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Chapter 1

Introduction

This course is an introduction into Theoretical Biology for biology students. We will
teach you how to read mathematical models, and how to analyze them, with the ultimate
aim that you can critically judge the assumptions and the contributions of such models
whenever you encounter them in your future biological research. Mathematical models
are used in all areas of biology. Most models in this course are formulated in ordinary
differential equations (ODEs). These will be analyzed by computing steady states, and
by sketching nullclines. We will develop the differential equations by ourselves following
a simple graphical procedure. Experience with an approach for writing models will help
you to evaluate models proposed by others.

This first Chapter introduces some basic concepts underlying modeling with differential
equations. To keep models general they typically have free parameters, i.e., letters
instead of numbers. You will become familiar with the notion of a “solution”, “steady
state”, “half life”, and the “expected life span”. Concepts like solution and steady state
are important because a differential equation describes the change of the population
size, rather than its actual size. We will start with utterly simple models that are only
convenient to introduce these concepts. The later models in the course are much more
challenging and more interesting.

1.1 The simplest possible model

A truly simple mathematical model is the following

dM
— =k 1.1
=k, (1)
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which says that the variable M increases at a rate k per time unit. For instance, this
could describe the amount of pesticides in your body when you eat the same amount of
fruit sprayed with pesticides every day. Another example is to say that M is the amount
of money in your bank account, and that k is the amount of Euros that are deposited in
this account on a daily basis. In the latter case the “dimension” of the parameter k is
“Kuros per day”. The ODE formalism assumes that the changes in your bank account
are continuous. Although this is evidently wrong, because money is typically deposited
on a monthly basis, this makes little difference when one considers time scales longer
than one month.

This equation is so simple that one can derive its solution
M(t) = M(0) + kt , (1.2)

where M (0) is the initial value (e.g., the amount of money that was deposited when the
account was opened). Plotting M (t) in time therefore gives a straight line with slope k
intersecting the vertical axis at M (0). The slope of this line is k, which is the derivative
defined by Eq. (1.1). Thus, the differential equation Eq. (1.1) gives the “rate of change”
and that the solution of Eq. (1.2) gives the “population size at time t”. Typically,
differential equations are too complicated for solving them explicitly, and the solution
is not available. In this course we will not consider the integration methods required
for obtaining those solutions. However, having a solution, one can easily check it by
taking the derivative with respect to time. For example, the derivative of Eq. (1.2) with
respect to time is 9;[M (0) + kt] = k, which is indeed the right hand side of Eq. (1.1).
Summarizing, the solution in Eq. (1.2) gives the amount of money at time ¢, and Eq.
(1.1) gives the daily rate of change.

As yet, the model assumes that you spend no money from the account. Suppose now that
you on average spend s Euros per day. The model then becomes dM/dt = k — s = k/,
where k' = k — s Euros per day. Mathematically this remains the same as Eq. (1.1),
and one obtains exactly the same results as above by just replacing k with &’. If k¥’ < 0,
i.e., if you spend more than you receive, the bank account will decrease and ultimately
become negative. The time to bankruptcy can be solved from the solution of Eq. (1.2):
from 0 = M(0) + k't one obtains t = —M (0)/k" provided k¥’ < 0. Although our model
has free parameters, i.e., although we do not know the value of k, it is perfectly possible
to do these calculations.

This all becomes a little less trivial when one makes the realistic assumption that your
spending is proportional to the amount of money you have. Suppose that you spend a
fixed percentage, d, of your money per day. The model now becomes

dM
— =k—dM 1.
= , (13)

where the parameter d is a “rate” and here has the dimension “per day”. This can
be checked from the whole term dM, which should have the same dimension as k, i.e.,
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“Euros per day”. Biological examples of Eq. (1.3) are red blood cells produced by bone
marrow, shrimps washing onto a beach, and so on. The k parameter then defines the
inflow, or production, and the d parameter the death rate. Although this seems a very
simple extension of Eq. (1.1), it is much more difficult to obtain the solution

M(t) = g (1 - e*dt) + M(0)e 9 | (1.4)
which is depicted in Fig. 1.1a. The term on the right gives the exponential loss of the
initial value of the bank account. The term on the left is more complicated, but when
evaluated at long time scales, e.g., for t — oo, the term (1 — e~%) will approach one,
and one obtains the “steady state” M = k/d. We conclude that the solution of Eq. (1.4)
ultimately approaches the steady state M = k/d, which is the ratio of your daily income
and daily spending. Note that this is true for any value of the initial condition M(0).
Finally, one can check the solution by taking the derivative 0 M (t) giving:

0+ dge_dt — AM(0)e~ = [k — dM(0)]e~ | (1.5)

which is indeed equal to the right hand side of Eq. (1.3), i.e., to k — dM (t), when M (t)
is given by Eq. (1.4).

Fortunately, we do not always need a solution to understand the behavior of a model.
This same steady state can also directly be obtained from the differential equation. Since
a steady state means that the rate of change of the population is zero we set

dM k

— =k—dM =0 toobtain M=-

1.
v R (1.6)

which is the same as obtained above from the solution for ¢ — oco. Note that a steady
state also gives the population size. This steady state provides some insight in the
behavior of the model, and therefore in the way people spend their money. Suppose
that rich people spend the same fraction of their money as poor people do, and that
rich people just have a higher daily income k. This means that both rich and poor
people approach a steady state where their spending balances their income. Basically,
this model says that people with a 2-fold higher income spend 2-fold more money, and
have 2-fold more money in the bank. This is not completely trivial: if you were asked
what would happen with your bank account if both your income and spending increases
n-fold you might have given a different answer.

1.2 Exponential growth and decay

Consider the unfortunate case that your daily income dries up, i.e., having a certain
amount of money M (0) at time zero, one sets k = 0 and is left with dM/dt = —dM.
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This is the famous equation for exponential decay of radioactive particles with the almost
equally famous solution M (t) = M(0)e~%. Ultimately, i.e., for ¢ — oo, the population
size will approach zero. Plotting the natural logarithm of M (¢) as a function of time
would give straight line with slope —d per day. This equation allows us to introduce two
important concepts: the half life and the expected life span. The half life is defined as
the time it takes to loose half of the population size, and is found from the solution of
the ODE. From
M (0)

1
—2 = M(0)e™® one obtains In 3= —dt or t=

In2
5 .

d

Since In2 ~ 0.69 the half life is approximately 0.69/d days. Note that the dimension
is correct: a half life indeed has dimension time because we have argued above that d
is a rate with dimension day~'. The other concept is expected life span: if radioactive
particles or biological individuals have a probability d to die per unit of time, their
expected life span is 1/d time units. This is like throwing a dice. If the probability to
throw a four is 1/6, the expected waiting time to get a four is six throws. Finally, note
that this model has only one steady state, M = 0, and that this state is stable because
it is approached at infinite time. A steady state with a population size of zero if often
called a “trivial” steady state.

(1.7)

The opposite of exponential decay is exponential growth

% =rN with the solution N(t) = N(0)e™ , (1.8)
where the parameter r is known as the “natural rate of increase”. The solution can
easily be checked: the derivative of N(0)e" with respect to ¢ is 7N (0)e™ = rN(t).
Biological examples of this equation are the growth of mankind, the exponential growth
of a pathogen in a host, the growth of a tumor, and so on. Similar to the half life defined
above, one can define a doubling time for populations that are growing exponentially:

2N(0) = N(0)e™ gives In2=rt or t=In[2]/r. (1.9)

This model also has only one steady state, N = 0, which is unstable because any
small perturbation above N = 0 will initiate unlimited growth of the population. To
obtain a non-trivial (or non-zero) steady state population size in populations maintaining
themselves by reproduction one needs density dependent birth or death rates. This is
the subject of the next chapter.

1.3 Summary

An ordinary differential equation (ODE) describes the rate of change of a population.
To know the actual population size one needs to have the solution of the ODE. These are
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(a) (b)
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Figure 1.1: Population growth. Panel (a) depicts the solution of Eq. (1.4). Panels (b) and (c)
depict exponential growth on a linear and a logarithmic vertical axis, respectively. A differential
equation describes the slope of the solution for each value of the variable(s): dN/d¢ is the slope
of the N(t) = N(0)e" curve for each value of N(t).

generally not available, and one typically solves the ODEs numerically on a computer
to study the model behavior. Steady states are solved by setting the rate of change to
zero, and do deliver the actual population size.

1.4 Exercises

Question 1.1. Red blood cells

Red blood cells are produced in the bone marrow at a rate of m cells per day. They

have a density independent death rate of d per day.

a. Which differential equation from this Chapter would be a correct model for the pop-
ulation dynamics of red blood cells?

b. Suppose you donate blood. Sketch your red blood cell count predicted by this model
in a time plot.

c. Suppose a sportsman increases his red blood cell count by receiving blood. Sketch a
time plot of his red blood cell count.

Question 1.2. SARS
Consider a deadly infectious disease, e.g., SARS, and write the following model for the

spread of the disease:

dr

— =01 —-01

=P ;
where [ is the number of human individuals infected with SARS, 8 is the number of
new cases each infected individual causes per day, and 1/¢ is the number of days an

infected individual survives before he/she dies of SARS. Epidemiologists define the Ry
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of a disease as the maximum number of new cases expected per infected individual. Since

an infected individual here is expected to live for 1/§ days, and is expected to cause

new cases per day, the Ry of this disease is 3/9.

a. It has been estimated that on average a SARS patient causes Ry = 3 new cases,
during a typical disease period of two weeks (Lipsitch et al., 2003). Most patients die
at the end of these two weeks. How long does it take with these parameters to infect
half of the world population of 6 x 10° individuals?

b. Do you think this is a realistic estimate? How would you extend the model to make
it more realistic?

Question 1.3. Pesticides on apples

During their growth season apples are frequently sprayed with pesticides to prevent

damage by insects. By eating apples you accumulate these pesticides in your body.

An important factor determining the concentration of pesticides is their half life in the

human body. An appropriate mathematical model is

dP
il OP |

where o is the daily intake of pesticides, i.e., 0 = oA where A is the number of apples

that you eat per day and « is the amount of pesticides per apple, and § is the rate at

which the pesticides decay in human tissues.

a. Sketch the amount of pesticides in your body, P(t), as a function of your age, assuming
you eat the same number of apples throughout life.

b. How much pesticides do you ultimately accumulate after eating apples for decades?

c. Suppose you have been eating apples for decades and stop because you are concerned
about the unhealthy effects of the pesticides. How long does it take to reduce your
pesticide level by 50%7?

d. Suppose you start eating two apples per day instead of just one. How will that change
the model, and what is the new steady state? How long will it now take to reduce
pesticide levels by 50% if you stop eating apples?

e. What is then the decay rate if the half-life is 50 days?

Question 1.4. Injecting anesthesia
Before you undergo a minor operation they inject a certain amount of anesthesia in the
muscle of your upper arm. From there it slowly flows into the blood where it exerts
its sedating effect. From the blood it is picked up by the liver, where it is ultimately
degraded. We write the following model for the amount of anesthesia in the muscle M,
blood B and liver L:

%:—eM, %:eM—cB and %:cB—éL,
where the parameter e is the efflux from the muscle, ¢ is the clearance from the blood,
and ¢ is the degradation in the liver. We assume that the degradation in the muscle and
blood is negligible. The initial amount of anesthesia injected is M (0): the amount in
the muscle at time zero.
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a. Sketch the amounts of anesthesia in the muscle, M (t), and in the blood, B(¢), as a
function of time.

b. How long does it take before half of the injected amount has flown from the muscle
to the blood?

c. Is this the right time to do the operation?

d. Suppose the degradation rate is slow, i.e., let § — 0, how much anesthesia will
ultimately end up in the liver?

Question 1.5. Chemical reactions
Chemical reaction schemes can directly be translated into differential equations. For
instance the reaction

k
2Hs + O ké 2H,0
2

is uniquely translated into

dz
= = 2k12%y — 2k92? |
a 17y 2
where z,y, and z are the [Hy], [O2] and [H2O] concentrations. Two hydrogen molecules x
have to meet one oxygen molecule y, and will from two water molecules z with reaction
speed k1. Similarly two water molecules can dissociate into one oxygen molecule and two
hydrogen molecules. Note that the speed of the reaction is proportional to the product
of the concentrations 22y of all the molecules involved. This is called the “law of mass

action”.

Now consider the reaction scheme

ArSBoa aAvrBRop,

A+ E, M F1E and BYBE ™G+ B,

where S, E1, and Es remain constant.
a. Translate this into two differential equations for A and B.

Question 1.6. Physics (Extra exercise for cool students)
The linear ODEs used in this Chapter should be familiar to those of you having seen
the famous equations for velocity and acceleration. One typically writes:

=v and — =a,

dat at

where z is the total distance covered, v is the velocity, and a is the time derivative of the
velocity, which is defined as the “acceleration”. Integrating dv/dt gives v(t) = at + v(0),
where the integration constant v(0) is the velocity at time zero, and integrating dx/dt =
at + v(0) gives z(t) = at®> + v(0)t.

a. Check the dimensions of v and a.

b. Check these solutions.
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c. Now write a similar model for the amount of nitrogen deposited in a moorland by
rainfall. The amount of Nitrogen in the air is increasing linearly in time because of
air-pollution®.

!The more challenging questions are marked with an asterisk*



Chapter 2

Population growth

Ecological populations change by migration, birth and death processes. In Chapter 1
we saw that one can write simple differential equations for replicating populations, and
for populations that maintain themselves by immigration. We will here study similar
models explicitly from the notion of the biological birth and death processes, and will
develop functions to describe how these processes may depend on the population size.
Rather than taking well-known equations for granted, we will introduce an approach for
“how to develop a mathematical model”. We will stress that there are always many
different models for each particular situation. Models will be analyzed by computing
steady states, and by sketching nullclines. It is important to realize that all models
introduced here require a number of “unrealistic assumptions”: (1) all individuals are
equal, (2) the population is well-mixed, (3) the population size N is large, and (4) the
parameters are constants.

2.1 Birth and death

In the previous Chapter we introduced the equation dN/dt = rN for a population
growing exponentially with a natural rate of increase r. This natural rate of increase is
obviously a composite of birth and death rates. A more natural model for a biological
population that grows exponentially is
dN . . (b—d)t

e (b —d)N with solution N(t) = N(0)e , (2.1)
where b is a birth rate with dimension ¢t~', and d is the death rate with the same
dimension. Writing the model with explicit birth and death rates has the advantage that
the parameters of the model are strictly positive (which will be true for all parameters
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in this course). Moreover one now knows the “generation time” or “expected life span”
1/d. Since every individual has a birth rate of b new individuals per unit of time, and
has an expected life span of 1/d time units, one knows that the expected number of
offspring of an individual is Ry = b/d. We will use this Ry as the expected “fitness” of
an individual. In epidemiology the Ry is used for predicting the spread of an infectious
disease: whenever Ry < 1 a disease will not be able to spread in a population. One
infected host is then on average expected to be replaced by less than one newly infected
host.

In this book we will give solutions of differential equations whenever they are known,
but for most ecological models the solution is not known. We will not explain how these
solutions are obtained. The textbook by Adler (1997) gives an overview of methods of
integration. You can also use Maple or Mathematica to find the explicit solution of some
of the differential equations used here. The solution can easily be checked: the derivative
of N(0)e®=9* with respect to t is N(0)(b — d)e=Dt = (b — d)N(t).

A non-replicating population increasing with an external influx and a density indepen-
dent death rate, e.g., Eq. (1.3) or Eq. (2.2), will ultimately approach a steady state where
the influx balances the death. This is not so for this model with density independent
per capita birth and death rates: the only equilibrium of Eq. (2.1) is N = 0. If b > d,
i.e., if the fitness Ry > 1, this equilibrium is unstable because introducing the smallest
number of individuals into the N = 0 state leads to exponential growth. If Ry < 1
this equilibrium is stable because every population will ultimately go extinct (i.e., for
t — 0o the solution N (0)e®~®* — 0). Note that one could argue that Eq. (2.1) also has
a steady state when b = d. However, this is a rare and strange condition because the
birth rate and the death rate would have to be exactly the same over long time scales.

Biological examples of Eq. (2.1) are mankind, the exponential growth of algae in a lake,
and so on. Similarly, the natural rate of increase r = b—d yields a “doubling time” solved
from 2N (0) = N(0)e" giving ¢ = In[2]/r time units. A famous example of the latter is
the data from Malthus (1798) who investigated the birth records of a parish in the United
Kingdom and found that the local population had a doubling time of 30 years. Solving
the natural rate of increase r per year from 30 = In[2]/r yields » = In[2]/30 = 0.0231
per year, which can be expressed as a growth rate of 2.31% per year. More than 200
years later the global human growth rate is still approximately 2% per year. Simple
exponential growth therefore seems a fairly realistic model for the complicated growth
of the human population.

Eq. (2.1) describes a “replicating” population. A simple density-independent model for
a “non-replicating” population is
dN

Frant s dN  with solution N(t) = % (1 — e*dt> + N(0)e 9 | (2.2)

where s is a production rate (individualst~!) and d is a death rate (t~!). This model
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Figure 2.1: Graphs of the per capita birth and death rates. Equilibrium points correspond to
the intersection points where the birth rate equals the death rate. From: Campbell & Reece
(2008)52.14.

has a steady state of N = s/d individuals that is found by solving dN/dt = 0. Thus,
this non-replicating population has a (stable) steady state in the absence of density
dependent processes. Biological examples of such non-replicating populations are seeds
blowing into a field, and so on. There is no typical doubling time, and the Ry is not
defined because small populations always expand. The expected life span remains 1/d
time units, and the individual half life remains In[2]/d time units.

Birth and death rates are typically not fixed because the processes of birth and death
often depend on the population size. Due to competition at high population densities
birth rates may become lower and death rates higher when the population size increases
(see Fig. 2.1). This is called density dependence. We here wish to develop models that
are realistic in the sense that we understand which biological process is mechanistically
responsible for the regulation of the population size. A good procedure for developing
such models is to decide beforehand which process, i.e., birth or death, is most likely
to be subjected to density-dependent effects. The next step is to sketch a functional
relationship between the biological process and the population density.

2.2 Density dependent death

If the death rate increases with the population size one could, for example, propose a
simple linear increase of the per capita death rate with the population size (see Fig. 2.1a).
This linear increase need not be realistic, but is certainly a natural first extension of a
model where the death rate fails to depend to the population size. A simple mathematical
function for the graph in Fig. 2.1a is f(N) = d(1 + N/k), where d is the normal death
rate that is approached when the population size is small, and where k£ determines the
slope with which the death rate increases with N. To incorporate the death rate of Fig.
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2.1a into our model one simply replaces the parameter d in Eq. (2.1) with the function

F(N) = d(1 + N/k):
% — [b—d(1+ N/R)N . (2.3)

The dimension of the parameter & is biomass, or individuals, and its exact interpretation
is that the death rate has doubled when N = k. At low population sizes the expected
life span of the individuals approaches 1/d time units, and they always have a birth rate
b per time unit. The fitness of individuals obeying Eq. (2.3) therefore equals Ry = b/d.
The Ry is always a maximum fitness, i.e., is computed for an individual under optimal
conditions, which here means N — 0.

To search for steady states of Eq. (2.3) one sets dN/dt = 0, cancels the trivial N = 0
solution, and solves from the remainder
- b—d

b—d=dN/k that N:kT:k(Ro—l) (2.4)
is the non-trivial steady state population size. In ecology such a steady state is called the
“carrying capacity”. A simple linear density dependent death rate is therefore sufficient
to deliver a carrying capacity. The carrying capacity depends strongly on the fitness of
the population, i.e., doubling (Ry — 1) doubles the population size.

To test whether these steady state are stable one could study the solution of Eq. (2.3) to
see what happens when ¢t — oco. Although this solution is known, we prefer to introduce
a graphical method for determining the stability of a steady state. Fig. 2.1a sketches the
per capita birth and death rates as a function of the population size in one graph. When
these lines intersect the birth and death rates are equal and the population is at steady
state. To check the stability of the non-trivial state state, one can study what happens
when the population size is somewhat increased. Increasing N from the equilibrium
density N makes dN/dt < 0 because the death rate exceeds the birth rate. This forces
the population back to its steady state value. Similarly, decreasing N makes dN/dt > 0
which pushes the population back to the steady state. We conclude that the non-trivial
steady state is stable. The instability of the trivial steady state N = 0 can also be
checked from Fig. 2.1a: increasing N from N = 0 makes dN/dt > 0 whenever b > d,
i.e., whenever the fitness Ry > 1.

2.3 Density dependent birth

Alternatively, one may argue that the per capita birth rate b should decrease with
the population size. Fig. 2.2 shows some experimental evidence supporting this for
two natural populations. The simplest functional relationship between the per capita
birth rate and the population size is again a linear one (see Fig. 2.1b), and a simple
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Figure 2.2: Panels (a) and (b) show for a plant species and a bird species that the per capita
reproduction rate depends on the population size. From: Campbell & Reece (2008)52.15.

mathematical description is f(N) = b(1 — N/k). Replacing the b parameter by this
linear function the model becomes

dN
S = (- N/K) - dN . (2:5)

The dimension of the parameter k is again biomass, or individuals, and its exact in-
terpretation now is that the birth rate becomes zero when N = k. At low population
sizes the fitness of individuals obeying Eq. (2.5) remains Ry = b/d, which is natural
because at a sufficiently low population size there should be no difference between the
two models. The steady states now are N = 0 and solving

b—d= b% yields N = k(1 —d/b) = k(1 —1/Ry) . (2.6)

A simple linear density dependent birth term therefore also allows for a carrying capacity.
However, this carrying capacity approaches the value of k£ and is fairly independent of
the fitness whenever Ry > 1. By the same procedure as illustrated above one can
test graphically from Fig. 2.1b that the carrying capacity is stable, and that N = 0 is
unstable.

2.4 Logistic growth

We have seen that the carrying capacity of a population with density dependent death
depends strongly on the fitness of its individuals, whereas with density dependent birth
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Figure 2.3: Logistic growth. From: Campbell & Reece (2008)52.11/12. Note that the label of
the vertical axis in (a) should have been the per capita rate [dN/dt]/N.

this is much less so. Mathematically, one can rewrite both models as the classical “logistic
equation” however:

dN

KN
- = rN(1— N/K), with solution N(t)= )

N(0)+e (K — N(0)) ’

with a natural rate of increase of r = b — d, and where K is the carrying capacity of the
population. In the exercises you will be asked to to rewrite Egs. (2.3 & 2.5) into Eq. (2.7),
but you can easily see that all three are of the same form because they all have a positive
linear and a quadratic negative term. The behavior of the three models is therefore the
same: starting from a small initial population the growth is first exponential, and later
approaches zero when the population size approaches the carrying capacity (see Fig.
2.3). Starting from a large initial population, i.e., from N(0) > K, the population size
will decline until the carrying capacity is approached.

(2.7)

2.5 Stability and return time

The steady states NV = 0 in Fiig. 2.1 are not stable because small perturbations increasing
N makes dN/dt > 0 which further increases N. The non-trivial steady states in Fig.
2.1 are stable because increasing N makes dN/dt < 0. It appears that steady states are
stable when dy[dN/dt] < 0, and unstable when this slope is positive (see Fig. 2.4).

Mathematically one can linearize any function f(z) at any value of = by its local deriva-
tive:

fle+h)~f(x)+ 0 fh, (2.8)



2.5 STABILITY AND RETURN TIME 21

(a) (b)

—basin of attractioﬂ—‘—) |

0
1) ) ) ) )
0 >0 A<0 A>0A<0A>0
0 K\—
N N

Figure 2.4: The stability of steady state is determined by the local derivative (slope) of the
growth function at the steady state. Panel (a) depicts the logistic growth function f(N) =
rN(1 — N/K) and Panel (b) depicts an arbitrary growth function.

AN/dt = f(N)
AN/dt = f(N)

where h is a small distance (see Fig. 16.3 in the App_endix). To apply this to our stability
analysis one rewrites f(N) into f(N + h) where N is the steady state population size
and h is a small disturbance. Following Eq. (2.8) one obtains

de:h:f(N+h):f(N)+8th:0+6th:)\h, (2.9)

where A\ = On f is the derivative of f(IN) with respect to N. For the f(N) = s — dN of
Eq. (2.2) one obtains A = —d, and for the logistic equation one obtains A = r — 2rN/K,
which still depends on the population size N. At the carrying capacity of the logistic
equation, i.e., at N = K, the local tangent is A = —r and at N = 0 we obtain A = r (see
Fig. 2.4a). Because d(N + h)/dt = dh/dt we obtain

% = M\h  with solution h(t) = h(0)e* , (2.10)

for the behavior of the disturbance around the steady state. Thus, whenever the local
tangent A at the equilibrium point is positive, small disturbances grow; whenever A < 0
they decline, and the equilibrium point is stable. For an arbitrary growth function this
dependence on the slope A is illustrated in Fig. 2.4b. This Figure shows that the unstable
steady states, here saddle points, separate the basins of attraction of the stable steady
states.
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The stability of a steady state can be expressed as a “Return time”

T = Y (2.11)
i.e., the more negative \ the faster perturbations die out. For example, consider the
return time of the logistic growth equation around its carrying capacity. Above we
derived that at N = K the tangent A\ = —r. This means that T = 1/, i.e., the larger
r the shorter the return time. Populations that grow fast are therefore more resistant
to perturbations. The paradigm of r-selected and K-selected species is build upon this
theory. Finally, note that the dimensions are correct: because r is a rate with dimension
“time™1”, Tk indeed has the dimension “time”.

2.6 Summary

A stable non-trivial population size is called a carrying capacity. Replicating populations
will only have a carrying capacity when the per capita birth and/or death rate depends
on the population density. For non-replicating populations is this not so. A steady
state is stable if the local derivative of the growth function is negative. The steeper this
derivative, the shorter the return time.

2.7 Exercises

Question 2.1. Density dependent growth
A density dependent birth rate need not decline linearly with the population density.
Consider a population with a density dependent growth term:

dN 1

G = OF) =N with J(N) =

a. Sketch how the per capita birth rate depends on the population density N.

b. Sketch how the birth rate of the total population depends on the population density
N.

c. Compute the steady states of the population.

d. What is the Ry and express the steady state in terms of the Ry?

e. Is f(IV) a Hill function (see Chapter 16)?

Question 2.2. Density dependent death
Consider a replicating population where most of the death is due to competition with
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other individuals, i.e., let f(IN) = ¢N in a model where dN/dt = (b — f(IN))N.
Sketch the per capita death rate as a function of V.

Sketch the per capita net growth rate as a function of N

Compute the steady state.

Why is the Ry not defined?

What is the return time in the non-trivial steady state?

oo Ty

Question 2.3. Growth of insects
Consider an insect population consisting of larvae L and adults A:

dL dA
E—aA—dL(l—&—eL)—cL and a-cL—éA.

a. Interpret all terms of the model.
b. Sketch the nullclines and the vector field (see Section 16.4).
c. Determine the stability of the steady state(s).

Question 2.4. Stem cells

Stem cells are maintained by continuous division. A fraction of the daughter cells dif-
ferentiate and obtains other phenotypes. A convenient model for stem cell growth is the
logistic equation dS/dt = rS(1 — S/k).

a. Expand the model with differentiation of stem cells

b. Write a simple model for the differentiated cells

c. Analyze the model by nullclines and determine the stability of the steady states (see
Section 16.4).

Question 2.5. Freitas

Agenes et al. (1997) at the Pasteur Institute manipulated the number of cells in the
bone marrow (pre-B cells) producing naive B cells (e.g., in the spleen), and found the
following:

Number of B cellsin spleen (in millions)

. | . | . | . | . |
00 3 4 5

1 2
Number of pre-B cellsin bone marrow (in millions)

The simplest model for the naive B cell population is dB/dt = m — dB where m is the
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bone marrow production, and 1/d is the average life span of naive B cells. The rate of
naive B cell production is proportional to the number of pre-B cells, i.e., m = aP, where
P is the number of pre-B cells.

Is this simple model compatible with the data?

If not, how would you extend the model?

Do the data require homeostasis, i.e., density dependent regulation?

Is dB/dt = m — dB accounting for homeostasis?

e TP

Question 2.6. Negative birth

The per capita birth rate function f(N) = b(1 — N/k) of Eq. (2.5) is not completely
correct because the birth rate becomes negative when N > k. This can be repaired by
writing f(N) = max[0,b(1 — N/k)] which equals zero when b(1 — N/k) < 0. Will this
change the steady states analyzed in this Chapter?

Question 2.7. Logistic growth

Logistic growth dN/dt = rN(1 — N/K) is a popular equation for describing a replicator
population with a maximum population size (see Fig. 2.3).

a. What is the maximum population size?

b. Show that Eq. (2.5) can be rewritten as a logistic growth.

c. Show that Eq. (2.3) can be rewritten as a logistic growth.

Question 2.8. Red blood cells

Red blood cell production in the bone marrow is regulated by the erythrocyte numbers

in the periphery. Erythrocyte production is stimulated by the hormone erythropoietin

that is produced by renal epithelial cells when the blood delivers insufficient oxygen.

On average the human body produces 3 x 10° new erythrocytes per kg of body weight

per day. Because the bone marrow of the long bones becomes fatty in adults, the total

amount of bone marrow producing erythrocytes decreases with age. Nevertheless, the
number of peripheral red blood cells remains fairly constant.

a. Write a mathematical model, i.e., a growth equation, assuming that red blood cells
have a finite life span of about 120 days, and that the production in the bone marrow
is regulated by the erythrocyte density.

b. Compute the steady state.

c. Does this model explain the observation that erythrocyte numbers are fairly indepen-
dent of the age of an individual? Hint: the effect of erythropoietin is sigmoidal with
a high Hill-coefficient (Belair et al., 1995).

Question 2.9. Naive T cell renewal

Data suggest that naive T cells expand by cell division when densities are low.

a. Write a simple growth model assuming that naive T cells divide when densities are
low.

b. Check the feasibility of the model by computing the steady state.

Question 2.10. Tumor growth



2.7 EXERCISES 25

Consider a small melanoma growing as a flat disk. Assume that the tumor cells are
dividing only at the tumor boundary because of a lack of blood supply inside. Assume
that cell death occurs uniformly throughout the tumor mass. Hint: the surface area of
a circle is 772 while its circumference is 27r. Thus, if N is the total number of cells in
the tumor, the number of cells at the surface is proportional to v/N.

a. Write a growth model for the total number of cells in the tumor.

b. What is the steady state?

c. Sketch the per capita growth as a function of the tumor mass.

d. How would you extend this to a three-dimensional tumor growing as a ball?
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Chapter 3

Interacting populations

Our mission in this Chapter is to study properties of models in which several populations
interact. We will focus on the negative interaction of pathogens onto their target cells,
and the negative control that an immune response has on infected cells. Here the models
will be analyzed with nullclines and steady state analysis. In Chapter 7 similar models
will be combined into a larger, more complicated models, that will be analyzed in terms
of their steady states.

3.1 Viral infection

Consider the infection of a population of target cells T by cells I infected by some virus.
This could be a hepatitis infection where HBV or HCV infects liver cells, or HIV infecting
CD4*" T cells. Measuring time in units of days a natural model to write is

dr dI

where o is the daily production of target cells, uninfected target cells have a half life of
In[2] /67 days, and infected cells have a half life of In[2]/d; days. One can set 7 > dp to
allow for cytopathic effects of the virus. Uninfected cells can become infected by meeting
with infected cells at a rate §/day per infected cell.

The model assumes an absence of homeostasis in the target cell population. The healthy
steady state is solved from setting I = 0 and d7/dt = 0, i.e., T = o /67 cells. This
represents the normal size of the target cell population (e.g., the normal size of the
liver). In Chapter 2 we have seen the solution of this growth model in Eq. (2.2). During
an infection we have to solve the steady state from the whole system Eq. (3.1). Starting
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with the simplest equation we set dI/dt = 0 to find I = 0 and T’ = 6;/. Apparently, the
equilibrium number of uninfected target cells becomes independent of their production
and life span, but is solely determined by the infection parameters 8 and d;. Next we
set dT'/dt = 0 to find

1 7B 5 B (3.2)
when T = &;/83 is substituted. The full model therefore has two steady states: the
uninfected state (T = /57, I = 0) and the infected state (T = 6;/83,1 = 5 - %T) In
the uninfected state the number of uninfected target cells is proportional to their daily
production, in the infected state the production ¢ determines the number of infected
cells; T is totally independent of their production o.

We have seen in Chapter 2 that it is convenient to define the maximum per capita growth,
Ry, of the infection. In this two-dimensional system the Ry of the infection is defined
as the per capita growth over a whole generation at maximum target cell availability

= 0 /dp. Multiplying the maximum daily per capita growth o3 /dr with the generation
tlme 1/6r yields Ry = 5—B The infection can only spread in the target cell population
if Ry > 1. This can also be seen from requiring that df/dtmax = I(c/07 — 67) > 0
which also yields the requirement Ry > 1. The infected steady state can be written in

terms of the Ry as
1

ol g i1 L |
5 R an 51( RO)7 (3.3)

Wthh shows that the degree of depletion of target cells from the healthy steady state

= o /07 is proportional to Ry, and that I~c /0r whenever Ry > 1. The latter would
1mply that the infection rate § hardly influences the steady state number of infected
cells.

We continue by drawing nullclines. Setting dI/d¢ = 0 already yielded I = 0 and T =
07/B, corresponding to two straight nullclines in the phase space. Setting d7'/dt = 0

already yielded I = = — °£. It is therefore most convenient to construct a phase space

having I on the Vertlcal axis and T as the horizontal variable. Plotting I = B—T -

is the same as plotting a function y = p/x — ¢ (where p = o/ and ¢ = é7p/3). For
the intersections with the axes one finds that I = 0 when T' = ¢/dr, which is obvious
because it is the uninfected steady state found above. Letting T — oo yields [ = —d7/f
as the horizontal asymptote, and T' — 0 gives the vertical axis as the vertical asymptote.
Thus, in the positive domain, the d7'/d¢ = 0 nullcline is the hyperbolic function depicted
in Fig. 3.1. There are two possibilities: if 6;/8 < o/dr (i.e., Ry = 5‘7—6 > 1) there is
a non-trivial steady state corresponding to a chronic infection. If Ry < 1 the infection
cannot expand in the healthy steady state T = o/dr cells (Fig. 3.1b).

The stability of the steady state can be studied by means of the vector field. We chose
extreme regions in the phase space to determine the signs of d7'/dt and dI/dt. Left of
the dT'/dt = 0 nullcline the target cells increase because the production o exceeds the
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Figure 3.1: The phase space with nullclines of Eq. (3.1).

loss dT' + BT when T' — 0. Left of the d/d¢ = 0 nullcline dI/d¢ < 0 because 51" < d;.
In Fig. 3.1b the healthy steady state T = o /dr is stable because the vector field points
toward in all directions. The healthy steady state is unstable in Fig. 3.1a because the
vertical direction points upwards. Thus, in Fig. 3.1a (T = o /07, I = 0) is a saddle point.
The stability of the infected state is more difficult to determine from the vector field.
Since the vector field does not have a stable and unstable direction the point cannot
be a saddle point. Because there is no local positive feedback from the variables onto
themselves (cf. Chapter 2), i.e., increasing 7" around the steady state decreases d7T'/dt
and increasing I decreases dI/dt, we conclude the steady state is stable.

3.2 Immune response

Virus infections typically evoke immune responses composed of antibodies and CD8*
cytotoxic T cells. One interpretation of the model written above in Eq. (3.1) is that
the effect of antibody response, and/or the cellular immune response is reflected in the
clearance rate §y of infected cells. We can also extend the model with an explicit immune
response by writing

dT dr dFE

— =0— — — =pTI — — — = — 4

i orT — BT 7 BTI -6 —kIE, and T aFEI —6pE | (3.4)
where the kI E term reflects the killing of infected cells by the immune effectors F, and
the a1 represents the clonal expansion of immune effectors in response to antigen.

The steady state of the model is found by solv_ing the equations from the simplest to the
most complicated. Solving dE/dt = 0 yields E = 0, which is the steady state considered
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Figure 3.2: Nullclines of Eq. (3.7) with the non-trivial steady state. Parameters: a = 0.001,
8=0.1,0g =0.01,6; =0.1, 0 = 0.1, £k =1 and ¢ = 100.

above, and I = §g/a. Solving dT'/dt = 0 yields

_ o o
— . A 3.5
or + BI or + Bop/a (3:5)
Solving dI/dt = 0 yields I = 0 which is the uninfected state, and
_ 5 (5[ BOJO' (5[
E = £Etp_ X - = 1 3.6
k k k(adr + pBoE) k (36)

Note that for the non-trivial solution, we now solve I from dE/dt = 0 and E from
dI/dt = 0. Further note that the steady state infected cells is now only determined by
the immune response parameters « and dg.

One can simplify this model to better focus on the interaction between the immune
response and the infected cells by eliminating the target cell equation by making the
quasi steady state assumption d7'/d¢ = 0. Substituting 7" = o /(57 + SI) into dI/d¢
yields for the interaction between the immune response and the infected cell a two-
dimensional model

drf opI dE

— = — 01l —kIE d — =aFl -0pgE . 3.7

dt ~op+pl ! P T T T &0
The non-trivial nullclines of this model are I = §g/a for dE/dt =0, and E = k(%fﬂl) -

%’ for dI/dt = 0, which is of the form y = a/(b+ x) — ¢. Thus in a phase space with
the immune response on the vertical axis and the infected cells on the horizontal axis
we again obtain a vertical “parasite” dE/dt = 0, and a hyperbolic “host” nullcline
between a vertical asymptote at I = —dp/f and a horizontal asymptote approaching
E = —47/k. This looks like Fig. 3.1 except for the fact that the hyperbolic nullcline
crosses the vertical axis having its asymptote at a negative value of I (Fig. 3.2). Because
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the vector field is also similar to that in Fig. 3.1 the non-trivial steady state is again
stable. In Fig. 3.2 we only plot the nullcline configuration where the nullclines intersect,
i.e., where the immune response exists. When E = 0 we have to consider Eq. (3.1) with
Fig. 3.1.

3.3 Exercises

Question 3.1. Lotka Volterra model

Redo the analysis of the infection model Eq. (3.1) for a target cell population that grows
logistically rather than by an independent production term.

a. Write the equations and define the Ry of the infection.

b. Compute the steady states.

c. Sketch the nullclines and determine the stability of the steady states.

Question 3.2. Seals

Assume that seals in the Waddenzee have a density dependent birth rate and a density
independent death. Healthy seals S live on average 1/d days, and can become infected
with a virus carried by infected seals I. Infected seals die after a short period averaging
about 1/ days. We write the following model:

ds

4 = bS(1—5/k) —dS — BSI and AL 551 - 61 where 5> d.

dt

What is the steady state of healthy seal population?

What is the Ry of the seals?

Express the steady state from a. in terms of this Ry.

Suppose that pollution with PCBs halves the birth rate of the seals. What is the
steady state of the seal population under polluted circumstances?

e. How many healthy seals S are there in a population chronically infected with this
deadly virus?

f. How is this healthy seal population size in the infected steady state changing by
water pollution with PCBs?

g. Sketch the nullclines of the model and determine the stability of all the steady states.
h. Sketch the nullclines of the model in the presence and the absence of PCBs in one
picture.

o op

Question 3.3. Solving the steady state
Find the non-trivial steady state concentration of molecule B in the following reaction
chain assuming that all species are present:

A B
d—:a—bA—cAB, d—:cAB—dB—eBC, gzeBC—fC.
dt dt dt
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Question 3.4. Viral fitness

Viruses have high mutation rates and short generation times, and can hence adapt
rapidly to escape from drugs or the immune response. Some of these escape mutations
are associated with a high fitness cost. In the model of Eq. (3.1) one would write

dT df
Efa—chﬂT—fBTI and a—fﬁTI—é;I,
where the fitness f < 1.

a. Compute the steady state of this model.

b. How does the steady state viral load depend on the viral fitness?

c. How can this be? What is the major effect of a loss in fitness?



Chapter 4

Saturation functions

The infection term in the previous Chapter was a simple mass action term. At high
target cell densities one would expect that infected cells approach some maximum rate
at which they can infect target cells, however. This can be done by replacing the mass
action term by one of the saturation functions defines in Chapter 16.

Consider again the infection of a population of target cells T" by cells I infected by some
virus, and now assume that the infection term is saturated, i.e., at high concentrations of
target cells, each infected cell infects some maximum number of target cells per day. For
simplicity now consider a target cell population that is maintained by logistic growth:

aT BIT

Y ra-1/R) - P
a — T =T/K) ==

ar _ BIT

and dt  h+T

— 011, (4.1)
where h is the target cell density at which the infection proceeds at half of it maximum
rate. The parameter 8 now has the interpretation of the maximum infection rate at
maximum target cell availability. We have employed a simple Hill-function to define the
saturation function.

The nullclines of the target cells are T'= 0 or

8I

r(L-T/K) = oo

or I=/B)(h+T)(1-T/K), (4.2)
which is a parabola crossing the I = 0 axis at 7' = —h and T = K, and having its
maximum at 7" = (K — h)/2 (see Fig. 4.1a—c). The nullclines of the infected cells is
I =0and T = 6rh/(S — d1), which is the vertical line in Fig. 4.1a—c. Because of the
saturation, one can now consider the maximum per capita virus growth per generation at
optimal, i.e., infinite, target cell availability. This yields Ry = $/d;. Thus the dI/dt =0
nullcline is located at T'= h/(Rp — 1). The target cells increase below the parabola, and
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Figure 4.1: The nullclines and trajectories of Eq. (4.1) for h/Ry — 1 > (K — h)/2 (a) and
h/(Ro —1) < (K — h)/2 (b & c¢). The non-trivial steady state is stabke in (a) and unstable in
(b) and (c). The carrying capacity K is indicated. The nullcline of the immune response is the
vertical line located at R = h/(Ry — 1). From left to right the carrying capacity increases. In
the two panels on the right the model behavior approaches a stable limit cycle. The heavy line
in the time plots denotes the target cells.

infected cells increase at the right side of the vertical line. When h/Ryp—1 > K we obtain
Fig. 4.1a where the uninfected state is stable. When (K — h)/2 < h/(Ryp — 1) < K the
nullclines intersect at the right side of the top of the parabola. From the vector field one
can see that the steady state is not a saddle. Increasing 7" in the steady state decreases
d7T'/dt, while increasing I keeps dI/dt = 0. Because there is no positive feedback the
equilibrium is stable. In Fig. 4.1c, where h/(Ro—1) < (K —h)/2, the nullclines intersect
left of the top. The local vector field is the same, except for the fact that increasing T’
increases d7'/dt. Due to this positive feedback the steady state is unstable. The behavior
now is a stable limit cycle (Fig. 4.1e & f). Such a limit cycle can account for relapsing
diseases (see Chapter 10), and/or periodic fevers. Periodic behavior will be addressed
further in Chapter 6.
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4.1 Exercises

Question 4.1. Host-parasite models

The target cells in Eq. (4.1) grow logistically, and having a saturated infection term, we
obtained the parabolic nullcline for the target cells.

a. Replace the logistic growth by a fixed source and a density-independent death term.
Sketch the nullclines.

b. Replace the fixed source by a density-dependent source. Sketch the nullclines.

c. Is the “humped” host nullcline that so easily leads to periodic behavior a general
phenomenon?

Question 4.2. Immune control

Consider anti-retroviral therapy in the immune control model defined by Eq. (3.4).

a. What do expect in the long run for the viral load I from a therapy that decreases 57
b. Would such a treatment have any positive effect for the patient?

Question 4.3. Oscillations

During primary infections with the measles virus transient oscillations in the viral load

and the immune response have been observed.

a. Can that be explained with the model in this Chapter?

b. Do you really require the saturated infection term of this model, or would the model
with a mass action infection term also explain this?
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Chapter 5

Gene regulation

Protein synthesis depends on DNA transcription making mRNA molecules and transla-
tion of mRNA into proteins. Some proteins inhibit the transcription of their own mRNA.
Let us model this by a declining Hill function 1/(1 + z) (see Chapter 16), and assume
that mRNA molecules M and proteins P have turnover rates d and J respectively:

M e
dt 1+P

—dM and (L—ft):lM—dP, (5.1)

where ¢ is the maximum transcription rate, and [ is the translation rate. When P =0
the gene is “on”, when P — oo the gene is “off” and the transcription rate becomes zero.
To analyse this model we draw nullclines. Setting dM/dt = 0 the simplest function to
obtain is M = %, which is an inverse Hill function with maximum ¢/d when P = 0
(see Fig. 5.1). Solving dP/dt = 0 for M yields the straight line M = (6/1)P (see Fig.
5.1). The nullclines intersect in only one steady state. The vector field around the steady

state shows that the point is a stable node.

To allow for swift gene regulation mRNA has to be short lived. Assuming that transcrip-
tion is a much faster process than translation, the mRNA concentration will typically
be close to its steady state value for each protein concentration. This so-called “quasi
steady state” is obtained by solving M from dM/dt = 0, which we already did for

drawing the nullcline. Substituting M = fﬁ; into dP/dt yields the quasi steady state
model
dP 7
—_— = — 6P 5.2
dd 1+P ’ (52)

where m = lc/d is the maximum production rate.
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ulo

Figure 5.1: The nullclines of Eq. (5.1): qualitatively there is only one possible phase space with
one stable steady state.

5.1 Separation of time scales

One often simplifies models by distinguishing slow and rapid time scales. This is a
very important technique. For fast variables one can do a “quasi steady state” (QSS)
approximation. This means that the QSS variable is in steady state with the rest of
the system, i.e., with the slow part of the system. When the slow part changes the
QSS variable walks along. By a QSS approximation one basically replaces a differential
equation with an algebraic equation. A simple example of a QSS approximation would
be the position of a fast fighter jet that is following a slow Boeing 747. If the pilot of the
fighter jet has the order to tail the Boeing, one can describe the location of the fighter jet
as a short distance behind the Boeing. Whenever the Boeing changes course, the rapid
fighter jet will immediately follow. If the fighter yet were a slow plane, this would not
be a valid assumption. This story was originally told by Lee Segel from Israel. He was
the “father of the quasi steady state assumption” (Segel, 1988; Borghans et al., 1996),
and a great story teller.

Conversely, variables that are much slower than the other variables of a model can be
approximated by constants that do not change at all on the time scale of interest. One
example will be the assumption that the immune response is not changing during anti-
retroviral therapy in Chapter 7. In this course we will use both techniques in order to
obtain natural simplifications of our models.

5.2 Lac-operon

Bacteria can use several external substrates for cellular growth and switch the corre-
sponding intra-cellular pathways on and off depending on the available resources. One
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Figure 5.2: The lac operon: regulated synthesis of inducibale enzymes. From: Campbell &
Reece (2008)18.22.

(b)

A L

Figure 5.3: Nullclines of Eq. (5.3). Parameters: L=c=d=v =1, ¢y = 0.05, h =2, m =5,
and § = 0.2.

of the possible substrates is the sugar lactose, and the regulation of the “Lac-operon”
was one of the first circuits of gene regulation that was revealed (Jacob & Monod, 1961).
Regulation of the Lac-operon involves a positive feedback because the sugar allolactose,
A, activates gene expression by deactivating a repressor R. Allolactose is an isomer of
lactose that is formed in small amounts from lactose. The intracellular lactose concentra-
tion is determined by an enzyme permease that is produced by this gene complex. The
gene complex also codes for the enzyme (-galactosidase that hydrolizes the disaccharide
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allolactose into glucose and galactose. This can be summarized into the following model

1
k= 14+ An
dM cA™
- = 1— —dM = —dM
dt CO“‘C( R) Co+ 1—|—A” s
dA vMA
— = ML —-0/A— —— 5.3
dt h+A’ (53)

where 0 < R < 1 a sigmoid Hill function representing the “concentration” of active re-
pressor, M is the mRNA concentration, L is a parameter representing the extracellular
lactose concentration, and A is allolactose. The allolactose concentration increases when
the gene complex is active, i.e., when permease is present, and extracellular lactose L
is transported from the extra-cellular to the intra-cellular environment. This is formu-
lated as a simple “mass action term” of the external lactose concentration, L, and the
permease M. The substrate allolactose is degraded according to a Michaelis-Menten
enzyme substrate reaction, with maximum rate v and Michaelis-Menten constant h (see
the exercises). This reaction depends on the enzyme f[-galactosidase, the concentration
of which is assumed to be proportional to the activation of the gene complex, i.e., to
the amount of mRNA M. Overall there is a positive feedback because increasing M,
increases A, and increases M (Griffith, 1968).

To analyze the model we draw nullclines. Setting dM /dt = 0 yields

co  (c/d)A™
M= e 4
a A (5:4)
which is a sigmoid Hill function with an offset M = ¢y/d when A = 0 (see Fig. 5.3a).
One obtains the vector field by noting that dM/dt > 0 and dA/dt < 0 when A is large
and M is small. The dA/d¢ = 0 nullcline is solved from

A A
M(L—hv A>:6A oo M=4 (5.5)
+ L- 24

Approximating this for A — 0 yields M ~ (6/L)A, which increases with A. Depending
on the parameters v, h, and L there can be a vertical asymptote along which the curve
goes to infinity (Fig. 5.3a). When the concentration of mRNA is high, and that of
allolactose A is low, the allolactose concentration increases (dA/dt > 0). In Fig. 5.3a
the nullclines intersect in three steady states. The vector field shows that the one in the
middle is a saddle point, and that the two at the boundaries are stable nodes.

For one specific concentration of lactose, L, the operon can therefore be “on” or “off”,
i.e., in one of the two stable steady states. The effect of the lactose concentration can bet-
ter be visualized by again making a quasi steady state assumption for mRNA equation.
Substituting Eq. (5.4) into dA/dt in Eq. (5.3) yields a very complicated expression. Us-
ing the computer program GRIND (see Chapter 14) we plot this complicated dP/dt = 0
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nullcline as a function of the lactose concentration in Fig. 5.3b. The curve in Fig. 5.3b is
basically a bifurcation diagram: it depicts the steady state allolactose concentration, A,
as a function of a parameter, the extra-cellular lactose concentration L. The upper and
lower branches are stable and the branch in the middle is unstable. Bacteria growing in
an environment that is extremely poor in lactose are in a state with low levels of allolac-
tose, because the Lac-operon is off. Bacteria growing in an environment rich in lactose
have an active Lac-operon and high intracellular allolactose concentrations. Bacteria
growing in environment with an intermediate lactose concentration can be in either of
these two states however (Novick & Weiner, 1957; Ozbudak et al., 2004; Van Hoek &
Hogeweg, 2006). At these concentrations the bacteria have “alternative stable states”
(May, 1977; Scheffer et al., 2001; Ozbudak et al., 2004), and it depends on the history of
the bacteria in which state they will be. Moreover the curve in Fig. 5.3b implies a form
of “hysteresis”. If one decreases the extra-cellular lactose concentration from very high
to very low, one follows the upper branch. At a critical lactose concentration, Li, the
bacteria suddenly switch to the state with a closed operon. On the other hand, if one
increases the lactose concentration from low to high, one switches from bacteria with a
repressed operon to an expressed operon at lactose concentration Ls. Fig. 5.3b shows
that Ly > L. Thus, the system has a form of memory, and tends to remain in the state
where it was. This is called hysteresis.

The two transition points are catastrophic bifurcations. The system has a discontinuity
and jumps to an alternative attractor. The bifurcations in Fig. 5.3b are called “saddle-
node” bifurcations because a saddle point and a stable node merge and annihilate each
other. In the Nonlinear system courses given by our group you can learn a lot more
about bifurcation theory.

Models of gene regulation have recently attracted much more attention because one
can nowadays read the activity of thousands of genes in a single RNA-chip experiment.
To understand the properties of complicated networks of genes influencing each other,
people are studying models composed of many equations, one for each of the genes in the
network. A simple phenomenological ODE for a gene producing protein “one”, Py, that
is downregulating its own transcription, but is upregulated by another gene product, P,
one could write something like

P _ I P,
dt hi+ P, hy+ Py

where one uses simple Hill functions for the stimulatory and inhibitory effects the proteins
P, and P, have on the production of protein one. This model can obviously be extended
for the influence of many different proteins on the transcription of one of them. Writing
ODEs for all of the proteins, one obtains a model of a large gene network. Another
exiting recent development is to experimentally record the gene expression of single
genes, and fit these data to mathematical models (Golding et al., 2005; Golding & Cox,
2006; Raj et al., 2006). This work has demonstrated that transcription occurs in bursts,
which may be stochastic.

—dPy, (5.6)
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5.3 Summary

Positive feedback loops account for alternative steady states and hysteresis. Simple
models for gene activity allow for complicated networks of regulatory interactions.

5.4 Exercises

Question 5.1. Michaelis-Menten

The Michaelis-Menten term used in Eq. (5.3) comes from a quasi steady assumption.
Consider the following reaction for the formation of some product P from a substrate
S. The enzyme FE catalyzes the reaction, i.e.,

k
E+S=cRBpyp.

k_1

Because the enzyme is released when the complex dissociates one writes a conservation
equation
E+C = EO .

a. Write the differential equations for the product P and the complex C. Use the
conservation equation!

b. Assume that the formation of the complex is much faster than that of the product,
i.e., make the quasi steady state assumption dC/dt = 0.

c. Write the new model for the product. Simplify by defining new parameters.

d. Sketch the rate at which the product is formed (dP/dt) as a function of the substrate
concentration S.

e. Write an ODE for the substrate, and note that you can add dC/dt to simplify d.S/d¢
because dC'/dt = 0.

Question 5.2. mRNA

Rewrite the mRNA protein model of Eq. (5.1) assuming that the inhibition follows a
sigmoid Hill function.

a. Sketch the nullclines

b. Determine the stability of the steady state(s)

c. Assume that the mRNA kinetics are much faster than those of the protein molecules,
and write a model for dP/dt.

Question 5.3. Lac-operon
Simplify the model for the Lac-operon by removing the degradation of allolactose by
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[-galactosidase.

a. Sketch the nullclines

b. Determine the stability of the steady state(s)

c. Assume that the mRNA kinetics are much faster than those of the protein molecules,
and write a model for dA/dt.
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Chapter 6

Periodic behavior

In Chapter 4 we have seen that predators and prey can coexist by a stable oscillation.
This rhythmic or periodic behavior originated from destabilizing a stable spiral point
at a Hopf bifurcation (see Fig. 4.1). Periodic behavior is a typical element of living
systems. Table 6.1 coming from the book on biological rhythms by Goldbeter (1996)
lists a number of them. In this Chapter we will continu with gene regulation by studying
the transcription factors determining the circadian rhythm.

H Rhythm Period H
Neural rhythm 0.01 to 10 sec
Heart rhythm 1 sec
Calcium oscillations 1 sec to minutes
Biochemical oscillations 1 min to 20 min
Mitotic cell division 10 min to 24 hour
Hormonal rhythms 10 min to hours
Circadian (day-night) rhythm 24 hour
Ovulation cycle 28 days
Seasonal rhythms 1 year
Epidemiological and ecological behavior years

Table 6.1: A number of biological rhythms ranked by their period. From: Goldbeter (1996).
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Figure 6.1: Phase response curves obtained in chick pineal cell cultures for 6h pulses of light
(and anisomysin (Aniso.), an inhibitor of protein synthesis). Pineal cells produce melatonin
in response to signals from the suprachiasmatic nucleus (SCN) in the hypothalamus. Protein
concentrations in the pineal gland cycle with a 24 hour rhythm. When cells are exposed to
light for 6 hours, the peaks of this rhythm shift forward or backward in time. Exposing cells to
light at different time-points during the original cycle, and measuring the corresponding shift in
clock-time, one can depict the so-called “phase-shift” as a function of time. From Figure 11.1 in

Goldbeter (1996).
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Figure 6.2: Circadian rhythms in a nocturnal mammal. From: Campbell & Reece (2008)48.25.

6.1 Circadian rhythm

The notion of a biological clock is typically used for the 24 hour cycle of the day/night
rhythm. This is an autonomous cycle which persists under constant circumstances (i.e.,
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Figure 6.3: A simple molecular mechanism for the circadian clock in Drosophila. PER and
TIM proteins (rectangle and oval, respectively) are synthesized in the cytoplasm, where they
may be destroyed by proteolysis or they may combine to form relatively stable hetero-dimers.
Heteromeric complexes are transported into the nucleus, where they inhibit transcription of per
and tim mRNA. We assume that PER monomers are rapidly phosphorylated by DBT (a kinase
encoded by the double-time gene) and then degraded. Dimers, we assume, are poorer substrates
for DBT. From Figure 1 in Tyson et al. (1999).

under continuous light or darkness). Human volunteers living for half a year in the
absence of a natural day/night rhythm develop a circadian rhythm of about 25 hours
(Winfree, 1986). This autonomous behavior is also obvious when we experience jet lag.
Exposure to light, or even to short flashes of light, during the right part of the cycle
can reset the clock, i.e., leads to a phase shift. An example of clock resetting is shown
in Fig. 6.1 where cultured pineal cells are exposed to flashes of light, or to an inhibitor
of protein synthesis. Depending on the timing of the light pulse the internal clock of
the cells is shifted forwards or backwards. This dependence of the circadian rhythm to
light allows the autonomous rhythm to adjust to the day/light cycle. This adjustment
is called entrainment.

Circadian rhythms are common in plants and animals. Flowers opening early in the
morning continue to do so when they are placed in total darkness. In vertebrates it has
been shown that small group of neurons in the hypothalamus functions as a pacemaker
for the circadian rhythm. Many other processes are influenced by this daily rhythm,
e.g., hormone levels vary during the day.

The molecular basis of the circadian rhythm has been heavily studied in Drosophila.
Fruit flies keep an 24 hour rhythm in complete darkness, and over a very wide range
of temperatures (from 18-33 °C) (Barkai & Leibler, 2000; Vilar et al., 2002; Goldbeter,
2002). Particular point mutations in the so-called per-gene (per = period) however
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lead to different periods of the rhythm. Point mutations in another gene, timeless or
tim, destroy the rhythm. The tim-gene encodes a protein (TIM) which binds the PER-
protein. The PER-protein and per-mRNA concentrations oscillate with a period of 24
hours, where the protein concentrations rise 4-6 hours later than those of the mRNA.
The PER-protein forms dimers that bind the TIM-protein. The PER-TIM complexes
are transported to the nucleus where it binds transcription factors (see Fig. 6.3).

In the nucleus the PER-protein inhibits transcription by binding another protein
(CLOCK-CYC) (Goldbeter, 2002) that activates per and tim gene expression. Thus,
there is a negative feedback that acts by a counteracting gene activation. This negative
feedback is the basis of most mathematical models for the circadian rhythm (Goldbeter,
1996, 2002). A negative feedback is not enough to have oscillations however. We have
seen in the predator prey model (Fig. 4.1) that a positive feedback tends to destabilize
the steady state , which by a Hopf bifurcation may give rise to a stable limit cycle.
We will here present the model of Tyson et al. (1999), which has a positive feedback
because PER and TIM complexes are more resistant to turnover than their monomers.
There are alternative models that obtain periodic behavior without a positive feedback
by the incorporation of “time delays” due to a number of phosphorylation events of the
PER-protein (Goldbeter, 1996, 2002).

PER-protein is phosphorilated by DBT-kinase, after which it is rapidly degraded (see
Fig. 6.3). The model of Tyson et al. (1999) assumes that PER/TIM dimers are phos-
phorilated at a much slower rate than the monomers. By this assumption dimers are
more stable, i.e., have a longer expected life span, than monomers. This is a positive
feedback because an increase in the concentrations of PER and TIM leads to a slower
decay, which further increases the concentrations. Because PER and TIM-protein are
subjected to similar interactions in the cell, Tyson et al. (1999) lump them together into
one variable called P (for protein). This protein exists in the form of monomers P or
dimers P». Assuming that protein concentrations in the cytosol remain proportional to
those in the nucleus, Tyson et al. (1999) write the following three equations

dM c

— — oM 6.1
dt 1+ (pp/p)2 M7 (61)
dpP; p1P1 2
Lo - PN 5o 2k, P2 4 2kyPy 6.2
dt h+ P +2p, 1 L ¥ Skal (6.2)
dP, 9 p2 s
2 kPl —kePo— —22 5Py, :
at Rt = kaly =5 =g, —orls (6:3)

where p2 < p; such that dimers have a much slower phosphorilation rate than monomers.
Transcription (i.e., mRNA production) decreases as a function of the PER/TIM dimers,
Py, according to a sigmoid Hill function (when P, = P, transcription is half-maximal).
For the phosphorilation Tyson et al. (1999) assume a Michaelis-Menten saturation where
both the monomers and dimers are substrates competing for access to the DBT-kinase
(see the Exercises). The h parameter is the Michaelis-Menten constant: when P} +2P; =
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h the proteins are phosphorilated at the half maximal rate. The behavior of the model
is depicted in Fig. 6.4a: the concentrations of mRNA and total protein (T'= P + 2P,)
indeed oscillate on a limit cycle where the protein concentration 7' lags a few hours
behind the mRNA concentration M.

6.2 Quasi steady state

To simplify the model into two ODEs, Tyson et al. (1999) assume that dimerization and
dissociation is much faster than all other processes of the model, i.e., they assume that
ko and kg are fast parameters. If this is the case, then at any point in time the total
dimerization should approximately equal the total dissociation, i.e., kan ~ k4P, or
P~ K P12 where K = k,/ky. Knowing the P, and P; ratio, one can rewrite the model
in terms of the total concentration of PER-protein. Because there are two PER-molecules
in one P, dimer we define T'= P; +2P,. Since P, = KP12 we have T'= P, + 2KP12 such
that we can solve P; from this quadratic equation, i.e.,

_ —1+V1+8KT
- 4K ’

P (6.4)
(check for yourself that the negative root of the quadratic equation has to be ignored
because it yields a negative solution for P;). The differential equation for the total
PER-protein concentration is obtained by summing Eqgs. 6.2 and 6.3:

dr p1P1 + 2p2 Py
— =M - —F—F —0pT 6.5

dt h+T o (6.5)
where Py is defined by Eq. (6.4) and Py = K P2, Together with Eq. (6.1) this defines a
2-dimensional model, which is analyzed by nullclines in Fig. 6.5.

The form of the total PER-protein nullcline d7°/dt = 0 is determined by a complicated
function (see Eq. (6.5)) and has the form of a third order equation with a minimum
and a maximum (see Fig. 6.5). In the top left corner of the phase space, with a lot of
mRNA M and little PER-protein T, protein is produced by translation (IM is large) and
there is little loss by phosphorilation (because T'= P; + 2P, is small). Thus, above the
T-nullcline d7'/dt > 0. The valley in the T-nullcline is due to the positive feedback: this
is the region where increasing T' decreases the turnover of the PER-protein. The mRNA
nullcline has a much simpler form because it is a Hill function. As long as P, < P,
the nullcline approaches M = ¢/dy; = 10. Above this steady state dM/dt < 0, i.e.,
the mRNA concentration decrease above the nullcline and increases below it. When the
PER-protein concentration increases the mRNA nullcline curves to the bottom. The
parameters are chosen such that the two nullclines intersect in the unstable part of the
PER nullcline.
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Figure 6.4: The behavior of the 3-dimensional (a) and the 2-dimensional Tyson et al. (1999)
model. Parameters: h = 0.05, k, = 2000, k; = 10 (K = 200), épy = 0.1/hour, p; = 10,
p2 =0.03, p = 0.1/hour, P. = 0.1, c=1 and [ = 0.5.
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Figure 6.5: The nullclines and trajectories of the 2-dimensional model defined by Eq. (6.1) and
Eq. (6.5). (a) nullclines and (b) nullclines with the stable limit cycle. The heavy line in (a) is
the dT'/d¢ = 0 nullcline and the light line the dAM/d¢ = 0 nullcline. The heavy line in (b) is a
trajectory approaching the stable limit cycle. Parameters as in Fig. 6.4 (see (Tyson et al., 1999)).

From the vector field we read that increasing total protein, 7', makes d7'/dt¢ > 0, which
is a local positive feedback. Increasing M makes dM/dt < 0. Because of the positive
feedback the non-trivial steady state is likely to be unstable. Tyson et al. (1999) choose
parameters such that the steady state is unstable, and the behavior of the model is
the limit cycle shown in Fig. 6.4 and Fig. 6.5. Parameters were chosen such that the
cycle has a period of about 24 hours (Tyson et al., 1999). The curves in Fig. 6.4 give
the behavior of the 3-dimensional and the 2-dimensional model. The assumption that
P =K Pf is apparently reasonable for the current parameter values, i.e., k, = 2000
and kg = 10 (K = 200). In the computer exercises you can study other choices for the
time scale of the dimerization k, and dissociation kg, while keeping overall the same
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parameters, i.e., K = 200.

The paper by Tyson et al. (1999), the book by Goldbeter (1996) and his review in
Nature (Goldbeter, 2002) provide an excellent background to the material covered in
this chapter.

6.3 Summary

Periodic behavior is easily observed in simple models. Possible mechanisms accounting
for periodic behavior are time delays and positive feedback loops. Intuitively, it is difficult
to understand why steady states would become unstable and then be surrounded by a
new attractor taking the form of a stable limit cycle.

6.4 Exercises

Question 6.1. Tyson model

Consider Fig. 6.5 with the phase space of the Tyson et al. (1999) model.

a. Shift the mRNA-nullcline horizontally such that the steady state is located on three
qualitatively different regions of the PER-nullcline.

b. Determine the stability of the steady state for each situation.

c. Sketch for each situation a representative trajecory.

Two extra exercises for the most interested students:

Question 6.2. Goldbeter, Nature, 2002 (Extra exercise for cool students)

Read the review paper by Goldbeter on biological rhythms published in Nature in 2002.
The Figure in Box 1 depicts a bifurcation diagram. Sketch a similar bifurcation diagram
by varying the Ry of the predator in the sigmoid predator prey model with a nullcline
configuration:
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Question 6.3. Michaelis-Menten (Extra exercise for cool students)

Extend the Michaelis-Menten term to allow for two substrates competing for access to
the enzyme. Thus, consider the following reaction for the formation of some product P;
from a substrate S;. The enzyme E catalyzes the reaction, i.e.,

k
E+S1I§C1gE+P1.
1

k
E+SQ§CQ£E+P2.
—2

Because the enzyme is released when the complex dissociates one writes a conservation
equation
E+Ci+Cy=FEy.

a. Write the differential equations for the substrates and the complexes. Use the con-
servation equation!

b. Assume that the formation of the complexes is much faster than that of the product,
i.e., make the quasi steady state assumptions dC;/dt = dCs/dt = 0. Note that you can
add dC;/dt to simplify d.S;/d¢.

c. Write the new model for the substrates. Simplify by defining new parameters.

d. Compare your result with the phosphorilation term in the Tyson et al. (1999) model.

Question 6.4. Computer exercise: Circadian rhythm

The Tyson et al. (1999) model for the circadian rhythm is available as a GRIND model
in the files tyson. *.

a. Draw the nullclines of Fig. 6.5 by reading the tyson.txt parameter file.

b. The circadian rhythm of Drosophila hardly depends on the temperature. Assume
that temperature mainly determines the K parameter and study how this affects the
stability of the steady state and the period of the limit cycle.

c. Point mutations in the PER-protein do influence the period of the limit cycle. As-
sume that mutated forms of the PER-protein are phosphorilated at different rates, and
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study how that influences the stability of the steady state and the period of the cycle.
d. Make a phase response curve as in Fig. 6.1 by perturbing the protein concentration
P.
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Chapter 7

Chronic viral infections and
iImmune control

Our mission in this Chapter is to study models with so many differential equations
that one can no longer use nullcline analysis. Only in the exercises we will again draw
nullclines after simplifying the model by separating its time scales.

We consider the epidemiology of a chronic viral infection within one individual. A chronic
viral infection consists of many viral generations where the virus infects target cells that
produce novel virus particles. The damage caused by the virus occurs by lysis of the
target cells, for so-called cytolytic viruses, or by the killing of infected cells by the host
immune response (e.g., by CD8 cytotoxic T cells). Recent modeling work in virology
has revealed a number of new insights into chronic viral infections like HIV infection,
hepatitis, and human leukemia viruses like HTLV-1 (Ho et al., 1995; Wei et al., 1995;
Nowak & Bangham, 1996; Nowak & May, 2000). Previously, it was thought that chronic
viral infections were due to “slow viruses”, but now one realizes that a chronic infection
is a (quasi) steady state where a rapidly reproducing virus is controlled by the host
(probably by the host immune response). HIV-1 and HTLV-1 have CD4™1 T cells as the
major target cell and hepatitis viruses infect liver cells. The availability of target cells
may also play a role in limiting the chronic infection.

7.1 Immune response

Virus infections typically evoke immune responses composed of antibodies and CD8"
cytotoxic T cells. A natural model for target cells T, infected cells I, virus particles V,
and a cellular immune response E, would be
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Figure 7.1: HIV-1 infection of a target cell. From: Campbell & Reece (2008)18.10.
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where ¢ is the daily production of target cells, uninfected target cells have a half life of
In[2]/07 days, and infected cells have a half life of In[2]/d; days. One can set §; > o7 to
allow for cytopathic effects of the virus. Uninfected cells can become infected by meeting
with infected cells at a rate §/day per infected cell. The kI E term reflects the killing of
infected cells by the immune effectors F, and the aF'I represents the clonal expansion
of immune effectors in response to antigen.

The non-trivial steady states of this model should correspond to the situation of a chronic
viral infection. These steady states are found by solving the equations from the simplest
to the most complicated. Solving dE/dt = 0 yields the solutions E = 0 or [ = ég/a.
Proceeding with the latter, i.e., considering the case with an immune response, one solves
dV/dt = 0 to find that V = (p/dy)I. Next, one can solve dT'/d¢t = 0 and finally one
solves df/dt = 0 to find:

f:(LE7 Vzﬁj::@, 7o o _ aody ’

a oy ady or + BV adrdy + pBoE

(7.2)
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Figure 7.2: The steady state of Eq. (7.2) as a function of the immune activation parameter
a. When a becomes too small the immune response cannot maintain itself, and the virus is
controlled by target cell availability. This new steady state for low « can be computed by solving
the steady state of Eq. (7.1) for E = 0, and is therefore independent of a.. Parameters: § = 0.01
per virion per day, g = §; = 0.1 per day, 7 = 0.01 per day, §y = 3 per day, k = 1 per cell per
day, p = 100 per day and o = 10 cells per day.
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which is a saturation function of « (see Fig. 7.2c).

From these steady state one can read that the size of the target cell population declines
with the viral load V, i.e., the extend of liver damage, or of CD4% T cell depletion,
increases with the viral load. Surprisingly, the steady state number of infected cells,
I = 0g/a, only depends on immune response parameters (Nowak & Bangham, 1996),
which suggests that target cell availability cannot have any contribution to the viral
load.

During the chronic phase HIV-1 infected patients have a quasi steady state viral load
called the “set point” (see Fig. 7.3). Different patients have enormously different set
points, i.e., more than a 1000-fold variation between patients. Patients with a high set
point tend to have a much faster disease progression (Mellors et al., 1996). According to
this model the steady state number of infected cells I = 6z /. Because the expected life
span of effector cells is not expected to vary much between people, 1000-fold variations
in I can only be explained by 1000-fold variations in «, see Fig. 7.2 (Nowak & Bangham,
1996; Miiller et al., 2001). The corresponding variation in the immune response F is
saturation function of a, however. Patients differing n-fold in the set point are not
expected to differ n-fold in the immune response E (see Fig. 7.2). This explains the
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paradoxical observation that patients with low and high virus loads of HTLV-I tend to
have the same level of the CD8" T cell response (Nowak & Bangham, 1996; Nowak &
May, 2000). Although the immune activation parameter, «, completely determines the
steady state viral load, it apparently has less effect on the magnitude of the immune
response.

7.2 Separation of time scales

For several viral infections it has been established that the kinetics of free viral particles is
much faster than that of infected cells. For instance, for both HCV and HIV-1 infections
we know that dy > 07 (Perelson et al., 1996; Neumann et al., 1998). It is therefore
quite reasonable to assume that the virus equation is at quasi steady state. Setting
dV/dt = 0 we employ that V = (p/dy)I, i.e., the virus load becomes proportional to the
concentration of infected cells. Substituting V' = (p/dy)I into the model yields

dT

& T BTI

dr o T ﬁ )

dI ,

— = TI — 671 — kEI

& B I ;

dFE

— = «aFI—-6gFE 7.4
dr (0% E 5 ( )

where 8" = p3/dy. The technique by which we have simplified the 4-dimensional model
into a 3-dimensional model is called “separation of time scales”. Here we have removed
the fastest time scale by a quasi steady state assumption. Note that the virus concen-
tration is not assumed to remain constant: rather it is assumed to be proportional to
the infected cells.

There is another time scale in the model that we can eliminate under certain circum-
stances. After the immune response E has been established it probably changes on a
very slow time scale. For instance, during therapy of chronically infected patients, the
stimulation of the immune effector cells will drop, because ol decreases, but due to
memory effects the effector population may remain large. One could account for such
memory effects by allowing the immune effectors E to have a very long half-life In[2] /d g,
i.e., by making §g a small parameter. If the immune effector cells are long-lived their
decline during therapy should be negligible, i.e., one can simplify the model during ther-
apy by the approximation that F remains constant. This fixed value of F is given by
Eq. (7.3). Thus, the simplified model where we have removed the fastest and the slowest
time scale becomes

dl
dt
where ' = pB/dy and § = 6; + kE.

=o—06rT—BTI, % = B'TI - 61, (7.5)
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This is a model that you are familiar with. It is a host-parasite model with a fixed
production term (see the “Malaria” exercise in Chapter 3). So you know the reproductive
ratio of the infection and its steady state:

B'o _ o K - 0 1
Ro=22 suchthat T = = and T=2(1- = 7.6
07 5p0 SUOR T orRe Ry 5 r) (70

where K is the “carrying capacity” of the target cells. Since most viruses have rapid
growth rates, i.e., typically Ry > 1, this reveals that the steady state density of infected
cells, and hence the viral load, remains fairly independent of 3’ (Bonhoeffer et al., 1997).

The 2-dimensional model of Eq. (7.5) can be used to fit the data from HIV-1 or HCV in-
fected patients under anti-retroviral treatment. Current treatments consist of nucleoside
analogs that block de novo infections, and of protease inhibitors blocking production
of infectious virus particles. This basically means that the drugs reduce the infection
parameter 3. Thus the model for infected cells under treatment becomes dI/dt = —41,
which has the simple solution I(t) = I(0)e~%. By plotting the decline of the virus load
during treatment on a logarithmic scale, and fitting the data by linear regression, one
therefore obtains estimates for the half life In[2]/6 of productively infected cells. For
HIV-1 this has been done (Ho et al., 1995; Wei et al., 1995), and these now classical
studies estimate half lives of 1-2 days for cells productively infected with HIV-1. Similar
results have been obtained with HBV (Nowak & Bangham, 1996) and HCV (Neumann
et al., 1998). Thus, chronic viral infections are not slow, and involve hundreds of viral
generations over the host life time. This is a fine example where mathematical modeling
has increased our understanding of chronic viral infections.

7.3 Summary

Models of viral infections and immune reactions strongly resemble ecological models.
Intuitively one cannot predict which parameters are most important in controlling the
virus load. The large difference between patients with a low and a high viral load can
only be explained by large differences in immune response parameters, which need not
result in very different magnitudes of the actual immune response. The fact that the
viral generation time can be estimated by a simple linear regression proves that simple
models sometimes allow for important new interpretations.

Nowak & May (2000) have publised a very readable book on modeling viral infections.

7.4 Exercises
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Figure 7.3: The time course of an HIV-1 infection. Figure 43.20 in Campbell & Reece (2002).

Question 7.1. CD4" T cells

HIV-1 infected patients die from the immunodeficiencies that are brought about by
their low CD4" T cell counts. A form of treatment that has been tried is to give
immunostimulatory medication to increase the CD4™" T cell counts. Suppose that CD4"
are the most important target cells of HIV-1.

a. Incorporate an immunostimulatory treatment in Eq. (7.5).

b. What is the effect that you expect from this treatment?

c. What alternative treatment is in fact suggested by this model?

d. How would this alternative treatment affect the number of uninfected CD4" T cells?

Question 7.2. Rebound

Patients treated with anti-retroviral medication (i.e., reverse transcriptase inhibitors)
sometimes have a rebound in their viral load even before the virus evolves drug resistance
(see Fig. 7.4). In the models developed here this form of treatment can be modeled by
reducing (. Investigate the expected effects of treatment by analyzing the phase space
of Eq. (7.5).

a. Sketch the nullclines before and after treatment in one phase space.

b. Sketch the trajectory corresponding to this treatment in the same figure (also do this
with Madonna or GRIND (see Chapter 14)).

c. Sketch the same behavior as a function of time.

d. Is drug resistance necessary for the observed viral rebound?

Question 7.3. Immune control

Consider anti-retroviral therapy in the immune control model defined by Eq. (7.1).

a. What do you expect in the long run for the infected cell load I from a therapy that
decreases 37

b. Would such a treatment have any positive effect for the patient?
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Figure 7.4: Mean changes from baseline (£ SE) in the total HIV-1 RNA load (e), and 70 wild-
type HIV-1 RNA (o). Absolute copy numbers of 70 wild-type RNA were calculated from total
serum HIV-1 RNA load by using the percentages of 70 wild-type RNA, as detected by the point
mutation assay. Numbers above and underneath error bars indicate P values of the changes
(paired two-tailed ¢ test). The shaded area represents the contribution of 70 mutant HIV-1 RNA
to changes in total HIV-1 RNA load. From: De Jong et al. (1996).

B A B

-
" r=-0.80 =

P=4.05x10"6

Plasma RNA viral load (10° copies/ml)

A2gag-specific CTLe (%) A2gag+A2pol-specific CTLe (%)

Figure 7.5: The viral load as a function of the size of the CD8" T cell immune response. There
is an excellent negative correlation for two different proteins of the virus (gag and pol). From:
Ogg et al. (1998).

Question 7.4. Ogg et al. (1998)

Although this is now controversial, Ogg et al. (1998) found an excellent negative corre-
lation between the size of the CD8T T cell immune response and the viral load depicted
in Fig. 7.5. The same authors have also argued that the large variations in the viral set
points between HIV-1 infected patients have to be due to differences in the immune reac-
tivity parameter o (Nowak & Bangham, 1996). Study whether these two interpretations
are consistent by analyzing the following model

df dVv dFE
— =pV =71 —akEI — =pl —6yV —
dr B I « ) dt p vV, dt
where we have omitted the target cells for simplicity.
a. Remove the fastest time scale by a quasi steady state assumption.

= aFEI — 6pF ,
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b. Sketch the nullclines of the simplified model.

c. Write expressions for the non-trivial steady state of the model.

d. Assume that patients differ in the immune reactivity parameter «, what kind of
correlation do you expect between the viral load V' and the immune response E7*

Question 7.5. Competitive exclusion
Reconsider the full model Eq. (7.4) and let there now be two immune responses to the
infected cells, i.e.,

aT ar
=0T =TI, = =pTI 61~ kIE ~ klE; (7.7)
dE dE
dTl = a1 Bl — 6gE; and d—f = ayBEyl — §pEs . (7.8)

For the sake of the argument let F7 be the clone with the highest binding affinity of this
antigen, i.e., let a; > ao.

a. What is the steady state of dE;/dt?

b. What is the steady state of dEy/dt?

c. Can both be true when a1 > as?

d. Substitute your answer of a. into dFEy/dt, and simplify. What do you expect for the
second immune response when the first is at steady state?

You have discovered a concept from ecology called “competitive exclusion” (see Chapter
8): two immune responses cannot co-exist on the same resource (antigen). Since one
can have several co-existing immune responses to several epitopes of the same virus
during chronic immune reactions, one would have to argue that there is intra-specific
competition in the immune system (De Boer et al., 2001).



Chapter 8

Competitive exclusion

Competitive exclusion is a very general outcome of mathematical models. It occurs when
two species compete for the same resource, e.g., when two viruses compete for the same
target cells, or when two ecological species compete for the same niche. In Exercise 7.5
you showed that there can be no two immune response controlling one virus in steady
state.

To illustrate the concept in its most general form consider some “resource” R that is
used by two populations N7 and N». For simplicity we scale the maximum resource
density to one. An example would be the total amount of nitrogen in a lake, which is
either available for algae to grown on, or is unavailable being part of the algal biomass.
A simple Lotka-Volterra like model is:

dN;
dt

dN-:
=N (bR —dy) | on = Ny(boR — ds) | (8.1)
where R is the amount of nitrogen available for growth of the algae. The two populations
have an Ry of b1 /d; and b /d2, respectively. Substitution of R = 1—Nj — Ny into d Ny /dt

yields

R=1-N;— Ny,

% =Ny (bi(1 = Ny — Ny) —dy) , (8.2)
which has nullclines N7 = 0 and
Ny =1-— 1 — Ny . (8.3)
Ry,

Similarly the d/N2/d¢t = 0 nullcline is found by substituting the amount of resource, R,
into dN2/dt = 0 and has nullclines Ny = 0 and

— Ny . (8.4)
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Figure 8.1: The parallel nullclines of Eq. (8.1).

Thus, plotting No as a function of Nj the two nullclines run parallel with slope —1.
The fact that they are parallel means that there is no steady state in which the two
populations coexist. The intersects with the vertical N, axis are located at No = 1 —
1/Ry. Thus the species with the largest fitness, Ry, has the “highest” nullcline, and wins
the competition (Fig. 8.1).

Competitive exclusion is a paradoxical result because many biological systems are char-
acterized by the co-existence of many different species that seem to survive on very few
resources. Examples are the incredible number of different bacterial species living in
the ground, the number of algae species living in water, and the millions of lymphocyte
clones comprising the adaptive immune system.

8.1 Exercises

Question 8.1. Saturated proliferation
Consider two immune responses to the same pathogen, and assume that the immune
responses reduce the pathogen concentration to

A=1—-FkE, —kE; .

The maximum proliferation rate is a saturation function (i.e., a Hill function) of the
pathogen concentration. Thus, let the immune responses be described by

a5 _ pEA g ana 42 _ PERA
dt  hi+ A ! dt ~ ho+ A

_dE27

where ho > h; means that the second response requires a higher pathogen concentration
for obtaining the same proliferation rate. Because the proliferation is saturated it seems
that exclusion would be less likely.
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a. Draw the nullclines in a phase space of E; and Fs.
b. Can the two responses coexist?
c. What is the difference with Fig. 8.17

Question 8.2. Competitive proliferation
Consider two immune responses to the same pathogen, and assume that the immune
responses reduces the pathogen concentration to

A=1—-kE, —kE,

and let the immune responses be described by

dE1 . pElA dEQ . pEQA

where ¢y > ¢; means that the second response has a stronger intra-specific competition.
a. Draw the nullclines in a phase space of E; and FEs.

b. Can the two responses coexist?

c. What is the difference with Fig. 8.17

Question 8.3. Virus competition experiments (Extra exercise for cool students)
To determine the relative fitness of two variants of a virus one typically grows them
together in conditions under which they grow exponentially. Thus, consider two variants
of a virus that grows exponentially according to

%:rvl and %:T(l—f-s)‘/g ,

where s is the conventional selection coefficient. One way to represent the data is to
plot how the fraction f = V5/(V1 + V3) evolves in time. To compute how the fraction
f(t) changes on needs to employ the quotient rule of differentiation: [f(z)/g(x)] =
(f(x)'g(x) — f(x)g(x))/g(x)?. Thus, using’ to denote the time derivative, one obtains
for df/dt:

df _ Vi(i+Ve) - (W + V)V,

dt (V1 + V)2 ’
_ Bi-vh
(i +R)2
(14 s)WVE —r1Va
- (V1 + V)2 ’
= r(l+s)1=f)f —rf(1—-f),
= rsf(1-f),

which is the logistic equation with growth rate rs and steady states f = 0 and f = 1.
Thus one expects a sigmoidal replacement curve of the two variants.
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a. Now write a differential equation of the ratio p = V4/V} of the two populations.
b. Virologists plot the logarithm of the ratio in time to determine the relative fitness
(Holland et al., 1991). What is the slope of In[p] plotted in time?



Chapter 9

The Hodgkin-Huxley model

This Chapter explains the Hodgkin-Huxley model (1952) for the generation on an action
potential in neurons. This is a complicated model. We introduce it because it is the most
famous model in Theoretical Biology (Hodgkin and Huxley were honored with the Nobel
prize for this work), and because it gives you an idea what a large realistic model can look
like. The Hodgkin-Huxley model resulted from detailed experiments with the giant squid
neuron, which was combined with electrophysics and computational work on mechanical
calculators. The power of the model is that it can predict the outcome of experiments.
We will explain the full model and then show how simplification by separation of time
scales can help to obtain a better understanding. Mathematical models are commonly
used in neurophysiology.

An action potential is generated at the cell body of a neuron and then travels along
the axon to a synapse where the electrical signal is transmitted to the receiving cell.
An action potential is generated by the opening and closing of voltage-sensitive gates
(see Fig. 9.2). The intracellular and extracellular concentrations of a number of ions,
like sodium (Na®) and potassium (K'), are different. These differences in the ion
concentrations are responsible for a voltage of —70mV over the cell membrane, which is
called the resting potential (see Fig. 9.1). The flux of ions over a membrane is influenced
both by diffusion due to concentration differences, and by the electrical field. The latter
influence is described by a simple equation of the form f(V) = 2V/(e*" — 1) where z is
the valence of the ion, and V is the voltage. This function is depicted in Fig. 9.3: the
current in one particular direction is zero when the valence has the same sign as the
voltage, and becomes proportional to the voltage when they have opposite signs. Note,
that this is quite a neat function that we could add to our families of Hill functions and
exponential functions for modeling a process that smoothly switches on around some
value of x and then approaches a linear dependence on .
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Figure 9.1: The resting membrane potential. Figures 48.6a and 48.7 in Campbell & Reece
(2002) and 48.9 and 48.10 in Campbell & Reece (2005).
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Figure 9.2: Voltage sensitive gates open and close to generate an action potential. From:
Campbell & Reece (2008)48.13.

To model the flux, or current, of ions across a membrane one writes the so-called Nernst
equation composed of the inward and outward flux. For the voltage dependence, the
Nernst equation uses the function f(V) = zV/(e*" — 1) for the inward direction and
hence

—zV —2Ve?V 2Ve?V

f(—V) - e—2V _ 1 - 1 — e?V - e?V _ 1 (91)

for the outward direction. For instance for the Kt ion (which has valence z = 1) the



9.1 HODGKIN-HUXLEY MODEL 69

>
S Y=1
0 ¥
0
T

Figure 9.3: The shape of the influx function y = az/(e®® — 1) in Eq. (9.2). To know the
value at © = 0 one uses the Hopital rule: lim, . f(x)/g(x) = limy—, f'(2)/¢'(z). Thus,
lim, 0 azx/(e?® — 1) = lim, 0 a/(be’®) = a/b.

current Ix across the membrane is given by:

Iy = inward — outward
= pKof(V) —pKif(=V)
1% 2VerV
= o eV —1 Pk eV —1
pzV
= (K, K;e?") e (9.2)

where K, and K; give the outside and inside KT concentrations, respectively. (This
voltage V is scaled with the temperature 7', the Faraday constant F', and the gas constant
R.) The equilibrium voltage V| i.e., the concentrations at which the current I becomes
zero, can be solved from Eq. (9.2) as

— 1. K,

Vi = . In K (9.3)
Any concentration difference, or ratio K,/K;, therefore functions as a “battery” of Vi
mV. This steady state voltage is called the Nernst equilibrium potential. The other
ions, e.g., Nat and Ca?*, also function as such a “battery”, and therefore contribute to
the resting potential of the neuron. These different contributions are combined in the
famous Goldman equation.

9.1 Hodgkin-Huxley model

The total current I over the membrane is the sum of the currents of the different ions.
Because I = V/R the current of every ion is given by the resistance R over the mem-
brane and the potential difference between the equilibrium voltage V' and the membrane
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potential V. For the current of sodium (Na®), potassium (Ka') and a rest-group of
ions, one therefore writes:

IT=gn(VN=V)+9x(Vk = V) +gr(VR — V) (9.4)

where gy, gk, and gg are the conductances (i.e., g = 1/R), and where Vy, Vi, and
Vg are the Nernst equilibrium potentials for sodium, potassium and the rest-group,
respectively. Because dV/dt = I/C, where C is the capacity of the membrane, the
change in the membrane potential V' obeys

= & LoV — V) gV = V) + gu(Vr ~ V)] - (9.5)

Voltage sensitive channels in the cell membrane specifically regulate the transport of
ions through the membrane (see Fig. 9.2). The conductances gy and gx are therefore
complex functions of the voltage V. Hodgkin and Huxley were able to measure the
current of ions through these channels by “voltage-clamp” experiments with the axon of
the giant squid. In voltage-clamp experiments one fixes the voltage by means of a thin
silver thread within the axon. With micro-electrodes one can register the current of the
ions over time for any (change in) voltage. One can distinguish sodium from potassium
channels by depleting sodium or potassium from the medium.

To describe the voltage dependence of gy and gr, measurements were done to see
how fast the current through the channels changes, and what equilibrium the current
ultimately approaches when the voltage is kept at a certain value (see Fig. 9.4). In the
Hodgkin Huxley model the voltage is scaled such that the resting potential corresponds
to V' = 0. Moreover, in the model an action potential is a sharp decrease of the voltage
(from V =0 to V ~ —110, see Fig. 9.5), whereas normally one defines the voltage such
that it increases (see Fig. 9.2). Anyway, Hodgkin and Huxley defined three variables,
m, n and h, which are three fitted voltage sensitive channel proteins. The m variable
corresponds to the opening of the sodium channel, h to the inhibition (closure) of the
sodium channel, and n to the opening of the potassium channel. The channels open and
close at a certain rate determined by the membrane potential V', and are —like our Hill
functions— scaled between zero and one (see Fig. 9.4). For the sodium channel they
wrote

and for the potassium channels
d 1
dn 01—y LI 195V — (1= ) — Ban . (9.8)

dt e(V+10)/10 _ 1

These three differential equations seem very complicated but are basically simple func-
tions fitted to the data in Fig. 9.4. For instance the opening of m has the form



9.1 HODGKIN-HUXLEY MODEL 71

y = az/(e’® — 1) that we already depicted in Fig. 9.3. The closure of h has a func-
tion 1/(e® + 1) which is a sigmoid function vanishing to zero when = — oo.

Substitution of the m, h, and n variables into the conductance terms of Eq. (9.5),
together with the estimated maximum of each term, finally gives the Hodgkin-Huxley
equation for the change of the voltage

dVv

t

[120m*h(Vy = V) + 36n*(Vk — V) + 0.3(Vr — V)] , (9.9)

Ql -

with the three scaled Nernst equilibrium potentials Vy = —115, Vg = 12, and Vi =
—10.5989. This mathematical model has one stable steady state where V' ~ 0,m =~
0.05,h ~ 0.6 and n ~ 0.3. A sufficiently large decrease of the resting potential in
this steady state triggers a model behavior that very realistically resembles an action
potential (see Fig. 9.5).

Having the Hodgkin Huxley model at hand one can understand what happens after

decreasing the resting potential, i.e., after exciting the membrane:

1. Due to the decrease in voltage, sodium changes m open (see Fig. 9.4) and a minor
current of Na™ ions leaks inwards. Because the conductance for Nat is now much
larger than that for the other ions, the voltage approaches the Nernst equilibrium
potential for sodium Vy = —115. Thus the gy term dominates in Eq. (9.5).

2. This decrease in the voltage triggers the inhibition of the sodium channels (see the
h-variable in Fig. 9.4 and Fig. 9.5), i.e., the gy term looses its dominance and the
voltage starts to recover.

3. Additionally, the potassium channels open (allowing a little Kat to leave the cell).
Because the gx term now is dominant, the voltage approaches the Nernst equilibrium
potential for potassium, Vx = 12, which leads to a “undershoot” of the voltage to
well below the resting potential.

4. Finally the voltage reverts to the resting potential.

The Hodgkin-Huxley model is unpleasantly complex, and in this given form one can little
more than simulate the model on a computer to see its behavior in time. The output of
the model is therefore almost as “flat” as the output of biological experiments. Several
researchers have tried to simplify the model to obtain better insight into its behavior
(and simultaneously into the behavior of the neurons we are modeling). Citing Fitzhugh
(1960): “The usefulness of an equation to an experimental physiologist (...) depends on
his understanding how it works.” Fitzhugh (1960) analyzed the Hodgkin-Huxley model
and observed that the variables have quite different time scales: the V' and m variables
change more rapidly than h and n. For instance, during the first milli-second in Fig. 9.5,
h and n have hardly changed. He exploited these different time scales to simplify the
Hodgkin-Huxley model. In the exercises you will work with the much simpler Fitzhugh-
Nagumo model, which is a phenomenological description of the Hodgkin-Huxley model.
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Figure 9.4: The data collected by Hodgkin and Huxley were fitted to a variety of functions.
Left: the equilibrium values m, h and 7 as functions of the voltage. Right: the functions «(V')
and B(V) for the three different channels. From: Hodgkin & Huxley (1952).
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Figure 9.5: An action potential in the Hodgkin-Huxley model. Note that the vertical axis in
panel (a) runs from positive to negative in order to have the usual picture of an action potential.
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Figure 9.6: The nullclines of the Hodgkin-Huxley model for the QSS assumption dm/dt = 0
and the approximation n = 0.91 — h. The heavy line in (a) is the dV/d¢ = 0 nullcline and the
heavy line in (b) is a trajectory of the complete 4-dimensional model. The trajectory of the full
model appears to obey the nullclines of the simplified model.

9.2 Quasi steady state

Because dm/dt is so much faster than the h and n variables, we do the “quasi steady
state” (QSS) approximation dm/dt = 0 (see Chapter 8). This means that we assume
that m remains at steady state with the slow variables of the model. Thus, we set
dm/dt =0 in Eq. (9.6) and find that

o
m=—"2 9.10
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where o and [ are the expressions given in Eq. (9.6). This quasi steady state equation
provides for any value of V' the corresponding equilibrium value of m. Replacing Eq.
(9.6) with this algebraic expression simplifies the Hodgkin-Huxley models from a 4-
dimensional model to a 3-dimensional QSS model.

There is another reasonable simplification. One can see in Fig. 9.5 that the behavior of
the h and n variables is more or less complementary, i.e., n+h ~ 0.91. One can therefore
eliminate the dn/dt differential equation by substituting n = 0.91 — h in Eq. (9.9). This
then delivers a 2-dimensional model, which has the dV/d¢ = 0 and dh/d¢ = 0 nullclines
depicted in Fig. 9.6. Fig. 9.6b depicts a trajectory of the full 4-dimensional model
projected into the 2-dimensional phase space of the simplified model. One observes
that the trajectory reasonably obeys the nullclines, i.e., our simplification seems fair.
Summarizing, this simplification was achieved by a QSS assumption dm/dt = 0 and a
“conservation equation” n+h =~ 0.91. The dV//dt = 0 nullclines looks like the hysteresis
diagrams we have seen before, with a steady state at the Nernst equilibrium potential
of sodium (Vy = —115mV), and one at the Nernst equilibrium potential of potassium
(Vg = 12mV).

In the phase space of the simplified model the resting state is a stable point. The
resting state cannot be a saddle-point because there is no stable and unstable direction.
Increasing V' makes dV/d¢ < 0 and increasing h makes dh/dt < 0, which are both
stabilizing. However, if one decreases the voltage beyond the unstable rising part of the
V-nullcline, one enters an area where dV/dt < 0. The trajectory there goes to the left
until it approaches the Viy = —115mV region of the dV/dt = 0 nullcline. Then it moves
down along the V-nullcline until the nullcline reverses. The vector field points to the
right, and the trajectory crosses to the Vg = 12mV branch of the V-nullcline. Finally,
it slowly returns to the resting steady state along that branch of the nullcline.

According to this description an action potential is a large excursion through phase space
that was triggered by a sufficiently large perturbation of the steady state. This nullcline
configuration indeed defines an “excitable” system. A small microscopic disturbance
(excitation) is blown up into a large macroscopic signal, that ultimately reverts back to
rest. The shape of the dV/d¢t = 0 nullcline creates a threshold around the steady state
that has to be breached to initiate the action potential.

During the final part of the action potential, i.e., when the trajectory moves upwards
along the Vi = 12mV branch of the dV/dt = 0 nullcline, the system is refractory to
new excitations. To excite the neuron within that time window one has to give a much
larger stimulus. Because the distance to the threshold (i.e., to the the unstable part of
the V-nullcline) is much larger, a larger decrease in the voltage is required for excitation.

Background to the material covered in this chapter can be found in the books of
Edelstein-Keshet (1988) and Keener & Sneyd (1998).



9.3 EXERCISES 75

9.3 Exercises

Question 9.1. Time scales
Consider the following biochemical system

dx dy

=y and L= ar—ty) |

where a,b > 0 and € < 1 such that the kinetics of y is much slower than that of
x. The phase space is:

where the heavy line represents the dx/dt = 0 nullcline, and the straight line is the
dy/dt = 0 nullcline.
a. Sketch a trajectory from the point P.

Let y be produced from a substrate S by a reaction that is catalyzed by x:

S—i—:rgy—i-:):,

and assume that the concentration of the substrate S declines

b. Which parameter of the model will change due to this decrease of 57
c. How will the nullclines change?

d. Sketch two qualitatively different nullcline configurations.

e. Sketch trajectories for both of them.

Question 9.2. Inhibition
The sigmoid dh/dt = 0 nullcline in Fig. 9.6 closely resembles the hy line in Fig. 9