
Diversity of Human ab T Cell
Receptors

Arstila et al. (1) estimated an average diver-
sity of 9 3 105 different b chains and 4.5 3
105 different a chains in the human naı̈ve T
cell repertoire. To calculate the total T cell
repertoire diversity, the b-chain diversity was
estimated within a certain variable (V) gene
family, Va121, comprising 2.5% of the total
a-chain repertoire. Finding in this particular
family an estimated total of 6 3 105 different
b chains (i.e., two-thirds of the total b-chain
repertoire), Arstila et al. suggested that the
total T cell receptor (TCR) diversity compris-
es at least (6 3 105) 3 40 5 2.4 3 107

different ab combinations (1). The authors
acknowledge that this is only a lower bound,
because the calculation assumes that the b
chains that do bind at least one Va12 chain
bind only one of the 4.5 3 105 different a
chains in the Va121 family. If each b chain
found within the Va121 family were to bind
an average of n different Va12 chains instead,
the total estimated TCR diversity would be
n-fold higher than this lower bound.

Arstila et al. estimated an upper bound of
108 different ab combinations (1). Pre–T
cells having rearranged a b chain expand
1000-fold before the a chain is rearranged,
and only 10% of these cells leave the thymus
to enter the mature repertoire. Thus, it was
argued that each b chain can maximally pair
with any of about 100 different a chains.

This is indeed correct for all descendants
of any particular pre–T cell having rear-
ranged a particular b chain—but another
pre–T cell rearranging the same b chain may
bind to 100 different a chains. Thus, to cal-
culate the upper bound on TCR diversity, one
has to consider the frequency with which
identical b-chain rearrangements are expect-
ed. This frequency can be estimated from the
turnover rate of the naı̈ve T cell repertoire. In
human adults, the total body production of
naı̈ve T cells has been estimated at about 108

per day (2), a figure obtained from recovery
rates following T cell depletion (2) and from
an estimated 0.1% turnover (3) in a pool of
1011 naı̈ve T lymphocytes. Assuming that most
of this production is of thymic origin (4) and
that more than 90% of the cells die before
leaving the thymus (1), this implies a daily
production of at least 109 pre–T cells. The
1000-fold expansion of the pre–T cells (1) be-
fore a-chain rearrangement implies that ap-
proximately 106 b chains should be made every
day. Because this is close to the Arstila et al.
estimate of total b-chain diversity, every b
chain should be rearranged about every day.

Over the 1000-day expected life-span (2,
3) of the progeny of a pre–T cell expressing a

single b chain, therefore, 1000 recurrences of
the same b-chain rearrangement might be ex-
pected. Hence, the upper bound for the total
TCR diversity could easily be 1000-fold larger
than calculated by Arstila et al. Such an upper
bound, at 1011, would allow almost every T cell
in the naı̈ve repertoire to have a unique TCR.
The true TCR diversity may be several fold
lower, however, owing to factors such as pro-
liferation after the a-chain rearrangement and
possible restrictions in ab-chain pairing.
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Response: Keşmir et al. argue that although
any developing TCR b chain will be paired at
most with 100 different a chains, the same b
chain may appear repeatedly and garner other
sets of 100 a chains, increasing the total ab
TCR diversity from the 108 we estimated (1).
We studied the diversity of the human ab
TCR in the blood of healthy adult donors at a
given moment, not over time. Also, we did
not measure the upper limit of a-to-b pairing;
our estimate was based on what is known of
ab T cell development and TCR rearrange-
ment. Thus, the comment of Keşmir et al.
actually goes beyond our data.

Because any expansion after a-chain re-
arrangement will increase only clone size, not
diversity, the argument of Keşmir et al. hing-
es on the assumption that the estimated total
turnover of naı̈ve T cells equals thymic pro-
duction of pre–T cells. That assumption is
incorrect, however, and ignores the well-doc-
umented role of post-developmental division
in the maintenance of the naı̈ve T cell popu-
lation, especially in adults. Murine T cells
may go through up to six cell cycles after
a-chain rearrangement even before emigrat-
ing from the thymus (2). Haynes et al., cited
by Keşmir et al., specifically argued for
“minimal contributions of the thymus to
maintenance or reconstitution of the periph-

eral pool of T cells . . .” in humans [(3), p.
457], and showed that the presence or ab-
sence of thymic function and even the surgi-
cal removal of the thymus had no impact on
the reconstitution of the T cell compartment,
including the naı̈ve CD41 cells, in treated
HIV-infected individuals. Naı̈ve T cells, long
after having completed TCR rearrangement,
clearly have a considerable capacity for self-
renewal.

The suggestion of Keşmir et al. can also
be viewed as a question of clone size. If the
size of the repertoire is 108 different TCRs, as
we suggest, the average clone among 1011

naı̈ve T cells would consist of 1000 cells, the
progeny of a single intrathymic a-chain rear-
rangement after 10 cell cycles. These cycles
should therefore be detectable in the naı̈ve T
cell population, and indeed this appears to be
the case. Studying the disappearance of cells
damaged by therapeutic irradiation, McLean
and Michie (4) concluded that, on average,
naı̈ve T cells divide once every 3.5 years and
die after 20 years, which suggests six post-
thymic cell cycles in the life-span of an av-
erage naı̈ve T cell. Other experimental ap-
proaches have suggested higher division
rates. From age 25 to 70 years the mean
telomere length in the naı̈ve T cell population
decreases from 9.5 kb to 8.0 kb, so an esti-
mated loss of 50 to 100 base pairs (bp) per
cell cycle translates to 7 to 13 divisions dur-
ing the 20-year life-span of naı̈ve cells (5). De
Boer and Noest have argued that this estimate
of telomere loss is too high; their estimate, 35
to 70 bp per cycle (6), would mean 10 to 19
cycles. At any given time the fraction of
naı̈ve T cells in cell cycle is 0.8% (7), which
suggests a rate as high as one division per 125
days, or 60 cycles per life-span. The available
data thus can easily accommodate 10 divi-
sions producing the average naı̈ve clone.

Studies on the frequency of antigen-specific
T cell precursors provide an independent line of
evidence that points to a diversity close to what
we proposed. A conservative estimate of the
frequency of such precursors in the naı̈ve rep-
ertoire would be one per million; some studies
have reported significantly higher frequencies
(8, 9). Thus, a total repertoire of 108 TCRs
would predict an epitope-specific response to
consist of 100 clones, while Keşmir et al.’s
repertoire of 1011 TCRs predicts a composi-
tion of 100,000 responding clones. The exist-
ing literature is more compatible with our
prediction (10–14). Thus, we submit that the
phenomenon that Keşmir et al. postulate, al-
though in principle possible, has little impact
on the total diversity.
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