stable node (right of top parabola)

For 1 < K < 1.333 we have a stable spiral(right of top parabola)

For K > 1.33 we have an unstable spiral (left of top parabola).
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Parameter change in LV-model
K = 0.8: stable node
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K = 1.25: stable spiral
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The local vectorfields (self-feedback) remain the same (stable).
Numerical solutions needed to tell apart spiral from node.

K = 1.5: unstable spiral, stable limit cycle
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The global vectorfield remained the same.
The local vectorfield (self-feedback) became unstable.
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Parameter change in LV-model
K = 0.8: stable node

R (prey)

0 0.5 1

0

0.5

1

N
 (p

re
da

to
r)

t

0 125 250 375 500

0

0.4

0.8

R

N

K = 1.25: stable spiral
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The local vectorfields (self-feedback) remain the same (stable).
Numerical solutions needed to tell apart spiral from node.
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Numerical solution needed to determine that it is a spiral.



Dynamics on closed loops

Let us reconsider center point equilibria
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A series of closed loops.

Rotating dynamics in the phase plane.

Repeated oscillations of the variables.

Which loop is followed, depends on initial conditions.

This also determines the amplitude of the oscillations.
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Point and Cycle attractors

A stable equilibrium is a point attractor

It’s a single (x , y) point in phase space.

Once it is reached, the system stays there.

The long term dynamics of x , y over time are a
straight line.
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A stable limitcycle is a closed curve attractor

It’s a series of (x , y) points forming a closed curve.

Once it is reached, the system keeps walking over
the curve.

The long term dynamics of x , y over time are
stable oscillations.
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Point and Cycle attractors

A stable equilibrium is a point attractor
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Dynamics

Limit cycle
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A single closed loop.

So there is only one single amplitude of oscillations.

The vectorfield dictates the direction of rotation.
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Stable limit cycle
A stable limit cycle is an attractor
It consists of a closed loop of points, rather than a single point:
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All trajectories converge to the closed loop formed by the limit cycle



Unstable limit cycle
An unstable limit cycle is a repellor
It consists of a closed loop of points that acts as a boundary for the
basin of attraction of the attractor that is often within the loop:
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x

y

All trajectories diverge from the limitcycle.On what side of the limitcylce
a trajectory starts determines where it goes.



Why and when do limit cycles occur?

Limit cycles resolve a conflict between local and global dynamics:

Globally the system always converges.
Locally dynamics are for certain situations unstable.

Around the unstable spiral, a stable limit cycle is needed.
The local change in stability is called a Hopf bifurcation.
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Why and when do limit cycles occur?

Limit cycles resolve a conflict between local and global dynamics:

Globally the system always diverges.
Locally dynamics are for certain situations stable.

Around the stable spriral, an unstable limit cycle is needed.
Again, this local change in stability is called a Hopf bifurcation.



Why and when do limit cycles occur?

Note that it is either or:

Either
The system is globally stable
, and it needs a stable limitcycle if it becomes locally unstable (conflict)
and no limitcycle if system is globally and locally stable (no conflict)

Or
The system is globally unstable
, and it needs an unstable limitcycle if it becomes locally stable (conflict)
and no limitcycle if system is globally and locally unstable (no conflict)



Why and when do limit cycles occur?

How do you know whether the global dynamics is stable or not?

Let us consider the global dynamics of the Lotka-Volterra model:
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1. upper-right: prey ← and predators ↑ pushing system to:
2. upper-left: prey ← and predators ↓ pushing system to:
3. lower-left: prey → and predators ↓ pushing system to:
4. lower-left: prey → and predators ↑ pushing system to 1.

System is constrained: can not blow up, suggesting global stability.

Imagine inverse vectorfield: upper-right prey → and predators ↓:
prey can blow up: suggesting global instability



Example

The Holling-Tanner model for predator-prey interactions:

{
dP/dt = rP(1− P

K )− aRP
d+P

dR/dt = bR(1− R
P ) P > 0;R > 0

We fix a = 1, b = 0.2, r = 1, d = 1 and vary K .

P null-clines
P = 0 and R = r

a (1−
P
K )(d + P)

R null-clines:
R = 0 and R = P
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Example

Null-clines and dynamics for K = 7:

A stable spiral, whole phase plane is basin of attraction.

Global dynamics are stable
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Example

Null-clines and dynamics for K = 10:

An unstable spiral and a stable limit cycle
Inside and outside trajectories converge to limit cycle.

Global dynamics still stable, local dynamics unstable
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Example

Hopf bifurcation:

Intersection of the nullclines is left of the top in both cases!
Close to top: stable spiral (consistent with global dynamics)
Further away: unstable spiral + stable limit cycle (resolve conflict)

Change is more subtle here:
LV model: transition from − and 0 to + and 0 self-feedback
HT model: both cases + x and − y self-feedback
Apparently balance changes from − to +!
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Analysis of 2D systems

First look at the entire vectorfield:
is it clearly a stable node, unstable node, saddle?

YES: you are finished!
NO: look at self-feedback

Self-feedback:
Net self-feedback negative: equilibrium is stable (spiral or node)

Net self-feedback positive: equilibrium is unstable (spiral or node)

Net self-feedback undetermined: stability is undetermined

Local stability change
If we have a globally rotating vectorfield
and a parameter change causes a local change in stability
a Hopf bifurcation occurs and a limitcycle appears

If global dynamics is stable, local instability requires stable limitcycle

If global dynamics is unstable, local stability requires unstable limitcycle
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