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In this practical we work with an ‘artificial immune system’ composed of a large set of
random detectors (as a model for lymphocyte receptors) that are defined as random strings
of letters that can match ‘input’ strings (‘kmers’ of letters). These inputs are introduced
(expressed) by intruders and by the ‘self’-environment of our system. Random immune
systems like this have been proposed as ‘learning’ virus scanners for computers [2]. Another
elegant example for systems like this is the detection of a language by randomly sampling
words from a text [4]. In our system a detector is defined to match an input kmer whenever
the kmer is present within the detector. For example, the detector abcdef matches the
3-mers abc and cde, but not the input bca. The lengths of the alphabet, the detector and
the kmer define the probability that a detector matches a particular input.

Consider an alphabet of A letters, input kmers of K letters, and detectors of L letters.
The probability that a single kmer is matching the detector at a particular position of
the detector is px = (1/A)X, because all K letters should be identical. The number of
unique kmers that can be matched by a single detector is maximally m =1+ L — K, and
hence the probability that a single kmer is matching the detector at any position becomes
p=1—(1—pg)™, ie., one minus the probability that the kmer matches nowhere. This
parameter p defines the specificity of the random immune system. If p — 1, almost all kmers
will be recognized by each detector, when p — 0 we need a lot of detectors, i.e., a diverse
repertoire, to have at least one detector matching a randomly chosen kmer. Defining R as
the number of functional detectors, i.e., the diversity of the functional repertoire, a kmer is
expected to be matched by one detector when R = 1/p.

On the webpage tbb.bio.uu.nl/rdb/practicals/scanner we provide a Python script imple-
menting this model. The main question that you can study with this script is how one
should parametrize this random virus detector to allow it to detect most viruses. The chal-
lenge is that the system is also composed of ‘self’-strings that should not be attacked by the
immune system (e.g., self proteins in the immune system, or native code on a computer).
Let there be S self-kmers that should be tolerated. The larger S the more challenging the
problem becomes, because each detector should match none of the self kmers. One can
also quantify the fraction of the total space covered by the self-kmers, which is ¢ = S/AX
because there are AX different kmers in the system. For your information, in the human
body there are about 10* different self proteins, and if each is sampled 10 times into short
peptides (called epitopes), one would estimate that S = 10° kmers. In the Python code we
scale this down to S = 10* to speed up the calculations.

The script starts simple with computing and printing the probability p and the coverage ¢
of sequence space by the S self-kmers. from the basic parameters A, K and L. Next, it
defines functions returning one or n random string(s) of a particular length. To allow for a
computationally efficient system, even for a very diverse repertoire of detectors (millions),
we define a data structure kmer_dict containing all AX kmers. This ‘dictionary’ is indexed
by the string defining the kmer, and contains (1) a boolean variable indicating whether or
not this kmer is a self-kmer, and (2) a list of all detectors in the repertoire matching this
kmer (where detectors are identified by a unique integer). This would look like
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aaa: T [13, 23, 17]

aab: F [101, 213]
(]

zzz: F []

where the first column identifies the kmer, the T or F define whether or not this kmer is
contained in self, and the integers refer to the indices of the detectors. The data structure
defining all detectors is a list of integers representing the state of each receptor, ordered
from the first one made, to the last one. We allow for 3 states, naive ‘0’, tolerant ‘1’, and
memory ‘2’. Receptors are born in a naive state when they match none of the self-kmers,
they become tolerant whenever they match at least one of the self-kmers, and they turn
from the naive to the memory state after matching a foreign kmer. After seeing foreign
challenges the list of states, i.e., the repertoire, may look like

repertoire = [0, O, 1, 0, 2, ...., O],

where detectors 0 and 1 are naive, 2 is tolerant, 3 is naive, 4 is memory, and the last detector
is naive.

The simulator first fills the data structure defining all kmers:

a_matrix = [[i for i in letters] for j in range(X)]
all_kmers = ["".join(f) for f in list(itertools.product(*a_matrix))]
kmer_dict = {kmer:[False, []] for kmer in all_kmers}

where a_matrix contains K columns of A different letters, which are combined by an iterative
loop into all possible strings of K letters in all_kmers. These are collected into a ‘dictionary’
called kmer_dict that can be indexed by the kmer, and has the attributes ‘False’ and an
empty list of detectors. Initially, the dictionagy will look like (for A = 3 and K = 2):

{’aa’:[False,[]], ’ab’:[False,[]], ... , ’cb’:[False,[]], ’cc’:[False,[]]}

Next we define S random kmers to be ‘self’, e.g., words sampled from trusted documents on
a computer or peptides sampled from self proteins in an organism, and set their self/non-self
attribute in the kmer-dictionary to ‘true’:

self_kmers = nrandom_strings(K, S)
for kmer in self_kmers:
kmer_dict [kmer] [0] = True

Random repertoire. Subsequently we build a repertoire of R naive random detectors,
while setting their state to ‘tolerant’ (1) whenever they match a least one of the self-kmers.
This is done in the form of a while-loop because one cannot predict how many random
detectors need to be made to acquire R naive detectors.

repertoire = []
detec_id = 0
n_naives = 0

while n_naives < int(R):

Lmer = arandom_string(L) # make one new detector

repertoire.append(0)

for i in range(nKmers):
kmer = Lmer [i:i+K]
# add detector (if not already present for this k—mer):
if not detec_id in kmer_dict [kmer] [1]:

kmer_dict [kmer] [1] += [detec_id]



# set state to tolerant if k—mer in self repertoire:
if kmer_dict [kmer] [0] :
repertoire[detec_id] = 1
# add to number of naive detectors if not tolerant:
if repertoirel[detec_id] ==
n_naives += 1
detec_id += 1
print("R, T and RO:",np.bincount(repertoire) ,detec_id)

where after some initialization, we keep by calling arandom_string until R naive detectors
have been made. The state of each detector is appended to the repertoire, and the receptor
is split up into m kmers. The index of the new detector is added to each of these kmers
(if not already present), and if the kmer turns out to be a self-kmer, its state is set to
tolerant. After all kmers of the new detector have been recorded and checked for selfness,
the number of naive detectors is increased by one if the detector has not been tolerized by
any of its kmers. At the end of this block there will R naive detectors in the repertoire,
and an unknown number, 7', of tolerized receptors. These numbers, with total number
of receptors tried, Ry = R + T, is printed by the last statement. The system is wasteful
whenever Ry > R.

Challenging intruders. Finally, we start challenging the system with foreign ‘intruders’
each composed of 10 random kmers until the system fails to respond and ‘dies’. After
some initializations, we enter a while-loop during which a novel pathogen with 10 kmers
is created by calling nrandom_strings(X,10). The detectors matching one of these kmers
are aggregated into the list responders. Subsequently, the states of the matching detectors
are collected (in resp_states), and aggregated into a distribution of the number of naive,
tolerant, and memory detectors involved in the response to this intruder:

n_intruders = 0
alive = True
while alive:
n_intruders += 1
intruder = nrandom_strings(K, 10)
responders = []
for kmer in intruder:
responders += kmer_dict [kmer] [1]
resp_states = [repertoire[i] for i in responders]
distribution = np.bincount(resp_states, minlength = 3)

Next a decision is made whether or not to respond to the intruder. In the code below
the system responds to the pathogen if, and only if, there is at least one naive or memory
detector responding (the tolerant receptors for now do not play any role):

if distribution[0] + distribution[2] > 0: # respond
response = True
for i in responders: # update states
if repertoirel[i] ==
repertoire[i] = 2

else: # no response
alive = False
print("No response to intruder %i"Y%n_intruders)

Thus, if a decision to respond is made, the naive detectors that were involved acquire a
memory state, and if the system fails to respond, it dies and exists the while-loop.



Practical. The simulator can be downloaded as a Jupyter notebook (scanner.ipynb).During
the practical first make yourself familiar with this code (e.g., by setting the A, K and L
parameters to small values and printing some of the data structures. After that study the
following questions.

1. Specificity

The analytical model presented in the lecture proved that a random immune system operates
most efficiently when p ~ 1/S. Otherwise the probability of mounting an immune response
becomes too low, or the total number of receptors that has to subjected to the tolerance
process (Ry = R+ T') becomes prohibitively high (see the Appendix). In the simulator the
specificity is solely determined by the number of letters in the alphabet (A), and the lengths
of the kmer (K) and detector (L) strings. Run the first block of code to study how the
specificity, p, and the coverage of the sequence space by the self kmers, ¢, depend on the basic
parameters A, K, and L. Can you confirm the results of the analytical model by changing
the diversity and the specificity of the system, and running the full code to study how many
intruders the system survives? Hint: by changing A, K, and L, and running the first block
of code, one can just search for a desired specificity by trial and error. Alternatively, try
this Mathematica notebook (scanner.nb), that computes L for a given p, A and K).

2. Coverage

A new property of this model is the coverage, ¢, of the sequence space by the self-kmers,
which is defined by S, K, and A. Can you find parameter settings that are similar in
specificity but different in this coverage? Does the survival of intruders depend on the
coverage? Can you explain why? Remember that the coverage is defined as ¢ = S/AX. Can
you find an expression for the number of intruders the system is expected to survive? What
are the relative roles of specificity and coverage in the number of challenges this random
immune system can survive?

3. Immune system

The T cell immune system works with kmers of X' = 5 amino acids (i.e., 20 letters), and
contains about S = 10° self-kmers. One of the smallest vertebrates is the fish species
Paedocypris, which is known to have no more than R = 37000 T cells (Ilymphocytes with
a random receptor, like a random detector) [3]. Can this indeed be a functional immune
system, or do the fish have an enormous waste of useless tolerant receptors to make this
work?

Appendix. A simple mathematical model for the fraction of detectors escaping from to-
lerization is

R = Ry(1—p)°, (1)

where one writes that the diversity of the functional repertoire, R, is the size of the total
number of detectors that is tested, Ry, times the probability that a detector does not match
any of the S self-kmers [1]. Remember that p is the probability of matching a kmer. One
could argue that this functional repertoire becomes protective when every foreign kmer has
a fair chance to be recognized by the repertoire as a whole. With a recognition probability
of p per detector, this is achieved when R ~ 1/p, as at that diversity each kmer is expected
to be recognized by exactly one clone. To address the question how diverse Ry would have
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to be, we substitute R = 1/p in Eq. (1) and solve for Ry,

1 ePd

~=Ry(1—p)® ~Rpe ™ or Ry~ — . (2)

p p
Plotting Ry as a function of p reveals that this function has a minimum at p = 1/5, and that
at this minimum Ry = Se!, i.e., one needs to make e = 2.73-fold more receptors than there
are self-kmers in the system to have a functional repertoire. For p values larger than 1/,
this Ry rapidly becomes prohibitively large. Finally, note the probability of not mounting an
immune response to a single foreign kmer would be (1 — p)¥, and hence that the probability
of not responding to an intruder composed of 10 foreign kmers is (1 — p)!0Pft ~ e~ 10PE,
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