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Chapter 1

Introduction

This course is an introduction into Theoretical Biology for biology students. We will
teach you how to read mathematical models, and how to analyze them, with the ultimate
aim that you can critically judge the assumptions and the contributions of such models
whenever you encounter them in your future biological research. Mathematical models
are used in all areas of biology. Most models in this course are formulated in ordinary
differential equations (ODEs). These will be analyzed by computing steady states, and
by sketching nullclines. We will develop the differential equations by ourselves following
a simple graphical procedure. Experience with an approach for writing models will help
you to evaluate models proposed by others.

This first Chapter introduces some basic concepts underlying modeling with differential
equations. To keep models general they typically have free parameters, i.e., letters
instead of numbers. You will become familiar with the notion of a “solution”, “steady
state”, “half life”, and the “expected life span”. Concepts like solution and steady state
are important because a differential equation describes the change of the population
size, rather than its actual size. We will start with utterly simple models that are only
convenient to introduce these concepts. The later models in the course are much more
challenging and more interesting.

1.1 The simplest possible model

A truly simple mathematical model is the following

dM

dt
= k , (1.1)
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which says that the variable M increases at a rate k per time unit. For instance, this
could describe the amount of pesticides in your body when you eat the same amount of
fruit sprayed with pesticides every day. Another example is to say that M is the amount
of money in your bank account, and that k is the amount of Euros that are deposited in
this account on a daily basis. In the latter case the “dimension” of the parameter k is
“Euros per day”. The ODE formalism assumes that the changes in your bank account
are continuous. Although this is evidently wrong, because money is typically deposited
on a monthly basis, this makes little difference when one considers time scales longer
than one month.

This equation is so simple that one can derive its solution

M(t) = M(0) + kt , (1.2)

where M(0) is the initial value (e.g., the amount of money that was deposited when the
account was opened). Plotting M(t) in time therefore gives a straight line with slope k
intersecting the vertical axis at M(0). The slope of this line is k, which is the derivative
defined by Eq. (1.1). Thus, the differential equation Eq. (1.1) gives the “rate of change”
and that the solution of Eq. (1.2) gives the “population size at time t”. Typically,
differential equations are too complicated for solving them explicitly, and the solution
is not available. In this course we will not consider the integration methods required
for obtaining those solutions. However, having a solution, one can easily check it by
taking the derivative with respect to time. For example, the derivative of Eq. (1.2) with
respect to time is ∂t[M(0) + kt] = k, which is indeed the right hand side of Eq. (1.1).
Summarizing, the solution in Eq. (1.2) gives the amount of money at time t, and Eq.
(1.1) gives the daily rate of change.

As yet, the model assumes that you spend no money from the account. Suppose now that
you on average spend s Euros per day. The model then becomes dM/dt = k − s = k′,
where k′ = k − s Euros per day. Mathematically this remains the same as Eq. (1.1),
and one obtains exactly the same results as above by just replacing k with k′. If k′ < 0,
i.e., if you spend more than you receive, the bank account will decrease and ultimately
become negative. The time to bankruptcy can be solved from the solution of Eq. (1.2):
from 0 = M(0) + k′t one obtains t = −M(0)/k′ provided k′ < 0. Although our model
has free parameters, i.e., although we do not know the value of k, it is perfectly possible
to do these calculations.

This all becomes a little less trivial when one makes the realistic assumption that your
spending is proportional to the amount of money you have. Suppose that you spend a
fixed percentage, d, of your money per day. The model now becomes

dM

dt
= k − dM , (1.3)

where the parameter d is a “rate” and here has the dimension “per day”. This can
be checked from the whole term dM , which should have the same dimension as k, i.e.,
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“Euros per day”. Biological examples of Eq. (1.3) are red blood cells produced by bone
marrow, shrimps washing onto a beach, and so on. The k parameter then defines the
inflow, or production, and the d parameter the death rate. Although this seems a very
simple extension of Eq. (1.1), it is much more difficult to obtain the solution

M(t) =
k

d

(
1− e−dt

)
+M(0)e−dt , (1.4)

which is depicted in Fig. 1.1a. The term on the right gives the exponential loss of the
initial value of the bank account. The term on the left is more complicated, but when
evaluated at long time scales, e.g., for t → ∞, the term (1 − e−dt) will approach one,
and one obtains the “steady state” M̄ = k/d. We conclude that the solution of Eq. (1.4)
ultimately approaches the steady state M = k/d, which is the ratio of your daily income
and daily spending. Note that this is true for any value of the initial condition M(0).
Finally, one can check the solution by taking the derivative ∂tM(t) giving:

0 + d
k

d
e−dt − dM(0)e−dt = [k − dM(0)]e−dt , (1.5)

which is indeed equal to the right hand side of Eq. (1.3), i.e., to k − dM(t), when M(t)
is given by Eq. (1.4).

Fortunately, we do not always need a solution to understand the behavior of a model.
This same steady state can also directly be obtained from the differential equation. Since
a steady state means that the rate of change of the population is zero we set

dM

dt
= k − dM = 0 to obtain M̄ =

k

d
, (1.6)

which is the same as obtained above from the solution for t → ∞. Note that a steady
state also gives the population size. This steady state provides some insight in the
behavior of the model, and therefore in the way people spend their money. Suppose
that rich people spend the same fraction of their money as poor people do, and that
rich people just have a higher daily income k. This means that both rich and poor
people approach a steady state where their spending balances their income. Basically,
this model says that people with a 2-fold higher income spend 2-fold more money, and
have 2-fold more money in the bank. This is not completely trivial: if you were asked
what would happen with your bank account if both your income and spending increases
n-fold you might have given a different answer.

1.2 Exponential growth and decay

Consider the unfortunate case that your daily income dries up, i.e., having a certain
amount of money M(0) at time zero, one sets k = 0 and is left with dM/dt = −dM .
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This is the famous equation for exponential decay of radioactive particles with the almost
equally famous solution M(t) = M(0)e−dt. Ultimately, i.e., for t → ∞, the population
size will approach zero. Plotting the natural logarithm of M(t) as a function of time
would give straight line with slope −d per day. This equation allows us to introduce two
important concepts: the half life and the expected life span. The half life is defined as
the time it takes to loose half of the population size, and is found from the solution of
the ODE. From

M(0)

2
= M(0)e−dt one obtains ln

1

2
= −dt or t =

ln 2

d
. (1.7)

Since ln 2 ' 0.69 the half life is approximately 0.69/d days. Note that the dimension
is correct: a half life indeed has dimension time because we have argued above that d
is a rate with dimension day−1. The other concept is expected life span: if radioactive
particles or biological individuals have a probability d to die per unit of time, their
expected life span is 1/d time units. This is like throwing a dice. If the probability to
throw a four is 1/6, the expected waiting time to get a four is six throws. Finally, note
that this model has only one steady state, M̄ = 0, and that this state is stable because
it is approached at infinite time. A steady state with a population size of zero if often
called a “trivial” steady state.

The opposite of exponential decay is exponential growth

dN

dt
= rN with the solution N(t) = N(0)ert , (1.8)

where the parameter r is known as the “natural rate of increase”. The solution can
easily be checked: the derivative of N(0)ert with respect to t is rN(0)ert = rN(t).
Biological examples of this equation are the growth of mankind, the exponential growth
of a pathogen in a host, the growth of a tumor, and so on. Similar to the half life defined
above, one can define a doubling time for populations that are growing exponentially:

2N(0) = N(0)ert gives ln 2 = rt or t = ln[2]/r . (1.9)

This model also has only one steady state, N̄ = 0, which is unstable because any
small perturbation above N = 0 will initiate unlimited growth of the population. To
obtain a non-trivial (or non-zero) steady state population size in populations maintaining
themselves by reproduction one needs density dependent birth or death rates. This is
the subject of the next chapter.

1.3 Summary

An ordinary differential equation (ODE) describes the rate of change of a population.
To know the actual population size one needs to have the solution of the ODE. These are
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Figure 1.1: Population growth. Panel (a) depicts the solution of Eq. (1.4). Panels (b) and (c)
depict exponential growth on a linear and a logarithmic vertical axis, respectively. A differential
equation describes the slope of the solution for each value of the variable(s): dN/dt is the slope
of the N(t) = N(0)ert curve for each value of N(t).

generally not available, and one typically solves the ODEs numerically on a computer
to study the model behavior. Steady states are solved by setting the rate of change to
zero, and do deliver the actual population size.

1.4 Exercises

Question 1.1. Red blood cells
Red blood cells are produced in the bone marrow at a rate of m cells per day. They
have a density independent death rate of d per day.
a. Which differential equation from this Chapter would be a correct model for the pop-

ulation dynamics of red blood cells?
b. Suppose you donate blood. Sketch your red blood cell count predicted by this model

in a time plot.
c. Suppose a sportsman increases his red blood cell count by receiving blood. Sketch a

time plot of his red blood cell count.

Question 1.2. SARS
Consider a deadly infectious disease, e.g., SARS, and write the following model for the
spread of the disease:

dI

dt
= βI − δI ,

where I is the number of human individuals infected with SARS, β is the number of
new cases each infected individual causes per day, and 1/δ is the number of days an
infected individual survives before he/she dies of SARS. Epidemiologists define the R0
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of a disease as the maximum number of new cases expected per infected individual. Since
an infected individual here is expected to live for 1/δ days, and is expected to cause β
new cases per day, the R0 of this disease is β/δ.
a. It has been estimated that on average a SARS patient causes R0 = 3 new cases,

during a typical disease period of two weeks (Lipsitch et al., 2003). Most patients die
at the end of these two weeks. How long does it take with these parameters to infect
half of the world population of 6× 109 individuals?

b. Do you think this is a realistic estimate? How would you extend the model to make
it more realistic?

Question 1.3. Pesticides on apples
During their growth season apples are frequently sprayed with pesticides to prevent
damage by insects. By eating apples you accumulate these pesticides in your body.
An important factor determining the concentration of pesticides is their half life in the
human body. An appropriate mathematical model is

dP

dt
= σ − δP ,

where σ is the daily intake of pesticides, i.e., σ = αA where A is the number of apples
that you eat per day and α is the amount of pesticides per apple, and δ is the rate at
which the pesticides decay in human tissues.
a. Sketch the amount of pesticides in your body, P (t), as a function of your age, assuming

you eat the same number of apples throughout life.
b. How much pesticides do you ultimately accumulate after eating apples for decades?
c. Suppose you have been eating apples for decades and stop because you are concerned

about the unhealthy effects of the pesticides. How long does it take to reduce your
pesticide level by 50%?

d. Suppose you start eating two apples per day instead of just one. How will that change
the model, and what is the new steady state? How long will it now take to reduce
pesticide levels by 50% if you stop eating apples?

e. What is then the decay rate if the half-life is 50 days?

Question 1.4. Injecting anesthesia
Before you undergo a minor operation they inject a certain amount of anesthesia in the
muscle of your upper arm. From there it slowly flows into the blood where it exerts
its sedating effect. From the blood it is picked up by the liver, where it is ultimately
degraded. We write the following model for the amount of anesthesia in the muscle M ,
blood B and liver L:

dM

dt
= −eM ,

dB

dt
= eM − cB and

dL

dt
= cB − δL ,

where the parameter e is the efflux from the muscle, c is the clearance from the blood,
and δ is the degradation in the liver. We assume that the degradation in the muscle and
blood is negligible. The initial amount of anesthesia injected is M(0): the amount in
the muscle at time zero.
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a. Sketch the amounts of anesthesia in the muscle, M(t), and in the blood, B(t), as a
function of time.

b. How long does it take before half of the injected amount has flown from the muscle
to the blood?

c. Is this the right time to do the operation?
d. Suppose the degradation rate is slow, i.e., let δ → 0, how much anesthesia will

ultimately end up in the liver?

Question 1.5. Chemical reactions
Chemical reaction schemes can directly be translated into differential equations. For
instance the reaction

2H2 + O2
k1⇀↽
k2

2H2O

is uniquely translated into
dz

dt
= 2k1x

2y − 2k2z
2 ,

where x, y, and z are the [H2], [O2] and [H2O] concentrations. Two hydrogen molecules x
have to meet one oxygen molecule y, and will from two water molecules z with reaction
speed k1. Similarly two water molecules can dissociate into one oxygen molecule and two
hydrogen molecules. Note that the speed of the reaction is proportional to the product
of the concentrations x2y of all the molecules involved. This is called the “law of mass
action”.

Now consider the reaction scheme

A+ S
k1→ 2A , A+B

k2→ 2B ,

2A+ E1
k3→ F + E1 and B + E2

k4→ G+ E2 ,

where S, E1, and E2 remain constant.
a. Translate this into two differential equations for A and B.

Question 1.6. Physics (Extra exercise for cool students)

The linear ODEs used in this Chapter should be familiar to those of you having seen
the famous equations for velocity and acceleration. One typically writes:

dx

dt
= v and

dv

dt
= a ,

where x is the total distance covered, v is the velocity, and a is the time derivative of the
velocity, which is defined as the “acceleration”. Integrating dv/dt gives v(t) = at+ v(0),
where the integration constant v(0) is the velocity at time zero, and integrating dx/dt =
at+ v(0) gives x(t) = 1

2at
2 + v(0)t.

a. Check the dimensions of v and a.
b. Check these solutions.
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c. Now write a similar model for the amount of nitrogen deposited in a moorland by
rainfall. The amount of Nitrogen in the air is increasing linearly in time because of
air-pollution1.

1The more challenging questions are marked with an asterisk∗



Chapter 2

Population growth

Ecological populations change by migration, birth and death processes. In Chapter 1
we saw that one can write simple differential equations for replicating populations, and
for populations that maintain themselves by immigration. We will here study similar
models explicitly from the notion of the biological birth and death processes, and will
develop functions to describe how these processes may depend on the population size.
Rather than taking well-known equations for granted, we will introduce an approach for
“how to develop a mathematical model”. We will stress that there are always many
different models for each particular situation. Models will be analyzed by computing
steady states, and by sketching nullclines. It is important to realize that all models
introduced here require a number of “unrealistic assumptions”: (1) all individuals are
equal, (2) the population is well-mixed, (3) the population size N is large, and (4) the
parameters are constants.

2.1 Birth and death

In the previous Chapter we introduced the equation dN/dt = rN for a population
growing exponentially with a natural rate of increase r. This natural rate of increase is
obviously a composite of birth and death rates. A more natural model for a biological
population that grows exponentially is

dN

dt
= (b− d)N with solution N(t) = N(0)e(b−d)t , (2.1)

where b is a birth rate with dimension t−1, and d is the death rate with the same
dimension. Writing the model with explicit birth and death rates has the advantage that
the parameters of the model are strictly positive (which will be true for all parameters
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in this course). Moreover one now knows the “generation time” or “expected life span”
1/d. Since every individual has a birth rate of b new individuals per unit of time, and
has an expected life span of 1/d time units, one knows that the expected number of
offspring of an individual is R0 = b/d. We will use this R0 as the expected “fitness” of
an individual. In epidemiology the R0 is used for predicting the spread of an infectious
disease: whenever R0 < 1 a disease will not be able to spread in a population. One
infected host is then on average expected to be replaced by less than one newly infected
host.

In this book we will give solutions of differential equations whenever they are known,
but for most ecological models the solution is not known. We will not explain how these
solutions are obtained. The textbook by Adler (1997) gives an overview of methods of
integration. You can also use Maple or Mathematica to find the explicit solution of some
of the differential equations used here. The solution can easily be checked: the derivative
of N(0)e(b−d)t with respect to t is N(0)(b− d)e(b−d)t = (b− d)N(t).

A non-replicating population increasing with an external influx and a density indepen-
dent death rate, e.g., Eq. (1.3) or Eq. (2.2), will ultimately approach a steady state where
the influx balances the death. This is not so for this model with density independent
per capita birth and death rates: the only equilibrium of Eq. (2.1) is N = 0. If b > d,
i.e., if the fitness R0 > 1, this equilibrium is unstable because introducing the smallest
number of individuals into the N = 0 state leads to exponential growth. If R0 < 1
this equilibrium is stable because every population will ultimately go extinct (i.e., for
t→∞ the solution N(0)e(b−d)t → 0). Note that one could argue that Eq. (2.1) also has
a steady state when b = d. However, this is a rare and strange condition because the
birth rate and the death rate would have to be exactly the same over long time scales.

Biological examples of Eq. (2.1) are mankind, the exponential growth of algae in a lake,
and so on. Similarly, the natural rate of increase r = b−d yields a “doubling time” solved
from 2N(0) = N(0)ert giving t = ln[2]/r time units. A famous example of the latter is
the data from Malthus (1798) who investigated the birth records of a parish in the United
Kingdom and found that the local population had a doubling time of 30 years. Solving
the natural rate of increase r per year from 30 = ln[2]/r yields r = ln[2]/30 = 0.0231
per year, which can be expressed as a growth rate of 2.31% per year. More than 200
years later the global human growth rate is still approximately 2% per year. Simple
exponential growth therefore seems a fairly realistic model for the complicated growth
of the human population.

Eq. (2.1) describes a “replicating” population. A simple density-independent model for
a “non-replicating” population is

dN

dt
= s− dN with solution N(t) =

s

d

(
1− e−dt

)
+N(0)e−dt , (2.2)

where s is a production rate (individuals t−1) and d is a death rate (t−1). This model
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Figure 2.1: Graphs of the per capita birth and death rates. Equilibrium points correspond to
the intersection points where the birth rate equals the death rate. From: Campbell & Reece
(2008)52.14.

has a steady state of N̄ = s/d individuals that is found by solving dN/dt = 0. Thus,
this non-replicating population has a (stable) steady state in the absence of density
dependent processes. Biological examples of such non-replicating populations are seeds
blowing into a field, and so on. There is no typical doubling time, and the R0 is not
defined because small populations always expand. The expected life span remains 1/d
time units, and the individual half life remains ln[2]/d time units.

Birth and death rates are typically not fixed because the processes of birth and death
often depend on the population size. Due to competition at high population densities
birth rates may become lower and death rates higher when the population size increases
(see Fig. 2.1). This is called density dependence. We here wish to develop models that
are realistic in the sense that we understand which biological process is mechanistically
responsible for the regulation of the population size. A good procedure for developing
such models is to decide beforehand which process, i.e., birth or death, is most likely
to be subjected to density-dependent effects. The next step is to sketch a functional
relationship between the biological process and the population density.

2.2 Density dependent death

If the death rate increases with the population size one could, for example, propose a
simple linear increase of the per capita death rate with the population size (see Fig. 2.1a).
This linear increase need not be realistic, but is certainly a natural first extension of a
model where the death rate fails to depend to the population size. A simple mathematical
function for the graph in Fig. 2.1a is f(N) = d(1 + N/k), where d is the normal death
rate that is approached when the population size is small, and where k determines the
slope with which the death rate increases with N . To incorporate the death rate of Fig.
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2.1a into our model one simply replaces the parameter d in Eq. (2.1) with the function
f(N) = d(1 +N/k):

dN

dt
= [b− d(1 +N/k)]N . (2.3)

The dimension of the parameter k is biomass, or individuals, and its exact interpretation
is that the death rate has doubled when N = k. At low population sizes the expected
life span of the individuals approaches 1/d time units, and they always have a birth rate
b per time unit. The fitness of individuals obeying Eq. (2.3) therefore equals R0 = b/d.
The R0 is always a maximum fitness, i.e., is computed for an individual under optimal
conditions, which here means N → 0.

To search for steady states of Eq. (2.3) one sets dN/dt = 0, cancels the trivial N = 0
solution, and solves from the remainder

b− d = dN/k that N̄ = k
b− d
d

= k(R0 − 1) (2.4)

is the non-trivial steady state population size. In ecology such a steady state is called the
“carrying capacity”. A simple linear density dependent death rate is therefore sufficient
to deliver a carrying capacity. The carrying capacity depends strongly on the fitness of
the population, i.e., doubling (R0 − 1) doubles the population size.

To test whether these steady state are stable one could study the solution of Eq. (2.3) to
see what happens when t→∞. Although this solution is known, we prefer to introduce
a graphical method for determining the stability of a steady state. Fig. 2.1a sketches the
per capita birth and death rates as a function of the population size in one graph. When
these lines intersect the birth and death rates are equal and the population is at steady
state. To check the stability of the non-trivial state state, one can study what happens
when the population size is somewhat increased. Increasing N from the equilibrium
density N̄ makes dN/dt < 0 because the death rate exceeds the birth rate. This forces
the population back to its steady state value. Similarly, decreasing N makes dN/dt > 0
which pushes the population back to the steady state. We conclude that the non-trivial
steady state is stable. The instability of the trivial steady state N = 0 can also be
checked from Fig. 2.1a: increasing N from N̄ = 0 makes dN/dt > 0 whenever b > d,
i.e., whenever the fitness R0 > 1.

2.3 Density dependent birth

Alternatively, one may argue that the per capita birth rate b should decrease with
the population size. Fig. 2.2 shows some experimental evidence supporting this for
two natural populations. The simplest functional relationship between the per capita
birth rate and the population size is again a linear one (see Fig. 2.1b), and a simple
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Figure 2.2: Panels (a) and (b) show for a plant species and a bird species that the per capita
reproduction rate depends on the population size. From: Campbell & Reece (2008)52.15.

mathematical description is f(N) = b(1 − N/k). Replacing the b parameter by this
linear function the model becomes

dN

dt
= [b(1−N/k)− d]N . (2.5)

The dimension of the parameter k is again biomass, or individuals, and its exact in-
terpretation now is that the birth rate becomes zero when N = k. At low population
sizes the fitness of individuals obeying Eq. (2.5) remains R0 = b/d, which is natural
because at a sufficiently low population size there should be no difference between the
two models. The steady states now are N = 0 and solving

b− d = b
N

k
yields N̄ = k(1− d/b) = k(1− 1/R0) . (2.6)

A simple linear density dependent birth term therefore also allows for a carrying capacity.
However, this carrying capacity approaches the value of k and is fairly independent of
the fitness whenever R0 � 1. By the same procedure as illustrated above one can
test graphically from Fig. 2.1b that the carrying capacity is stable, and that N = 0 is
unstable.

2.4 Logistic growth

We have seen that the carrying capacity of a population with density dependent death
depends strongly on the fitness of its individuals, whereas with density dependent birth
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this is much less so. Mathematically, one can rewrite both models as the classical “logistic
equation” however:

dN

dt
= rN(1−N/K) , with solution N(t) =

KN(0)

N(0) + e−rt(K −N(0))
, (2.7)

with a natural rate of increase of r = b− d, and where K is the carrying capacity of the
population. In the exercises you will be asked to to rewrite Eqs. (2.3 & 2.5) into Eq. (2.7),
but you can easily see that all three are of the same form because they all have a positive
linear and a quadratic negative term. The behavior of the three models is therefore the
same: starting from a small initial population the growth is first exponential, and later
approaches zero when the population size approaches the carrying capacity (see Fig.
2.3). Starting from a large initial population, i.e., from N(0) > K, the population size
will decline until the carrying capacity is approached.

2.5 Stability and return time

The steady states N = 0 in Fig. 2.1 are not stable because small perturbations increasing
N makes dN/dt > 0 which further increases N . The non-trivial steady states in Fig.
2.1 are stable because increasing N makes dN/dt < 0. It appears that steady states are
stable when ∂N [dN/dt] < 0, and unstable when this slope is positive (see Fig. 2.4).

Mathematically one can linearize any function f(x) at any value of x by its local deriva-
tive:

f(x+ h) ' f(x) + ∂x f h , (2.8)
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where h is a small distance (see Fig. 16.3 in the Appendix). To apply this to our stability
analysis one rewrites f(N) into f(N̄ + h) where N̄ is the steady state population size
and h is a small disturbance. Following Eq. (2.8) one obtains

dN̄ + h

dt
= f(N̄ + h) ' f(N̄) + ∂N f h = 0 + ∂N f h = λh , (2.9)

where λ = ∂Nf is the derivative of f(N) with respect to N . For the f(N) = s− dN of
Eq. (2.2) one obtains λ = −d, and for the logistic equation one obtains λ = r− 2rN/K,
which still depends on the population size N . At the carrying capacity of the logistic
equation, i.e., at N = K, the local tangent is λ = −r and at N = 0 we obtain λ = r (see
Fig. 2.4a). Because d(N̄ + h)/dt = dh/dt we obtain

dh

dt
= λh with solution h(t) = h(0)eλt , (2.10)

for the behavior of the disturbance around the steady state. Thus, whenever the local
tangent λ at the equilibrium point is positive, small disturbances grow; whenever λ < 0
they decline, and the equilibrium point is stable. For an arbitrary growth function this
dependence on the slope λ is illustrated in Fig. 2.4b. This Figure shows that the unstable
steady states, here saddle points, separate the basins of attraction of the stable steady
states.
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The stability of a steady state can be expressed as a “Return time”

TR = − 1

λ
, (2.11)

i.e., the more negative λ the faster perturbations die out. For example, consider the
return time of the logistic growth equation around its carrying capacity. Above we
derived that at N̄ = K the tangent λ = −r. This means that TR = 1/r, i.e., the larger
r the shorter the return time. Populations that grow fast are therefore more resistant
to perturbations. The paradigm of r-selected and K-selected species is build upon this
theory. Finally, note that the dimensions are correct: because r is a rate with dimension
“time−1”, TR indeed has the dimension “time”.

2.6 Summary

A stable non-trivial population size is called a carrying capacity. Replicating populations
will only have a carrying capacity when the per capita birth and/or death rate depends
on the population density. For non-replicating populations is this not so. A steady
state is stable if the local derivative of the growth function is negative. The steeper this
derivative, the shorter the return time.

2.7 Exercises

Question 2.1. Density dependent growth
A density dependent birth rate need not decline linearly with the population density.
Consider a population with a density dependent growth term:

dN

dt
= (bf(N)− d)N with f(N) =

1

1 +N/h
.

a. Sketch how the per capita birth rate depends on the population density N .
b. Sketch how the birth rate of the total population depends on the population density
N .
c. Compute the steady states of the population.
d. What is the R0 and express the steady state in terms of the R0?
e. Is f(N) a Hill function (see Chapter 16)?

Question 2.2. Density dependent death
Consider a replicating population where most of the death is due to competition with
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other individuals, i.e., let f(N) = cN in a model where dN/dt = (b− f(N))N .
a. Sketch the per capita death rate as a function of N .
b. Sketch the per capita net growth rate as a function of N
c. Compute the steady state.
d. Why is the R0 not defined?
e. What is the return time in the non-trivial steady state?

Question 2.3. Growth of insects
Consider an insect population consisting of larvae L and adults A:

dL

dt
= aA− dL(1 + eL)− cL and

dA

dt
= cL− δA .

a. Interpret all terms of the model.
b. Sketch the nullclines and the vector field (see Section 16.4).
c. Determine the stability of the steady state(s).

Question 2.4. Stem cells
Stem cells are maintained by continuous division. A fraction of the daughter cells dif-
ferentiate and obtains other phenotypes. A convenient model for stem cell growth is the
logistic equation dS/dt = rS(1− S/k).
a. Expand the model with differentiation of stem cells
b. Write a simple model for the differentiated cells
c. Analyze the model by nullclines and determine the stability of the steady states (see
Section 16.4).

Question 2.5. Freitas
Agenes et al. (1997) at the Pasteur Institute manipulated the number of cells in the
bone marrow (pre-B cells) producing naive B cells (e.g., in the spleen), and found the
following:
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The simplest model for the naive B cell population is dB/dt = m− dB where m is the
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bone marrow production, and 1/d is the average life span of naive B cells. The rate of
naive B cell production is proportional to the number of pre-B cells, i.e., m = αP , where
P is the number of pre-B cells.
a. Is this simple model compatible with the data?
b. If not, how would you extend the model?
c. Do the data require homeostasis, i.e., density dependent regulation?
d. Is dB/dt = m− dB accounting for homeostasis?

Question 2.6. Negative birth
The per capita birth rate function f(N) = b(1 − N/k) of Eq. (2.5) is not completely
correct because the birth rate becomes negative when N > k. This can be repaired by
writing f(N) = max[0, b(1 − N/k)] which equals zero when b(1 − N/k) ≤ 0. Will this
change the steady states analyzed in this Chapter?

Question 2.7. Logistic growth
Logistic growth dN/dt = rN(1−N/K) is a popular equation for describing a replicator
population with a maximum population size (see Fig. 2.3).
a. What is the maximum population size?
b. Show that Eq. (2.5) can be rewritten as a logistic growth.
c. Show that Eq. (2.3) can be rewritten as a logistic growth.

Question 2.8. Red blood cells
Red blood cell production in the bone marrow is regulated by the erythrocyte numbers
in the periphery. Erythrocyte production is stimulated by the hormone erythropoietin
that is produced by renal epithelial cells when the blood delivers insufficient oxygen.
On average the human body produces 3 × 109 new erythrocytes per kg of body weight
per day. Because the bone marrow of the long bones becomes fatty in adults, the total
amount of bone marrow producing erythrocytes decreases with age. Nevertheless, the
number of peripheral red blood cells remains fairly constant.
a. Write a mathematical model, i.e., a growth equation, assuming that red blood cells

have a finite life span of about 120 days, and that the production in the bone marrow
is regulated by the erythrocyte density.

b. Compute the steady state.
c. Does this model explain the observation that erythrocyte numbers are fairly indepen-

dent of the age of an individual? Hint: the effect of erythropoietin is sigmoidal with
a high Hill-coefficient (Belair et al., 1995).

Question 2.9. Naive T cell renewal
Data suggest that naive T cells expand by cell division when densities are low.
a. Write a simple growth model assuming that naive T cells divide when densities are

low.
b. Check the feasibility of the model by computing the steady state.

Question 2.10. Tumor growth
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Consider a small melanoma growing as a flat disk. Assume that the tumor cells are
dividing only at the tumor boundary because of a lack of blood supply inside. Assume
that cell death occurs uniformly throughout the tumor mass. Hint: the surface area of
a circle is πr2 while its circumference is 2πr. Thus, if N is the total number of cells in
the tumor, the number of cells at the surface is proportional to

√
N .

a. Write a growth model for the total number of cells in the tumor.
b. What is the steady state?
c. Sketch the per capita growth as a function of the tumor mass.
d. How would you extend this to a three-dimensional tumor growing as a ball?
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Chapter 3

Interacting populations

Our mission in this Chapter is to study properties of models in which several populations
interact. We will focus on the negative interaction of pathogens onto their target cells,
and the negative control that an immune response has on infected cells. Here the models
will be analyzed with nullclines and steady state analysis. In Chapter 7 similar models
will be combined into a larger, more complicated models, that will be analyzed in terms
of their steady states.

3.1 Viral infection

Consider the infection of a population of target cells T by cells I infected by some virus.
This could be a hepatitis infection where HBV or HCV infects liver cells, or HIV infecting
CD4+ T cells. Measuring time in units of days a natural model to write is

dT

dt
= σ − δTT − βTI and

dI

dt
= βTI − δII , (3.1)

where σ is the daily production of target cells, uninfected target cells have a half life of
ln[2]/δT days, and infected cells have a half life of ln[2]/δI days. One can set δI > δT to
allow for cytopathic effects of the virus. Uninfected cells can become infected by meeting
with infected cells at a rate β/day per infected cell.

The model assumes an absence of homeostasis in the target cell population. The healthy
steady state is solved from setting I = 0 and dT/dt = 0, i.e., T̄ = σ/δT cells. This
represents the normal size of the target cell population (e.g., the normal size of the
liver). In Chapter 2 we have seen the solution of this growth model in Eq. (2.2). During
an infection we have to solve the steady state from the whole system Eq. (3.1). Starting
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with the simplest equation we set dI/dt = 0 to find Ī = 0 and T̄ = δI/β. Apparently, the
equilibrium number of uninfected target cells becomes independent of their production
and life span, but is solely determined by the infection parameters β and δI . Next we
set dT/dt = 0 to find

Ī =
σ

βT̄
− δT

β
=

σ

δI
− δT

β
, (3.2)

when T̄ = δI/β is substituted. The full model therefore has two steady states: the
uninfected state (T̄ = σ/δT , Ī = 0) and the infected state (T̄ = δI/β, Ī = σ

δI
− δT

β ). In
the uninfected state the number of uninfected target cells is proportional to their daily
production, in the infected state the production σ determines the number of infected
cells; T̄ is totally independent of their production σ.

We have seen in Chapter 2 that it is convenient to define the maximum per capita growth,
R0, of the infection. In this two-dimensional system the R0 of the infection is defined
as the per capita growth over a whole generation at maximum target cell availability
T = σ/δT . Multiplying the maximum daily per capita growth σβ/δT with the generation
time 1/δI yields R0 = σβ

δIδT
. The infection can only spread in the target cell population

if R0 > 1. This can also be seen from requiring that dI/dtmax = I(σβ/δT − δI) > 0
which also yields the requirement R0 > 1. The infected steady state can be written in
terms of the R0 as

T̂ =
σ

δT

1

R0
and Î =

σ

δI

(
1− 1

R0

)
, (3.3)

which shows that the degree of depletion of target cells from the healthy steady state
T̄ = σ/δT is proportional to R0, and that Î ' σ/δI whenever R0 � 1. The latter would
imply that the infection rate β hardly influences the steady state number of infected
cells.

We continue by drawing nullclines. Setting dI/dt = 0 already yielded I = 0 and T =
δI/β, corresponding to two straight nullclines in the phase space. Setting dT/dt = 0
already yielded I = σ

βT −
δT
β . It is therefore most convenient to construct a phase space

having I on the vertical axis and T as the horizontal variable. Plotting I = σ
βT −

δT
β

is the same as plotting a function y = p/x − q (where p = σ/β and q = δT /β). For
the intersections with the axes one finds that I = 0 when T = σ/δT , which is obvious
because it is the uninfected steady state found above. Letting T →∞ yields I = −δT /β
as the horizontal asymptote, and T → 0 gives the vertical axis as the vertical asymptote.
Thus, in the positive domain, the dT/dt = 0 nullcline is the hyperbolic function depicted
in Fig. 3.1. There are two possibilities: if δI/β < σ/δT (i.e., R0 = σβ

δIδT
> 1) there is

a non-trivial steady state corresponding to a chronic infection. If R0 < 1 the infection
cannot expand in the healthy steady state T̄ = σ/δT cells (Fig. 3.1b).

The stability of the steady state can be studied by means of the vector field. We chose
extreme regions in the phase space to determine the signs of dT/dt and dI/dt. Left of
the dT/dt = 0 nullcline the target cells increase because the production σ exceeds the
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Figure 3.1: The phase space with nullclines of Eq. (3.1).

loss dT + βTI when T → 0. Left of the dI/dt = 0 nullcline dI/dt < 0 because βT < δI .
In Fig. 3.1b the healthy steady state T̄ = σ/δT is stable because the vector field points
toward in all directions. The healthy steady state is unstable in Fig. 3.1a because the
vertical direction points upwards. Thus, in Fig. 3.1a (T̄ = σ/δT , Ī = 0) is a saddle point.
The stability of the infected state is more difficult to determine from the vector field.
Since the vector field does not have a stable and unstable direction the point cannot
be a saddle point. Because there is no local positive feedback from the variables onto
themselves (cf. Chapter 2), i.e., increasing T around the steady state decreases dT/dt
and increasing I decreases dI/dt, we conclude the steady state is stable.

3.2 Immune response

Virus infections typically evoke immune responses composed of antibodies and CD8+

cytotoxic T cells. One interpretation of the model written above in Eq. (3.1) is that
the effect of antibody response, and/or the cellular immune response is reflected in the
clearance rate δI of infected cells. We can also extend the model with an explicit immune
response by writing

dT

dt
= σ− δTT − βTI ,

dI

dt
= βTI − δII − kIE , and

dE

dt
= αEI − δEE , (3.4)

where the kIE term reflects the killing of infected cells by the immune effectors E, and
the αEI represents the clonal expansion of immune effectors in response to antigen.

The steady state of the model is found by solving the equations from the simplest to the
most complicated. Solving dE/dt = 0 yields Ē = 0, which is the steady state considered
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above, and Ī = δE/α. Solving dT/dt = 0 yields

T̄ =
σ

δT + βI
=

σ

δT + βδE/α
. (3.5)

Solving dI/dt = 0 yields Ī = 0 which is the uninfected state, and

Ē =
β

k
T − δI

k
=

βασ

k(αδT + pβδE)
− δI
k
. (3.6)

Note that for the non-trivial solution, we now solve Ī from dE/dt = 0 and Ē from
dI/dt = 0. Further note that the steady state infected cells is now only determined by
the immune response parameters α and δE .

One can simplify this model to better focus on the interaction between the immune
response and the infected cells by eliminating the target cell equation by making the
quasi steady state assumption dT/dt = 0. Substituting T = σ/(δT + βI) into dI/dt
yields for the interaction between the immune response and the infected cell a two-
dimensional model

dI

dt
=

σβI

δT + βI
− δII − kIE , and

dE

dt
= αEI − δEE . (3.7)

The non-trivial nullclines of this model are I = δE/α for dE/dt = 0, and E = σβ
k(δT+βI)

−
δI
k for dI/dt = 0, which is of the form y = a/(b + x) − c. Thus in a phase space with
the immune response on the vertical axis and the infected cells on the horizontal axis
we again obtain a vertical “parasite” dE/dt = 0, and a hyperbolic “host” nullcline
between a vertical asymptote at I = −δT /β and a horizontal asymptote approaching
E = −δI/k. This looks like Fig. 3.1 except for the fact that the hyperbolic nullcline
crosses the vertical axis having its asymptote at a negative value of I (Fig. 3.2). Because
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the vector field is also similar to that in Fig. 3.1 the non-trivial steady state is again
stable. In Fig. 3.2 we only plot the nullcline configuration where the nullclines intersect,
i.e., where the immune response exists. When E = 0 we have to consider Eq. (3.1) with
Fig. 3.1.

3.3 Exercises

Question 3.1. Lotka Volterra model
Redo the analysis of the infection model Eq. (3.1) for a target cell population that grows
logistically rather than by an independent production term.
a. Write the equations and define the R0 of the infection.
b. Compute the steady states.
c. Sketch the nullclines and determine the stability of the steady states.

Question 3.2. Seals
Assume that seals in the Waddenzee have a density dependent birth rate and a density
independent death. Healthy seals S live on average 1/d days, and can become infected
with a virus carried by infected seals I. Infected seals die after a short period averaging
about 1/δ days. We write the following model:

dS

dt
= bS(1− S/k)− dS − βSI and

dI

dt
= βSI − δI where δ � d .

a. What is the steady state of healthy seal population?
b. What is the R0 of the seals?
c. Express the steady state from a. in terms of this R0.
d. Suppose that pollution with PCBs halves the birth rate of the seals. What is the
steady state of the seal population under polluted circumstances?
e. How many healthy seals S are there in a population chronically infected with this
deadly virus?
f. How is this healthy seal population size in the infected steady state changing by
water pollution with PCBs?
g. Sketch the nullclines of the model and determine the stability of all the steady states.
h. Sketch the nullclines of the model in the presence and the absence of PCBs in one
picture.

Question 3.3. Solving the steady state
Find the non-trivial steady state concentration of molecule B in the following reaction
chain assuming that all species are present:

dA

dt
= a− bA− cAB ,

dB

dt
= cAB − dB − eBC ,

dC

dt
= eBC − fC .
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Question 3.4. Viral fitness
Viruses have high mutation rates and short generation times, and can hence adapt
rapidly to escape from drugs or the immune response. Some of these escape mutations
are associated with a high fitness cost. In the model of Eq. (3.1) one would write

dT

dt
= σ − δTT − fβTI and

dI

dt
= fβTI − δII ,

where the fitness f ≤ 1.
a. Compute the steady state of this model.
b. How does the steady state viral load depend on the viral fitness?
c. How can this be? What is the major effect of a loss in fitness?



Chapter 4

Saturation functions

The infection term in the previous Chapter was a simple mass action term. At high
target cell densities one would expect that infected cells approach some maximum rate
at which they can infect target cells, however. This can be done by replacing the mass
action term by one of the saturation functions defines in Chapter 16.

Consider again the infection of a population of target cells T by cells I infected by some
virus, and now assume that the infection term is saturated, i.e., at high concentrations of
target cells, each infected cell infects some maximum number of target cells per day. For
simplicity now consider a target cell population that is maintained by logistic growth:

dT

dt
= rT (1− T/K)− βIT

h+ T
and

dI

dt
=

βIT

h+ T
− δII , (4.1)

where h is the target cell density at which the infection proceeds at half of it maximum
rate. The parameter β now has the interpretation of the maximum infection rate at
maximum target cell availability. We have employed a simple Hill-function to define the
saturation function.

The nullclines of the target cells are T = 0 or

r(1− T/K) =
βI

h+ T
or I = (r/β)(h+ T )(1− T/K) , (4.2)

which is a parabola crossing the I = 0 axis at T = −h and T = K, and having its
maximum at T = (K − h)/2 (see Fig. 4.1a–c). The nullclines of the infected cells is
I = 0 and T = δIh/(β − δI), which is the vertical line in Fig. 4.1a–c. Because of the
saturation, one can now consider the maximum per capita virus growth per generation at
optimal, i.e., infinite, target cell availability. This yields R0 = β/δI . Thus the dI/dt = 0
nullcline is located at T = h/(R0−1). The target cells increase below the parabola, and
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Figure 4.1: The nullclines and trajectories of Eq. (4.1) for h/R0 − 1 > (K − h)/2 (a) and
h/(R0 − 1) < (K − h)/2 (b & c). The non-trivial steady state is stabke in (a) and unstable in
(b) and (c). The carrying capacity K is indicated. The nullcline of the immune response is the
vertical line located at R = h/(R0 − 1). From left to right the carrying capacity increases. In
the two panels on the right the model behavior approaches a stable limit cycle. The heavy line
in the time plots denotes the target cells.

infected cells increase at the right side of the vertical line. When h/R0−1 > K we obtain
Fig. 4.1a where the uninfected state is stable. When (K − h)/2 < h/(R0 − 1) < K the
nullclines intersect at the right side of the top of the parabola. From the vector field one
can see that the steady state is not a saddle. Increasing T in the steady state decreases
dT/dt, while increasing I keeps dI/dt = 0. Because there is no positive feedback the
equilibrium is stable. In Fig. 4.1c, where h/(R0−1) < (K−h)/2, the nullclines intersect
left of the top. The local vector field is the same, except for the fact that increasing T
increases dT/dt. Due to this positive feedback the steady state is unstable. The behavior
now is a stable limit cycle (Fig. 4.1e & f). Such a limit cycle can account for relapsing
diseases (see Chapter 10), and/or periodic fevers. Periodic behavior will be addressed
further in Chapter 6.
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4.1 Exercises

Question 4.1. Host-parasite models
The target cells in Eq. (4.1) grow logistically, and having a saturated infection term, we
obtained the parabolic nullcline for the target cells.
a. Replace the logistic growth by a fixed source and a density-independent death term.
Sketch the nullclines.
b. Replace the fixed source by a density-dependent source. Sketch the nullclines.
c. Is the “humped” host nullcline that so easily leads to periodic behavior a general
phenomenon?

Question 4.2. Immune control
Consider anti-retroviral therapy in the immune control model defined by Eq. (3.4).
a. What do expect in the long run for the viral load I from a therapy that decreases β?
b. Would such a treatment have any positive effect for the patient?

Question 4.3. Oscillations
During primary infections with the measles virus transient oscillations in the viral load
and the immune response have been observed.
a. Can that be explained with the model in this Chapter?
b. Do you really require the saturated infection term of this model, or would the model

with a mass action infection term also explain this?
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Chapter 5

Gene regulation

Protein synthesis depends on DNA transcription making mRNA molecules and transla-
tion of mRNA into proteins. Some proteins inhibit the transcription of their own mRNA.
Let us model this by a declining Hill function 1/(1 + x) (see Chapter 16), and assume
that mRNA molecules M and proteins P have turnover rates d and δ respectively:

dM

dt
=

c

1 + P
− dM and

dP

dt
= lM − δP , (5.1)

where c is the maximum transcription rate, and l is the translation rate. When P = 0
the gene is “on”, when P →∞ the gene is “off” and the transcription rate becomes zero.
To analyse this model we draw nullclines. Setting dM/dt = 0 the simplest function to

obtain is M = c/d
1+P , which is an inverse Hill function with maximum c/d when P = 0

(see Fig. 5.1). Solving dP/dt = 0 for M yields the straight line M = (δ/l)P (see Fig.
5.1). The nullclines intersect in only one steady state. The vector field around the steady
state shows that the point is a stable node.

To allow for swift gene regulation mRNA has to be short lived. Assuming that transcrip-
tion is a much faster process than translation, the mRNA concentration will typically
be close to its steady state value for each protein concentration. This so-called “quasi
steady state” is obtained by solving M from dM/dt = 0, which we already did for

drawing the nullcline. Substituting M = c/d
1+P into dP/dt yields the quasi steady state

model

dP

dt
=

π

1 + P
− δP , (5.2)

where π = lc/d is the maximum production rate.
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Figure 5.1: The nullclines of Eq. (5.1): qualitatively there is only one possible phase space with
one stable steady state.

5.1 Separation of time scales

One often simplifies models by distinguishing slow and rapid time scales. This is a
very important technique. For fast variables one can do a “quasi steady state” (QSS)
approximation. This means that the QSS variable is in steady state with the rest of
the system, i.e., with the slow part of the system. When the slow part changes the
QSS variable walks along. By a QSS approximation one basically replaces a differential
equation with an algebraic equation. A simple example of a QSS approximation would
be the position of a fast fighter jet that is following a slow Boeing 747. If the pilot of the
fighter jet has the order to tail the Boeing, one can describe the location of the fighter jet
as a short distance behind the Boeing. Whenever the Boeing changes course, the rapid
fighter jet will immediately follow. If the fighter yet were a slow plane, this would not
be a valid assumption. This story was originally told by Lee Segel from Israel. He was
the “father of the quasi steady state assumption” (Segel, 1988; Borghans et al., 1996),
and a great story teller.

Conversely, variables that are much slower than the other variables of a model can be
approximated by constants that do not change at all on the time scale of interest. One
example will be the assumption that the immune response is not changing during anti-
retroviral therapy in Chapter 7. In this course we will use both techniques in order to
obtain natural simplifications of our models.

5.2 Lac-operon

Bacteria can use several external substrates for cellular growth and switch the corre-
sponding intra-cellular pathways on and off depending on the available resources. One
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of the possible substrates is the sugar lactose, and the regulation of the “Lac-operon”
was one of the first circuits of gene regulation that was revealed (Jacob & Monod, 1961).
Regulation of the Lac-operon involves a positive feedback because the sugar allolactose,
A, activates gene expression by deactivating a repressor R. Allolactose is an isomer of
lactose that is formed in small amounts from lactose. The intracellular lactose concentra-
tion is determined by an enzyme permease that is produced by this gene complex. The
gene complex also codes for the enzyme β-galactosidase that hydrolizes the disaccharide
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allolactose into glucose and galactose. This can be summarized into the following model

R =
1

1 +An
,

dM

dt
= c0 + c(1−R)− dM = c0 +

cAn

1 +An
− dM ,

dA

dt
= ML− δA− vMA

h+A
, (5.3)

where 0 < R ≤ 1 a sigmoid Hill function representing the “concentration” of active re-
pressor, M is the mRNA concentration, L is a parameter representing the extracellular
lactose concentration, and A is allolactose. The allolactose concentration increases when
the gene complex is active, i.e., when permease is present, and extracellular lactose L
is transported from the extra-cellular to the intra-cellular environment. This is formu-
lated as a simple “mass action term” of the external lactose concentration, L, and the
permease M . The substrate allolactose is degraded according to a Michaelis-Menten
enzyme substrate reaction, with maximum rate v and Michaelis-Menten constant h (see
the exercises). This reaction depends on the enzyme β-galactosidase, the concentration
of which is assumed to be proportional to the activation of the gene complex, i.e., to
the amount of mRNA M . Overall there is a positive feedback because increasing M ,
increases A, and increases M (Griffith, 1968).

To analyze the model we draw nullclines. Setting dM/dt = 0 yields

M =
c0
d

+
(c/d)An

1 +An
, (5.4)

which is a sigmoid Hill function with an offset M = c0/d when A = 0 (see Fig. 5.3a).
One obtains the vector field by noting that dM/dt > 0 and dA/dt < 0 when A is large
and M is small. The dA/dt = 0 nullcline is solved from

M

(
L− vA

h+A

)
= δA or M =

δA

L− vA
h+A

. (5.5)

Approximating this for A→ 0 yields M ' (δ/L)A, which increases with A. Depending
on the parameters v, h, and L there can be a vertical asymptote along which the curve
goes to infinity (Fig. 5.3a). When the concentration of mRNA is high, and that of
allolactose A is low, the allolactose concentration increases (dA/dt > 0). In Fig. 5.3a
the nullclines intersect in three steady states. The vector field shows that the one in the
middle is a saddle point, and that the two at the boundaries are stable nodes.

For one specific concentration of lactose, L, the operon can therefore be “on” or “off”,
i.e., in one of the two stable steady states. The effect of the lactose concentration can bet-
ter be visualized by again making a quasi steady state assumption for mRNA equation.
Substituting Eq. (5.4) into dA/dt in Eq. (5.3) yields a very complicated expression. Us-
ing the computer program GRIND (see Chapter 14) we plot this complicated dP/dt = 0
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nullcline as a function of the lactose concentration in Fig. 5.3b. The curve in Fig. 5.3b is
basically a bifurcation diagram: it depicts the steady state allolactose concentration, Ā,
as a function of a parameter, the extra-cellular lactose concentration L. The upper and
lower branches are stable and the branch in the middle is unstable. Bacteria growing in
an environment that is extremely poor in lactose are in a state with low levels of allolac-
tose, because the Lac-operon is off. Bacteria growing in an environment rich in lactose
have an active Lac-operon and high intracellular allolactose concentrations. Bacteria
growing in environment with an intermediate lactose concentration can be in either of
these two states however (Novick & Weiner, 1957; Ozbudak et al., 2004; Van Hoek &
Hogeweg, 2006). At these concentrations the bacteria have “alternative stable states”
(May, 1977; Scheffer et al., 2001; Ozbudak et al., 2004), and it depends on the history of
the bacteria in which state they will be. Moreover the curve in Fig. 5.3b implies a form
of “hysteresis”. If one decreases the extra-cellular lactose concentration from very high
to very low, one follows the upper branch. At a critical lactose concentration, L1, the
bacteria suddenly switch to the state with a closed operon. On the other hand, if one
increases the lactose concentration from low to high, one switches from bacteria with a
repressed operon to an expressed operon at lactose concentration L2. Fig. 5.3b shows
that L2 > L1. Thus, the system has a form of memory, and tends to remain in the state
where it was. This is called hysteresis.

The two transition points are catastrophic bifurcations. The system has a discontinuity
and jumps to an alternative attractor. The bifurcations in Fig. 5.3b are called “saddle-
node” bifurcations because a saddle point and a stable node merge and annihilate each
other. In the Nonlinear system courses given by our group you can learn a lot more
about bifurcation theory.

Models of gene regulation have recently attracted much more attention because one
can nowadays read the activity of thousands of genes in a single RNA-chip experiment.
To understand the properties of complicated networks of genes influencing each other,
people are studying models composed of many equations, one for each of the genes in the
network. A simple phenomenological ODE for a gene producing protein “one”, P1, that
is downregulating its own transcription, but is upregulated by another gene product, P2,
one could write something like

dP1

dt
= c

h1
h1 + P1

P2

h2 + P2
− dP1 , (5.6)

where one uses simple Hill functions for the stimulatory and inhibitory effects the proteins
P1 and P2 have on the production of protein one. This model can obviously be extended
for the influence of many different proteins on the transcription of one of them. Writing
ODEs for all of the proteins, one obtains a model of a large gene network. Another
exiting recent development is to experimentally record the gene expression of single
genes, and fit these data to mathematical models (Golding et al., 2005; Golding & Cox,
2006; Raj et al., 2006). This work has demonstrated that transcription occurs in bursts,
which may be stochastic.
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5.3 Summary

Positive feedback loops account for alternative steady states and hysteresis. Simple
models for gene activity allow for complicated networks of regulatory interactions.

5.4 Exercises

Question 5.1. Michaelis-Menten
The Michaelis-Menten term used in Eq. (5.3) comes from a quasi steady assumption.
Consider the following reaction for the formation of some product P from a substrate
S. The enzyme E catalyzes the reaction, i.e.,

E + S
k1⇀↽
k−1

C
k2→ E + P .

Because the enzyme is released when the complex dissociates one writes a conservation
equation

E + C = E0 .

a. Write the differential equations for the product P and the complex C. Use the
conservation equation!
b. Assume that the formation of the complex is much faster than that of the product,
i.e., make the quasi steady state assumption dC/dt = 0.
c. Write the new model for the product. Simplify by defining new parameters.
d. Sketch the rate at which the product is formed (dP/dt) as a function of the substrate
concentration S.
e. Write an ODE for the substrate, and note that you can add dC/dt to simplify dS/dt
because dC/dt = 0.

Question 5.2. mRNA
Rewrite the mRNA protein model of Eq. (5.1) assuming that the inhibition follows a
sigmoid Hill function.
a. Sketch the nullclines
b. Determine the stability of the steady state(s)
c. Assume that the mRNA kinetics are much faster than those of the protein molecules,
and write a model for dP/dt.

Question 5.3. Lac-operon
Simplify the model for the Lac-operon by removing the degradation of allolactose by
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β-galactosidase.
a. Sketch the nullclines
b. Determine the stability of the steady state(s)
c. Assume that the mRNA kinetics are much faster than those of the protein molecules,
and write a model for dA/dt.
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Chapter 6

Periodic behavior

In Chapter 4 we have seen that predators and prey can coexist by a stable oscillation.
This rhythmic or periodic behavior originated from destabilizing a stable spiral point
at a Hopf bifurcation (see Fig. 4.1). Periodic behavior is a typical element of living
systems. Table 6.1 coming from the book on biological rhythms by Goldbeter (1996)
lists a number of them. In this Chapter we will continu with gene regulation by studying
the transcription factors determining the circadian rhythm.

Rhythm Period

Neural rhythm 0.01 to 10 sec
Heart rhythm 1 sec
Calcium oscillations 1 sec to minutes
Biochemical oscillations 1 min to 20 min
Mitotic cell division 10 min to 24 hour
Hormonal rhythms 10 min to hours
Circadian (day-night) rhythm 24 hour
Ovulation cycle 28 days
Seasonal rhythms 1 year
Epidemiological and ecological behavior years

Table 6.1: A number of biological rhythms ranked by their period. From: Goldbeter (1996).
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Figure 6.1: Phase response curves obtained in chick pineal cell cultures for 6h pulses of light
(and anisomysin (Aniso.), an inhibitor of protein synthesis). Pineal cells produce melatonin
in response to signals from the suprachiasmatic nucleus (SCN) in the hypothalamus. Protein
concentrations in the pineal gland cycle with a 24 hour rhythm. When cells are exposed to
light for 6 hours, the peaks of this rhythm shift forward or backward in time. Exposing cells to
light at different time-points during the original cycle, and measuring the corresponding shift in
clock-time, one can depict the so-called “phase-shift” as a function of time. From Figure 11.1 in
Goldbeter (1996).

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
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Figure 6.2: Circadian rhythms in a nocturnal mammal. From: Campbell & Reece (2008)48.25.

6.1 Circadian rhythm

The notion of a biological clock is typically used for the 24 hour cycle of the day/night
rhythm. This is an autonomous cycle which persists under constant circumstances (i.e.,
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Figure 6.3: A simple molecular mechanism for the circadian clock in Drosophila. PER and
TIM proteins (rectangle and oval, respectively) are synthesized in the cytoplasm, where they
may be destroyed by proteolysis or they may combine to form relatively stable hetero-dimers.
Heteromeric complexes are transported into the nucleus, where they inhibit transcription of per
and tim mRNA. We assume that PER monomers are rapidly phosphorylated by DBT (a kinase
encoded by the double-time gene) and then degraded. Dimers, we assume, are poorer substrates
for DBT. From Figure 1 in Tyson et al. (1999).

under continuous light or darkness). Human volunteers living for half a year in the
absence of a natural day/night rhythm develop a circadian rhythm of about 25 hours
(Winfree, 1986). This autonomous behavior is also obvious when we experience jet lag.
Exposure to light, or even to short flashes of light, during the right part of the cycle
can reset the clock, i.e., leads to a phase shift. An example of clock resetting is shown
in Fig. 6.1 where cultured pineal cells are exposed to flashes of light, or to an inhibitor
of protein synthesis. Depending on the timing of the light pulse the internal clock of
the cells is shifted forwards or backwards. This dependence of the circadian rhythm to
light allows the autonomous rhythm to adjust to the day/light cycle. This adjustment
is called entrainment.

Circadian rhythms are common in plants and animals. Flowers opening early in the
morning continue to do so when they are placed in total darkness. In vertebrates it has
been shown that small group of neurons in the hypothalamus functions as a pacemaker
for the circadian rhythm. Many other processes are influenced by this daily rhythm,
e.g., hormone levels vary during the day.

The molecular basis of the circadian rhythm has been heavily studied in Drosophila.
Fruit flies keep an 24 hour rhythm in complete darkness, and over a very wide range
of temperatures (from 18–33 ◦C) (Barkai & Leibler, 2000; Vilar et al., 2002; Goldbeter,
2002). Particular point mutations in the so-called per-gene (per = period) however
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lead to different periods of the rhythm. Point mutations in another gene, timeless or
tim, destroy the rhythm. The tim-gene encodes a protein (TIM) which binds the PER-
protein. The PER-protein and per-mRNA concentrations oscillate with a period of 24
hours, where the protein concentrations rise 4–6 hours later than those of the mRNA.
The PER-protein forms dimers that bind the TIM-protein. The PER-TIM complexes
are transported to the nucleus where it binds transcription factors (see Fig. 6.3).

In the nucleus the PER-protein inhibits transcription by binding another protein
(CLOCK-CYC) (Goldbeter, 2002) that activates per and tim gene expression. Thus,
there is a negative feedback that acts by a counteracting gene activation. This negative
feedback is the basis of most mathematical models for the circadian rhythm (Goldbeter,
1996, 2002). A negative feedback is not enough to have oscillations however. We have
seen in the predator prey model (Fig. 4.1) that a positive feedback tends to destabilize
the steady state , which by a Hopf bifurcation may give rise to a stable limit cycle.
We will here present the model of Tyson et al. (1999), which has a positive feedback
because PER and TIM complexes are more resistant to turnover than their monomers.
There are alternative models that obtain periodic behavior without a positive feedback
by the incorporation of “time delays” due to a number of phosphorylation events of the
PER-protein (Goldbeter, 1996, 2002).

PER-protein is phosphorilated by DBT-kinase, after which it is rapidly degraded (see
Fig. 6.3). The model of Tyson et al. (1999) assumes that PER/TIM dimers are phos-
phorilated at a much slower rate than the monomers. By this assumption dimers are
more stable, i.e., have a longer expected life span, than monomers. This is a positive
feedback because an increase in the concentrations of PER and TIM leads to a slower
decay, which further increases the concentrations. Because PER and TIM-protein are
subjected to similar interactions in the cell, Tyson et al. (1999) lump them together into
one variable called P (for protein). This protein exists in the form of monomers P1 or
dimers P2. Assuming that protein concentrations in the cytosol remain proportional to
those in the nucleus, Tyson et al. (1999) write the following three equations

dM

dt
=

c

1 + (P2/Pc)2
− δMM , (6.1)

dP1

dt
= lM − ρ1P1

h+ P1 + 2P2
− δPP1 − 2kaP

2
1 + 2kdP2 , (6.2)

dP2

dt
= kaP

2
1 − kdP2 −

ρ2P2

h+ P1 + 2P2
− δPP2 , (6.3)

where ρ2 � ρ1 such that dimers have a much slower phosphorilation rate than monomers.
Transcription (i.e., mRNA production) decreases as a function of the PER/TIM dimers,
P2, according to a sigmoid Hill function (when P2 = Pc transcription is half-maximal).
For the phosphorilation Tyson et al. (1999) assume a Michaelis-Menten saturation where
both the monomers and dimers are substrates competing for access to the DBT-kinase
(see the Exercises). The h parameter is the Michaelis-Menten constant: when P1+2P2 =
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h the proteins are phosphorilated at the half maximal rate. The behavior of the model
is depicted in Fig. 6.4a: the concentrations of mRNA and total protein (T = P1 + 2P2)
indeed oscillate on a limit cycle where the protein concentration T lags a few hours
behind the mRNA concentration M .

6.2 Quasi steady state

To simplify the model into two ODEs, Tyson et al. (1999) assume that dimerization and
dissociation is much faster than all other processes of the model, i.e., they assume that
ka and kd are fast parameters. If this is the case, then at any point in time the total
dimerization should approximately equal the total dissociation, i.e., kaP

2
1 ' kdP2, or

P2 ' KP 2
1 where K = ka/kd. Knowing the P2 and P1 ratio, one can rewrite the model

in terms of the total concentration of PER-protein. Because there are two PER-molecules
in one P2 dimer we define T = P1 + 2P2. Since P2 = KP 2

1 we have T = P1 + 2KP 2
1 such

that we can solve P1 from this quadratic equation, i.e.,

P1 =
−1 +

√
1 + 8KT

4K
, (6.4)

(check for yourself that the negative root of the quadratic equation has to be ignored
because it yields a negative solution for P1). The differential equation for the total
PER-protein concentration is obtained by summing Eqs. 6.2 and 6.3:

dT

dt
= lM − ρ1P1 + 2ρ2P2

h+ T
− δPT , (6.5)

where P1 is defined by Eq. (6.4) and P2 = KP 2
1 . Together with Eq. (6.1) this defines a

2-dimensional model, which is analyzed by nullclines in Fig. 6.5.

The form of the total PER-protein nullcline dT/dt = 0 is determined by a complicated
function (see Eq. (6.5)) and has the form of a third order equation with a minimum
and a maximum (see Fig. 6.5). In the top left corner of the phase space, with a lot of
mRNA M and little PER-protein T , protein is produced by translation (lM is large) and
there is little loss by phosphorilation (because T = P1 + 2P2 is small). Thus, above the
T -nullcline dT/dt > 0. The valley in the T -nullcline is due to the positive feedback: this
is the region where increasing T decreases the turnover of the PER-protein. The mRNA
nullcline has a much simpler form because it is a Hill function. As long as P2 � Pc
the nullcline approaches M = c/δM = 10. Above this steady state dM/dt < 0, i.e.,
the mRNA concentration decrease above the nullcline and increases below it. When the
PER-protein concentration increases the mRNA nullcline curves to the bottom. The
parameters are chosen such that the two nullclines intersect in the unstable part of the
PER nullcline.
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model. Parameters: h = 0.05, ka = 2000, kd = 10 (K = 200), δM = 0.1/hour, ρ1 = 10,
ρ2 = 0.03, δP = 0.1/hour, Pc = 0.1, c = 1 and l = 0.5.
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Figure 6.5: The nullclines and trajectories of the 2-dimensional model defined by Eq. (6.1) and
Eq. (6.5). (a) nullclines and (b) nullclines with the stable limit cycle. The heavy line in (a) is
the dT/dt = 0 nullcline and the light line the dM/dt = 0 nullcline. The heavy line in (b) is a
trajectory approaching the stable limit cycle. Parameters as in Fig. 6.4 (see (Tyson et al., 1999)).

From the vector field we read that increasing total protein, T , makes dT/dt > 0, which
is a local positive feedback. Increasing M makes dM/dt < 0. Because of the positive
feedback the non-trivial steady state is likely to be unstable. Tyson et al. (1999) choose
parameters such that the steady state is unstable, and the behavior of the model is
the limit cycle shown in Fig. 6.4 and Fig. 6.5. Parameters were chosen such that the
cycle has a period of about 24 hours (Tyson et al., 1999). The curves in Fig. 6.4 give
the behavior of the 3-dimensional and the 2-dimensional model. The assumption that
P2 = KP 2

1 is apparently reasonable for the current parameter values, i.e., ka = 2000
and kd = 10 (K = 200). In the computer exercises you can study other choices for the
time scale of the dimerization ka and dissociation kd, while keeping overall the same
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parameters, i.e., K = 200.

The paper by Tyson et al. (1999), the book by Goldbeter (1996) and his review in
Nature (Goldbeter, 2002) provide an excellent background to the material covered in
this chapter.

6.3 Summary

Periodic behavior is easily observed in simple models. Possible mechanisms accounting
for periodic behavior are time delays and positive feedback loops. Intuitively, it is difficult
to understand why steady states would become unstable and then be surrounded by a
new attractor taking the form of a stable limit cycle.

6.4 Exercises

Question 6.1. Tyson model
Consider Fig. 6.5 with the phase space of the Tyson et al. (1999) model.
a. Shift the mRNA-nullcline horizontally such that the steady state is located on three
qualitatively different regions of the PER-nullcline.
b. Determine the stability of the steady state for each situation.
c. Sketch for each situation a representative trajecory.

Two extra exercises for the most interested students:

Question 6.2. Goldbeter, Nature, 2002 (Extra exercise for cool students)

Read the review paper by Goldbeter on biological rhythms published in Nature in 2002.
The Figure in Box 1 depicts a bifurcation diagram. Sketch a similar bifurcation diagram
by varying the R0 of the predator in the sigmoid predator prey model with a nullcline
configuration:
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N
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N

Question 6.3. Michaelis-Menten (Extra exercise for cool students)

Extend the Michaelis-Menten term to allow for two substrates competing for access to
the enzyme. Thus, consider the following reaction for the formation of some product Pi
from a substrate Si. The enzyme E catalyzes the reaction, i.e.,

E + S1
k1⇀↽
k−1

C1
p1→ E + P1 .

E + S2
k2⇀↽
k−2

C2
p2→ E + P2 .

Because the enzyme is released when the complex dissociates one writes a conservation
equation

E + C1 + C2 = E0 .

a. Write the differential equations for the substrates and the complexes. Use the con-
servation equation!
b. Assume that the formation of the complexes is much faster than that of the product,
i.e., make the quasi steady state assumptions dC1/dt = dC2/dt = 0. Note that you can
add dCi/dt to simplify dSi/dt.
c. Write the new model for the substrates. Simplify by defining new parameters.
d. Compare your result with the phosphorilation term in the Tyson et al. (1999) model.

Question 6.4. Computer exercise: Circadian rhythm
The Tyson et al. (1999) model for the circadian rhythm is available as a GRIND model
in the files tyson.*.
a. Draw the nullclines of Fig. 6.5 by reading the tyson.txt parameter file.
b. The circadian rhythm of Drosophila hardly depends on the temperature. Assume
that temperature mainly determines the K parameter and study how this affects the
stability of the steady state and the period of the limit cycle.
c. Point mutations in the PER-protein do influence the period of the limit cycle. As-
sume that mutated forms of the PER-protein are phosphorilated at different rates, and
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study how that influences the stability of the steady state and the period of the cycle.
d. Make a phase response curve as in Fig. 6.1 by perturbing the protein concentration
P .
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Chapter 7

Chronic viral infections and
immune control

Our mission in this Chapter is to study models with so many differential equations
that one can no longer use nullcline analysis. Only in the exercises we will again draw
nullclines after simplifying the model by separating its time scales.

We consider the epidemiology of a chronic viral infection within one individual. A chronic
viral infection consists of many viral generations where the virus infects target cells that
produce novel virus particles. The damage caused by the virus occurs by lysis of the
target cells, for so-called cytolytic viruses, or by the killing of infected cells by the host
immune response (e.g., by CD8+ cytotoxic T cells). Recent modeling work in virology
has revealed a number of new insights into chronic viral infections like HIV infection,
hepatitis, and human leukemia viruses like HTLV-1 (Ho et al., 1995; Wei et al., 1995;
Nowak & Bangham, 1996; Nowak & May, 2000). Previously, it was thought that chronic
viral infections were due to “slow viruses”, but now one realizes that a chronic infection
is a (quasi) steady state where a rapidly reproducing virus is controlled by the host
(probably by the host immune response). HIV-1 and HTLV-1 have CD4+ T cells as the
major target cell and hepatitis viruses infect liver cells. The availability of target cells
may also play a role in limiting the chronic infection.

7.1 Immune response

Virus infections typically evoke immune responses composed of antibodies and CD8+

cytotoxic T cells. A natural model for target cells T , infected cells I, virus particles V ,
and a cellular immune response E, would be
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Figure 7.1: HIV-1 infection of a target cell. From: Campbell & Reece (2008)18.10.

dT

dt
= σ − δTT − βTV ,

dI

dt
= βTV − δII − kEI ,

dV

dt
= pI − δV V ,

dE

dt
= αEI − δEE , (7.1)

where σ is the daily production of target cells, uninfected target cells have a half life of
ln[2]/δT days, and infected cells have a half life of ln[2]/δI days. One can set δI > δT to
allow for cytopathic effects of the virus. Uninfected cells can become infected by meeting
with infected cells at a rate β/day per infected cell. The kIE term reflects the killing of
infected cells by the immune effectors E, and the αEI represents the clonal expansion
of immune effectors in response to antigen.

The non-trivial steady states of this model should correspond to the situation of a chronic
viral infection. These steady states are found by solving the equations from the simplest
to the most complicated. Solving dE/dt = 0 yields the solutions Ē = 0 or Ī = δE/α.
Proceeding with the latter, i.e., considering the case with an immune response, one solves
dV/dt = 0 to find that V = (p/δV )I. Next, one can solve dT/dt = 0 and finally one
solves dI/dt = 0 to find:

Ī =
δE
α

, V̄ =
p

δV
Ī =

pδE
αδV

, T̄ =
σ

δT + βV̄
=

ασδV
αδT δV + pβδE

, (7.2)
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Figure 7.2: The steady state of Eq. (7.2) as a function of the immune activation parameter
α. When α becomes too small the immune response cannot maintain itself, and the virus is
controlled by target cell availability. This new steady state for low α can be computed by solving
the steady state of Eq. (7.1) for E = 0, and is therefore independent of α. Parameters: β = 0.01
per virion per day, δE = δI = 0.1 per day, δT = 0.01 per day, δV = 3 per day, k = 1 per cell per
day, p = 100 per day and σ = 10 cells per day.

and

Ē =
pβ

kδV
T̄ − δI

k

=
pβασ

k(αδT δV + pβδE)
− δI
k
, (7.3)

which is a saturation function of α (see Fig. 7.2c).

From these steady state one can read that the size of the target cell population declines
with the viral load V̄ , i.e., the extend of liver damage, or of CD4+ T cell depletion,
increases with the viral load. Surprisingly, the steady state number of infected cells,
Ī = δE/α, only depends on immune response parameters (Nowak & Bangham, 1996),
which suggests that target cell availability cannot have any contribution to the viral
load.

During the chronic phase HIV-1 infected patients have a quasi steady state viral load
called the “set point” (see Fig. 7.3). Different patients have enormously different set
points, i.e., more than a 1000-fold variation between patients. Patients with a high set
point tend to have a much faster disease progression (Mellors et al., 1996). According to
this model the steady state number of infected cells Ī = δE/α. Because the expected life
span of effector cells is not expected to vary much between people, 1000-fold variations
in Ī can only be explained by 1000-fold variations in α, see Fig. 7.2 (Nowak & Bangham,
1996; Müller et al., 2001). The corresponding variation in the immune response Ē is
saturation function of α, however. Patients differing n-fold in the set point are not
expected to differ n-fold in the immune response Ē (see Fig. 7.2). This explains the
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paradoxical observation that patients with low and high virus loads of HTLV-I tend to
have the same level of the CD8+ T cell response (Nowak & Bangham, 1996; Nowak &
May, 2000). Although the immune activation parameter, α, completely determines the
steady state viral load, it apparently has less effect on the magnitude of the immune
response.

7.2 Separation of time scales

For several viral infections it has been established that the kinetics of free viral particles is
much faster than that of infected cells. For instance, for both HCV and HIV-1 infections
we know that δV � δI (Perelson et al., 1996; Neumann et al., 1998). It is therefore
quite reasonable to assume that the virus equation is at quasi steady state. Setting
dV/dt = 0 we employ that V = (p/δV )I, i.e., the virus load becomes proportional to the
concentration of infected cells. Substituting V = (p/δV )I into the model yields

dT

dt
= σ − δTT − β′TI ,

dI

dt
= β′TI − δII − kEI ,

dE

dt
= αEI − δEE , (7.4)

where β′ ≡ pβ/δV . The technique by which we have simplified the 4-dimensional model
into a 3-dimensional model is called “separation of time scales”. Here we have removed
the fastest time scale by a quasi steady state assumption. Note that the virus concen-
tration is not assumed to remain constant: rather it is assumed to be proportional to
the infected cells.

There is another time scale in the model that we can eliminate under certain circum-
stances. After the immune response E has been established it probably changes on a
very slow time scale. For instance, during therapy of chronically infected patients, the
stimulation of the immune effector cells will drop, because αI decreases, but due to
memory effects the effector population may remain large. One could account for such
memory effects by allowing the immune effectors E to have a very long half-life ln[2]/δE ,
i.e., by making δE a small parameter. If the immune effector cells are long-lived their
decline during therapy should be negligible, i.e., one can simplify the model during ther-
apy by the approximation that E remains constant. This fixed value of E is given by
Eq. (7.3). Thus, the simplified model where we have removed the fastest and the slowest
time scale becomes

dT

dt
= σ − δTT − β′TI ,

dI

dt
= β′TI − δI , (7.5)

where β′ ≡ pβ/δV and δ ≡ δI + kE.
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This is a model that you are familiar with. It is a host-parasite model with a fixed
production term (see the “Malaria” exercise in Chapter 3). So you know the reproductive
ratio of the infection and its steady state:

R0 =
β′σ

δT δ
such that T̄ =

σ

δTR0
=
K

R0
and Ī =

σ

δ

(
1− 1

R0

)
, (7.6)

where K is the “carrying capacity” of the target cells. Since most viruses have rapid
growth rates, i.e., typically R0 � 1, this reveals that the steady state density of infected
cells, and hence the viral load, remains fairly independent of β′ (Bonhoeffer et al., 1997).

The 2-dimensional model of Eq. (7.5) can be used to fit the data from HIV-1 or HCV in-
fected patients under anti-retroviral treatment. Current treatments consist of nucleoside
analogs that block de novo infections, and of protease inhibitors blocking production
of infectious virus particles. This basically means that the drugs reduce the infection
parameter β. Thus the model for infected cells under treatment becomes dI/dt = −δI,
which has the simple solution I(t) = I(0)e−δt. By plotting the decline of the virus load
during treatment on a logarithmic scale, and fitting the data by linear regression, one
therefore obtains estimates for the half life ln[2]/δ of productively infected cells. For
HIV-1 this has been done (Ho et al., 1995; Wei et al., 1995), and these now classical
studies estimate half lives of 1–2 days for cells productively infected with HIV-1. Similar
results have been obtained with HBV (Nowak & Bangham, 1996) and HCV (Neumann
et al., 1998). Thus, chronic viral infections are not slow, and involve hundreds of viral
generations over the host life time. This is a fine example where mathematical modeling
has increased our understanding of chronic viral infections.

7.3 Summary

Models of viral infections and immune reactions strongly resemble ecological models.
Intuitively one cannot predict which parameters are most important in controlling the
virus load. The large difference between patients with a low and a high viral load can
only be explained by large differences in immune response parameters, which need not
result in very different magnitudes of the actual immune response. The fact that the
viral generation time can be estimated by a simple linear regression proves that simple
models sometimes allow for important new interpretations.

Nowak & May (2000) have publised a very readable book on modeling viral infections.

7.4 Exercises
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Figure 7.3: The time course of an HIV-1 infection. Figure 43.20 in Campbell & Reece (2002).

Question 7.1. CD4+ T cells
HIV-1 infected patients die from the immunodeficiencies that are brought about by
their low CD4+ T cell counts. A form of treatment that has been tried is to give
immunostimulatory medication to increase the CD4+ T cell counts. Suppose that CD4+

are the most important target cells of HIV-1.
a. Incorporate an immunostimulatory treatment in Eq. (7.5).
b. What is the effect that you expect from this treatment?
c. What alternative treatment is in fact suggested by this model?
d. How would this alternative treatment affect the number of uninfected CD4+ T cells?

Question 7.2. Rebound
Patients treated with anti-retroviral medication (i.e., reverse transcriptase inhibitors)
sometimes have a rebound in their viral load even before the virus evolves drug resistance
(see Fig. 7.4). In the models developed here this form of treatment can be modeled by
reducing β. Investigate the expected effects of treatment by analyzing the phase space
of Eq. (7.5).
a. Sketch the nullclines before and after treatment in one phase space.
b. Sketch the trajectory corresponding to this treatment in the same figure (also do this
with Madonna or GRIND (see Chapter 14)).
c. Sketch the same behavior as a function of time.
d. Is drug resistance necessary for the observed viral rebound?

Question 7.3. Immune control
Consider anti-retroviral therapy in the immune control model defined by Eq. (7.1).
a. What do you expect in the long run for the infected cell load I from a therapy that
decreases β?
b. Would such a treatment have any positive effect for the patient?
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Figure 7.4: Mean changes from baseline (± SE) in the total HIV-1 RNA load (•), and 70 wild-
type HIV-1 RNA (◦). Absolute copy numbers of 70 wild-type RNA were calculated from total
serum HIV-1 RNA load by using the percentages of 70 wild-type RNA, as detected by the point
mutation assay. Numbers above and underneath error bars indicate P values of the changes
(paired two-tailed t test). The shaded area represents the contribution of 70 mutant HIV-1 RNA
to changes in total HIV-1 RNA load. From: De Jong et al. (1996).

Figure 7.5: The viral load as a function of the size of the CD8+ T cell immune response. There
is an excellent negative correlation for two different proteins of the virus (gag and pol). From:
Ogg et al. (1998).

Question 7.4. Ogg et al. (1998)
Although this is now controversial, Ogg et al. (1998) found an excellent negative corre-
lation between the size of the CD8+ T cell immune response and the viral load depicted
in Fig. 7.5. The same authors have also argued that the large variations in the viral set
points between HIV-1 infected patients have to be due to differences in the immune reac-
tivity parameter α (Nowak & Bangham, 1996). Study whether these two interpretations
are consistent by analyzing the following model

dI

dt
= βV − δII − αkEI ,

dV

dt
= pI − δV V ,

dE

dt
= αEI − δEE ,

where we have omitted the target cells for simplicity.
a. Remove the fastest time scale by a quasi steady state assumption.
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b. Sketch the nullclines of the simplified model.
c. Write expressions for the non-trivial steady state of the model.
d. Assume that patients differ in the immune reactivity parameter α, what kind of
correlation do you expect between the viral load V and the immune response E?∗

Question 7.5. Competitive exclusion
Reconsider the full model Eq. (7.4) and let there now be two immune responses to the
infected cells, i.e.,

dT

dt
= σ − δTT − βTI ,

dI

dt
= βTI − δII − k1IE1 − k2IE2 , (7.7)

dE1

dt
= α1E1I − δEE1 and

dE2

dt
= α2E2I − δEE2 . (7.8)

For the sake of the argument let E1 be the clone with the highest binding affinity of this
antigen, i.e., let α1 > α2.
a. What is the steady state of dE1/dt?
b. What is the steady state of dE2/dt?
c. Can both be true when α1 > α2?
d. Substitute your answer of a. into dE2/dt, and simplify. What do you expect for the
second immune response when the first is at steady state?

You have discovered a concept from ecology called “competitive exclusion” (see Chapter
8): two immune responses cannot co-exist on the same resource (antigen). Since one
can have several co-existing immune responses to several epitopes of the same virus
during chronic immune reactions, one would have to argue that there is intra-specific
competition in the immune system (De Boer et al., 2001).



Chapter 8

Competitive exclusion

Competitive exclusion is a very general outcome of mathematical models. It occurs when
two species compete for the same resource, e.g., when two viruses compete for the same
target cells, or when two ecological species compete for the same niche. In Exercise 7.5
you showed that there can be no two immune response controlling one virus in steady
state.

To illustrate the concept in its most general form consider some “resource” R that is
used by two populations N1 and N2. For simplicity we scale the maximum resource
density to one. An example would be the total amount of nitrogen in a lake, which is
either available for algae to grown on, or is unavailable being part of the algal biomass.
A simple Lotka-Volterra like model is:

R = 1−N1 −N2 ,
dN1

dt
= N1(b1R− d1) ,

dN2

dt
= N2(b2R− d2) , (8.1)

where R is the amount of nitrogen available for growth of the algae. The two populations
have an R0 of b1/d1 and b2/d2, respectively. Substitution of R = 1−N1−N2 into dN1/dt
yields

dN1

dt
= N1 (b1(1−N1 −N2)− d1) , (8.2)

which has nullclines N1 = 0 and

N2 = 1− 1

R01

−N1 . (8.3)

Similarly the dN2/dt = 0 nullcline is found by substituting the amount of resource, R,
into dN2/dt = 0 and has nullclines N2 = 0 and

N2 = 1− 1

R02

−N1 . (8.4)
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Figure 8.1: The parallel nullclines of Eq. (8.1).

Thus, plotting N2 as a function of N1 the two nullclines run parallel with slope −1.
The fact that they are parallel means that there is no steady state in which the two
populations coexist. The intersects with the vertical N2 axis are located at N2 = 1 −
1/R0. Thus the species with the largest fitness, R0, has the “highest” nullcline, and wins
the competition (Fig. 8.1).

Competitive exclusion is a paradoxical result because many biological systems are char-
acterized by the co-existence of many different species that seem to survive on very few
resources. Examples are the incredible number of different bacterial species living in
the ground, the number of algae species living in water, and the millions of lymphocyte
clones comprising the adaptive immune system.

8.1 Exercises

Question 8.1. Saturated proliferation
Consider two immune responses to the same pathogen, and assume that the immune
responses reduce the pathogen concentration to

A = 1− kE1 − kE2 .

The maximum proliferation rate is a saturation function (i.e., a Hill function) of the
pathogen concentration. Thus, let the immune responses be described by

dE1

dt
=

pE1A

h1 +A
− dE1 and

dE2

dt
=

pE2A

h2 +A
− dE2 ,

where h2 > h1 means that the second response requires a higher pathogen concentration
for obtaining the same proliferation rate. Because the proliferation is saturated it seems
that exclusion would be less likely.
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a. Draw the nullclines in a phase space of E1 and E2.
b. Can the two responses coexist?
c. What is the difference with Fig. 8.1?

Question 8.2. Competitive proliferation
Consider two immune responses to the same pathogen, and assume that the immune
responses reduces the pathogen concentration to

A = 1− kE1 − kE2

and let the immune responses be described by

dE1

dt
=

pE1A

1 + c1E1
− dE1 and

dE2

dt
=

pE2A

1 + c2E2
− dE2 ,

where c2 > c1 means that the second response has a stronger intra-specific competition.
a. Draw the nullclines in a phase space of E1 and E2.
b. Can the two responses coexist?
c. What is the difference with Fig. 8.1?

Question 8.3. Virus competition experiments (Extra exercise for cool students)

To determine the relative fitness of two variants of a virus one typically grows them
together in conditions under which they grow exponentially. Thus, consider two variants
of a virus that grows exponentially according to

dV1
dt

= rV1 and
dV2
dt

= r(1 + s)V2 ,

where s is the conventional selection coefficient. One way to represent the data is to
plot how the fraction f ≡ V2/(V1 + V2) evolves in time. To compute how the fraction
f(t) changes on needs to employ the quotient rule of differentiation: [f(x)/g(x)]′ =
(f(x)′g(x)− f(x)g(x)′)/g(x)2. Thus, using ′ to denote the time derivative, one obtains
for df/dt:

df

dt
=

V ′2(V1 + V2)− (V ′1 + V ′2)V2
(V1 + V2)2

,

=
V ′2V1 − V ′1V2
(V1 + V2)2

,

=
r(1 + s)V2V1 − rV1V2

(V1 + V2)2
,

= r(1 + s)(1− f)f − rf(1− f) ,

= rsf(1− f) ,

which is the logistic equation with growth rate rs and steady states f = 0 and f = 1.
Thus one expects a sigmoidal replacement curve of the two variants.
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a. Now write a differential equation of the ratio ρ = V2/V1 of the two populations.
b. Virologists plot the logarithm of the ratio in time to determine the relative fitness
(Holland et al., 1991). What is the slope of ln[ρ] plotted in time?



Chapter 9

The Hodgkin-Huxley model

This Chapter explains the Hodgkin-Huxley model (1952) for the generation on an action
potential in neurons. This is a complicated model. We introduce it because it is the most
famous model in Theoretical Biology (Hodgkin and Huxley were honored with the Nobel
prize for this work), and because it gives you an idea what a large realistic model can look
like. The Hodgkin-Huxley model resulted from detailed experiments with the giant squid
neuron, which was combined with electrophysics and computational work on mechanical
calculators. The power of the model is that it can predict the outcome of experiments.
We will explain the full model and then show how simplification by separation of time
scales can help to obtain a better understanding. Mathematical models are commonly
used in neurophysiology.

An action potential is generated at the cell body of a neuron and then travels along
the axon to a synapse where the electrical signal is transmitted to the receiving cell.
An action potential is generated by the opening and closing of voltage-sensitive gates
(see Fig. 9.2). The intracellular and extracellular concentrations of a number of ions,
like sodium (Na+) and potassium (K+), are different. These differences in the ion
concentrations are responsible for a voltage of −70mV over the cell membrane, which is
called the resting potential (see Fig. 9.1). The flux of ions over a membrane is influenced
both by diffusion due to concentration differences, and by the electrical field. The latter
influence is described by a simple equation of the form f(V ) = zV/(ezV − 1) where z is
the valence of the ion, and V is the voltage. This function is depicted in Fig. 9.3: the
current in one particular direction is zero when the valence has the same sign as the
voltage, and becomes proportional to the voltage when they have opposite signs. Note,
that this is quite a neat function that we could add to our families of Hill functions and
exponential functions for modeling a process that smoothly switches on around some
value of x and then approaches a linear dependence on x.
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Figure 9.1: The resting membrane potential. Figures 48.6a and 48.7 in Campbell & Reece
(2002) and 48.9 and 48.10 in Campbell & Reece (2005).
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Figure 9.2: Voltage sensitive gates open and close to generate an action potential. From:
Campbell & Reece (2008)48.13.

To model the flux, or current, of ions across a membrane one writes the so-called Nernst
equation composed of the inward and outward flux. For the voltage dependence, the
Nernst equation uses the function f(V ) = zV/(ezV − 1) for the inward direction and
hence

f(−V ) =
−zV

e−zV − 1
=
−zV ezV

1− ezV
=

zV ezV

ezV − 1
(9.1)

for the outward direction. For instance for the K+ ion (which has valence z = 1) the
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Figure 9.3: The shape of the influx function y = ax/(ebx − 1) in Eq. (9.2). To know the
value at x = 0 one uses the l’Hopital rule: limx→a f(x)/g(x) = limx→a f

′(x)/g′(x). Thus,
limx→0 ax/(e

bx − 1) = limx→0 a/(be
bx) = a/b.

current IK across the membrane is given by:

IK = inward− outward

= pKof(V )− pKif(−V )

= pKo
zV

ezV − 1
− pKi

zV ezV

ezV − 1

=
(
Ko −Kie

zV
) pzV

ezV − 1
, (9.2)

where Ko and Ki give the outside and inside K+ concentrations, respectively. (This
voltage V is scaled with the temperature T , the Faraday constant F , and the gas constant
R.) The equilibrium voltage V , i.e., the concentrations at which the current IK becomes
zero, can be solved from Eq. (9.2) as

VK =
1

z
ln
Ko

Ki
. (9.3)

Any concentration difference, or ratio Ko/Ki, therefore functions as a “battery” of VK
mV. This steady state voltage is called the Nernst equilibrium potential. The other
ions, e.g., Na+ and Ca2+, also function as such a “battery”, and therefore contribute to
the resting potential of the neuron. These different contributions are combined in the
famous Goldman equation.

9.1 Hodgkin-Huxley model

The total current I over the membrane is the sum of the currents of the different ions.
Because I = V/R the current of every ion is given by the resistance R over the mem-
brane and the potential difference between the equilibrium voltage V and the membrane



70 The Hodgkin-Huxley model

potential V . For the current of sodium (Na+), potassium (Ka+) and a rest-group of
ions, one therefore writes:

I = gN (VN − V ) + gK(VK − V ) + gR(VR − V ) (9.4)

where gN , gK , and gR are the conductances (i.e., g = 1/R), and where VN , VK , and
VR are the Nernst equilibrium potentials for sodium, potassium and the rest-group,
respectively. Because dV/dt = I/C, where C is the capacity of the membrane, the
change in the membrane potential V obeys

dV

dt
=

1

C

[
gN (VN − V ) + gK(VK − V ) + gR(VR − V )

]
. (9.5)

Voltage sensitive channels in the cell membrane specifically regulate the transport of
ions through the membrane (see Fig. 9.2). The conductances gN and gK are therefore
complex functions of the voltage V . Hodgkin and Huxley were able to measure the
current of ions through these channels by “voltage-clamp” experiments with the axon of
the giant squid. In voltage-clamp experiments one fixes the voltage by means of a thin
silver thread within the axon. With micro-electrodes one can register the current of the
ions over time for any (change in) voltage. One can distinguish sodium from potassium
channels by depleting sodium or potassium from the medium.

To describe the voltage dependence of gN and gK , measurements were done to see
how fast the current through the channels changes, and what equilibrium the current
ultimately approaches when the voltage is kept at a certain value (see Fig. 9.4). In the
Hodgkin Huxley model the voltage is scaled such that the resting potential corresponds
to V = 0. Moreover, in the model an action potential is a sharp decrease of the voltage
(from V = 0 to V ' −110, see Fig. 9.5), whereas normally one defines the voltage such
that it increases (see Fig. 9.2). Anyway, Hodgkin and Huxley defined three variables,
m, n and h, which are three fitted voltage sensitive channel proteins. The m variable
corresponds to the opening of the sodium channel, h to the inhibition (closure) of the
sodium channel, and n to the opening of the potassium channel. The channels open and
close at a certain rate determined by the membrane potential V , and are —like our Hill
functions— scaled between zero and one (see Fig. 9.4). For the sodium channel they
wrote

dm

dt
= 0.1(1−m)

V + 25

e(V+25)/10 − 1
− 4meV/18 = αm(1−m)− βmm , (9.6)

dh

dt
= 0.07(1− h)eV/20 − h

e(V+30)/10 + 1
= αh(1− h)− βhh , (9.7)

and for the potassium channels

dn

dt
= 0.01(1− n)

V + 10

e(V+10)/10 − 1
− 0.125neV/80 = αn(1− n)− βnn . (9.8)

These three differential equations seem very complicated but are basically simple func-
tions fitted to the data in Fig. 9.4. For instance the opening of m has the form
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y = ax/(ebx − 1) that we already depicted in Fig. 9.3. The closure of h has a func-
tion 1/(eax + 1) which is a sigmoid function vanishing to zero when x→∞.

Substitution of the m, h, and n variables into the conductance terms of Eq. (9.5),
together with the estimated maximum of each term, finally gives the Hodgkin-Huxley
equation for the change of the voltage

dV

dt
=

1

C

[
120m3h(VN − V ) + 36n4(VK − V ) + 0.3(VR − V )

]
, (9.9)

with the three scaled Nernst equilibrium potentials VN = −115, VK = 12, and VR =
−10.5989. This mathematical model has one stable steady state where V ' 0,m '
0.05, h ' 0.6 and n ' 0.3. A sufficiently large decrease of the resting potential in
this steady state triggers a model behavior that very realistically resembles an action
potential (see Fig. 9.5).

Having the Hodgkin Huxley model at hand one can understand what happens after
decreasing the resting potential, i.e., after exciting the membrane:
1. Due to the decrease in voltage, sodium changes m open (see Fig. 9.4) and a minor

current of Na+ ions leaks inwards. Because the conductance for Na+ is now much
larger than that for the other ions, the voltage approaches the Nernst equilibrium
potential for sodium VN = −115. Thus the gN term dominates in Eq. (9.5).

2. This decrease in the voltage triggers the inhibition of the sodium channels (see the
h-variable in Fig. 9.4 and Fig. 9.5), i.e., the gN term looses its dominance and the
voltage starts to recover.

3. Additionally, the potassium channels open (allowing a little Ka+ to leave the cell).
Because the gK term now is dominant, the voltage approaches the Nernst equilibrium
potential for potassium, VK = 12, which leads to a “undershoot” of the voltage to
well below the resting potential.

4. Finally the voltage reverts to the resting potential.

The Hodgkin-Huxley model is unpleasantly complex, and in this given form one can little
more than simulate the model on a computer to see its behavior in time. The output of
the model is therefore almost as “flat” as the output of biological experiments. Several
researchers have tried to simplify the model to obtain better insight into its behavior
(and simultaneously into the behavior of the neurons we are modeling). Citing Fitzhugh
(1960): “The usefulness of an equation to an experimental physiologist (. . . ) depends on
his understanding how it works.” Fitzhugh (1960) analyzed the Hodgkin-Huxley model
and observed that the variables have quite different time scales: the V and m variables
change more rapidly than h and n. For instance, during the first milli-second in Fig. 9.5,
h and n have hardly changed. He exploited these different time scales to simplify the
Hodgkin-Huxley model. In the exercises you will work with the much simpler Fitzhugh-
Nagumo model, which is a phenomenological description of the Hodgkin-Huxley model.
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Figure 9.4: The data collected by Hodgkin and Huxley were fitted to a variety of functions.
Left: the equilibrium values m̄, h̄ and n̄ as functions of the voltage. Right: the functions α(V )
and β(V ) for the three different channels. From: Hodgkin & Huxley (1952).
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Figure 9.5: An action potential in the Hodgkin-Huxley model. Note that the vertical axis in
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Figure 9.6: The nullclines of the Hodgkin-Huxley model for the QSS assumption dm/dt = 0
and the approximation n = 0.91 − h. The heavy line in (a) is the dV/dt = 0 nullcline and the
heavy line in (b) is a trajectory of the complete 4-dimensional model. The trajectory of the full
model appears to obey the nullclines of the simplified model.

9.2 Quasi steady state

Because dm/dt is so much faster than the h and n variables, we do the “quasi steady
state” (QSS) approximation dm/dt = 0 (see Chapter 8). This means that we assume
that m remains at steady state with the slow variables of the model. Thus, we set
dm/dt = 0 in Eq. (9.6) and find that

m =
αm

αm + βm
, (9.10)
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where α and β are the expressions given in Eq. (9.6). This quasi steady state equation
provides for any value of V the corresponding equilibrium value of m. Replacing Eq.
(9.6) with this algebraic expression simplifies the Hodgkin-Huxley models from a 4-
dimensional model to a 3-dimensional QSS model.

There is another reasonable simplification. One can see in Fig. 9.5 that the behavior of
the h and n variables is more or less complementary, i.e., n+h ' 0.91. One can therefore
eliminate the dn/dt differential equation by substituting n = 0.91−h in Eq. (9.9). This
then delivers a 2-dimensional model, which has the dV/dt = 0 and dh/dt = 0 nullclines
depicted in Fig. 9.6. Fig. 9.6b depicts a trajectory of the full 4-dimensional model
projected into the 2-dimensional phase space of the simplified model. One observes
that the trajectory reasonably obeys the nullclines, i.e., our simplification seems fair.
Summarizing, this simplification was achieved by a QSS assumption dm/dt = 0 and a
“conservation equation” n+h ' 0.91. The dV/dt = 0 nullclines looks like the hysteresis
diagrams we have seen before, with a steady state at the Nernst equilibrium potential
of sodium (VN = −115mV), and one at the Nernst equilibrium potential of potassium
(VK = 12mV).

In the phase space of the simplified model the resting state is a stable point. The
resting state cannot be a saddle-point because there is no stable and unstable direction.
Increasing V makes dV/dt < 0 and increasing h makes dh/dt < 0, which are both
stabilizing. However, if one decreases the voltage beyond the unstable rising part of the
V -nullcline, one enters an area where dV/dt < 0. The trajectory there goes to the left
until it approaches the VN = −115mV region of the dV/dt = 0 nullcline. Then it moves
down along the V -nullcline until the nullcline reverses. The vector field points to the
right, and the trajectory crosses to the VK = 12mV branch of the V -nullcline. Finally,
it slowly returns to the resting steady state along that branch of the nullcline.

According to this description an action potential is a large excursion through phase space
that was triggered by a sufficiently large perturbation of the steady state. This nullcline
configuration indeed defines an “excitable” system. A small microscopic disturbance
(excitation) is blown up into a large macroscopic signal, that ultimately reverts back to
rest. The shape of the dV/dt = 0 nullcline creates a threshold around the steady state
that has to be breached to initiate the action potential.

During the final part of the action potential, i.e., when the trajectory moves upwards
along the VK = 12mV branch of the dV/dt = 0 nullcline, the system is refractory to
new excitations. To excite the neuron within that time window one has to give a much
larger stimulus. Because the distance to the threshold (i.e., to the the unstable part of
the V -nullcline) is much larger, a larger decrease in the voltage is required for excitation.

Background to the material covered in this chapter can be found in the books of
Edelstein-Keshet (1988) and Keener & Sneyd (1998).
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9.3 Exercises

Question 9.1. Time scales
Consider the following biochemical system

dx

dt
= f(x, y) and

dy

dt
= ε(ax− by) ,

where a, b > 0 and ε � 1 such that the kinetics of y is much slower than that of
x. The phase space is:

0,0 x

y

x

y

0
0

P

where the heavy line represents the dx/dt = 0 nullcline, and the straight line is the
dy/dt = 0 nullcline.
a. Sketch a trajectory from the point P.

Let y be produced from a substrate S by a reaction that is catalyzed by x:

S + x
k→ y + x ,

and assume that the concentration of the substrate S declines
b. Which parameter of the model will change due to this decrease of S?
c. How will the nullclines change?
d. Sketch two qualitatively different nullcline configurations.
e. Sketch trajectories for both of them.

Question 9.2. Inhibition
The sigmoid dh/dt = 0 nullcline in Fig. 9.6 closely resembles the h∞ line in Fig. 9.4.
a. How can this be?
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Question 9.3. Hodgkin Huxley (Extra exercise for cool students)

We have simplified the Hodgkin-Huxley model and have found the nullclines depicted
in Fig. 9.6. Changing the parameters of the model, one can also obtain the following
nullclines:

-120 -50 20V

-0.1

0.5

1.1

h

V

h

−120 −50 20
−0.1

0.5

1.1

After this (minor) change of the parameters the h variable has remained much slower
that the V variable (like it is in Fig. 9.6).
a. Determine the stability of the steady state.
b. Sketch a trajectory and let it approach the final behavior of the system.
c. Sketch the behavior in time.
d. Give a biological interpretation of a neuron with these parameters.

Question 9.4. FitzHugh-Nagumo model (Extra exercise for cool students)

Instead of deriving a reasonable simplification of the Hodgkin-Huxley model, one can also
define a “phenomenological” model that has essentially the same behavior. A famous
phenomenological model is the FitzHugh-Nagumo model,

dV

dt
= −V (V − a)(V − 1)−W and

dW

dt
= ε(V − bW ) ,

where V is some arbitrary variable representing the voltage, and W is a slow variable
basically following W . The steady state of W is W = V/b and the small ε parameter
makes dW/dt a slow equation. Note that one can easily express the dV/dt = 0 nullcline
as W = −V (V − a)(V − 1), which is zero at three values of V .
a. Sketch the nullclines of the model assuming that a < 1.
b. Determine the stability of the steady state(s).
c. Sketch a trajectory corresponding to a excitatory perturbance of this steady state.
d. Does this resemble the action potential of the Hodgkin-Huxley model?
e. Is this a good model for the action potential?
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f. Now add an external input, e.g., from a dendrite, dV/dt = i−V (V − a)(V − 1)−W
and sketch the nullclines for all qualitatively different possibilities.
g. Determine the stability of all steady states.
h. Sketch for each situation a representative trajectory.

Question 9.5. Computer exercise: Hodgkin Huxley model
The Hodgkin Huxley model is available as a GRIND model in the files hh.* and hhq.*,
for the full model and the simplified model, respectively. For this exercise we have
extended the Hodgkin Huxley model with such an input by adding a source parameter
to dV/dt. We have also added one free parameter k.
a. Study the Hodgkin Huxley for various values of the source and the new k parameter.
b. Can one obtain a short burst, i.e., “spike train”, of action potentials by having the
external input “on” for a short period of time?
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Chapter 10

T cell vaccination

The aim of this chapter is to show how nullclines and phase space analysis can help the
interpretation of complex phenomena. We make this point by elaborating an example
of vaccination against autoimmune disease (Borghans et al., 1998).

Paradoxically, many autoimmune diseases can be prevented or ameliorated by priming
the immune system with autoreactive T cells. This priming evokes a regulatory T-cell
response to the receptors on the autoreactive T cells, which induces resistance to au-
toimmunity. To prevent the autoreactive cells from inducing autoimmunity, they are
given in a sub-pathogenic dose, or in an attenuated form. This vaccination method,
termed T-cell vaccination (TCV), has been successful against several autoimmune dis-
eases. In several autoimmune models, the regulatory cells responsible for resistance
against autoimmunity are anti-idiotypic T cells. These cells, which recognize epitopes of
the T-cell receptor (TCR) of the autoreactive cells, can for example be detected in mice
recovering from experimental autoimmune encephalomyelitis (EAE) (Kumar & Sercarz,
1996). Transfer experiments have demonstrated that CD4+ and CD8+ anti-idiotypic T
cells cooperate to down-regulate the autoreactive response. Based on these observations
the regulatory circuitry depicted in Fig. 10.1 for the control of EAE has been proposed
(Kumar & Sercarz, 1996).

This autoimmune disease, resembling human multiple sclerosis, can be induced in mice
by giving myelin basic protein (MBP) or activated MBP-specific T cells. It has been
shown that mice recovering from EAE harbor T cells that are specific for peptides
from the TCR of an autoreactive clone. Such an anti-idiotypic T-cell response seems a
normal physiological response, because it is also evoked if disease is induced by giving
MBP. Cloned anti-idiotypic T cells were shown to be CD4+ and recognize the framework
region 3 peptide of the autoreactive TCR Vβ8.2 chain in the context of MHC II. Since
mouse T cells generally do not express MHC II molecules, it was proposed that antigen-
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presenting cells (APCs), for example macrophages or B cells, pick up the Vβ8.2 chain
peptide and present it to the CD4+ cells in the context of class II MHC molecules.
On adoptive transfer, the cloned anti-idiotypic cells were shown to inhibit autoreactive
responses and protect mice from MBP-induced EAE (Kumar & Sercarz, 1993). CD8+

cells also appeared to play a role in the induction of resistance. When CD8+ T cells
in the recipient mouse were deleted by anti-CD8 monoclonal antibody treatment, the
CD4+ cells were unable to confer resistance (Kumar & Sercarz, 1993; Gaur et al., 1993).
It was therefore concluded that the CD4+ cells exert their regulatory effect by recruiting
anti-idiotypic CD8+ cells down-regulating the autoreactive response (Kumar & Sercarz,
1993; Kumar et al., 2001; Braciak et al., 2003).

The essential assumption upon which our results are based, is that TCV involves T cells
reactive to self epitopes for which T-cell tolerance is incomplete (e.g., T cells reactive
to sub-dominant self determinants), and that these T cells are present in the mature
peripheral repertoire. This seems a quite natural assumption because the simple fact
that these mice can develop automimmunity confirms that the tolerance to MBP can be
broken. Further, we assume that the presentation of these self epitopes is enhanced by
the autoreactive immune response. T-cell stimulation induces IFN-γ which up-regulates
the presentation of MHC molecules on target cells. This stimulates the presentation of
ignored or cryptic self peptides and hence the activation of autoreactive cells. Aber-
rant expression of MHC molecules on target cells has been demonstrated for several
autoimmune diseases.

10.1 Model

We simplify this complicated regulatory circuitry into a simple mathematical model
to study how TCV can be explained. For our model we consider three T-cell clones:
an autoreactive clone A, a CD4+ regulatory clone R4, and a CD8+ regulatory clone
R8. All clone sizes increase due to an influx of naive T cells from the thymus and
by T-cell proliferation. The autoreactive cells proliferate in response to presented self
peptides, whereas both regulatory clones proliferate in response to TCR peptides of the
autoreactive cells. Since only little is known about the presentation of TCR peptides on
MHC molecules, we do not explicitly model the dynamics of MHC-peptide complexes.
Instead we assume that this presentation occurs on such a fast time scale compared to
the T cell dynamics, that the proliferation of both regulatory clones can be approximated
to be proportional to the number of autoreactive cells. All clones decrease in size due
to natural cell death. The autoreactive clone is inhibited by the CD8+ regulatory cells;
the inhibition term is absent in the equations of the regulatory cells.

The full model for the regulatory circuitry as presented in Fig. 10.1 is modeled by the
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Figure 10.1: T-cell circuitry involved in the regulation of EAE (Kumar & Sercarz, 1996).
Different TCR peptides are presented on APCs in the context of class I and class II molecules.
These APCs prime CD4+ and CD8+ anti-idiotypic cells. The CD4+ regulatory cells (R4), specific
for the framework region 3 peptide of the autoreactive TCR Vβ8.2 chain, provide help for the
CD8+ regulatory cells (R8). This help may be delivered indirectly through an APC which is
activated by the regulatory cells. The regulatory CD8+ cells recognize another determinant from
the autoreactive TCR, which is presented on MHC class I molecules on the autoreactive cells
(A). The inhibitory effect of the CD8+ cells on the autoreactive cells is thought to be responsible
for recovery from EAE. From: Kumar & Sercarz (1996).

following differential equations:

dA

dt
= mA + pAf(A)− iAR8 − dA− εAA2 ,

dR4

dt
= mR + pR4g(A)− dR4 − εRR4

2 ,

dR8

dt
= mR + pR8g(A)h(R4)− dR8 − εRR8

2 , (10.1)

where the Hill functions f(A), g(A), and h(R4) denote the stimulation of autoreactive
cells by self epitopes, the stimulation of regulator cells by TCR epitopes from the au-
toreactive cells, and the help provided by R4 cells to R8 cells, respectively. The influxes
of autoreactive and regulatory cells from the thymus are represented by mA and mR

respectively. Because 0 ≤ f(), g(), h() ≤ 1, the maximum proliferation rate of all T
cells is p. Autoreactive cells are inhibited by CD8+ regulatory cells at rate i. If clone
sizes are small, cells die naturally at rate d. For large clone sizes, cells undergo an extra
density-dependent cell death (the terms εNN

2), which is supposedly due to competition,
and accounts for a carrying capacity (p− d)/ε when T cells are maximally stimulated.

The presentation of self peptides is assumed to be reinforced by activated autoreactive
cells. The presented self epitopes are therefore modeled as a saturation function of the
number of autoreactive cells. The stimulation of the regulator cells is also assumed to
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be a saturation function of the density of autoaggresive cells

f(A) =
A

kA +A
and g(A) =

A

kR +A
. (10.2)

For their proliferation, CD8+ cells require both their specific ligand and T-cell help
from CD4+ cells. T-cell help can be modeled by another saturation function, e.g.,
h(R4) = R4/(kh +R4).

The equations of the CD4+ and the CD8+ regulatory populations given in Eq. (10.1) are
very similar. The only difference pertains to the help the CD8+ population receives from
the CD4+ regulatory population. Since we want to obtain basic, fundamental insights
into the working of TCV, we simplify the model by lumping both regulatory populations
into one regulatory population R. Such a simplification facilitates the analysis of the
model because one can do phase space analysis. Our simplification in fact amounts to
assuming that the proliferation of CD8+ cells is never limited by help from the CD4+

regulatory cells. The simplified model becomes

dA

dt
= mA + pAf(A)− iAR− dA− εAA2 ,

dR

dt
= mR + pRg(A)− dR− εRR2 , (10.3)

where f(A) and g(A) are given by Eq. (10.2). The simplified model can be schematized
by two coupled feedback loops (see Fig. 10.2): a negative loop between the regulatory
cells R and the autoreactive cells A, and a positive loop between the autoreactive cells
and the presented self peptides f(A) = SA. Since both feedback loops are coupled, it is
hard to predict intuitively what will happen if the model immune system is perturbed by
giving autoreactive cells. Therefore we use a mathematical model to analyze the steady
states and the dynamics of the system.

10.2 Steady states

Because so many parameters are unknown, time and all parameters have been scaled
into arbitrary units. For the parameters chosen, the system defined by Eq. (10.3) has two
stable steady states, denoted by the black squares in Fig. 10.3, and one unstable steady
state, denoted by the open square in Fig. 10.3. The stability of the steady states can be
determined from the vector field. In the lower left corner both populations increase by
the source terms. Completing the vector field around the “normal” state of incomplete
tolerance, in which both the autoreactive and the regulatory clone are small, therefore
shows that this state is stable. Completing the vector field around the state in the upper
right corner also shows that this state is stable. The state in the middle is saddle point
because it has a stable and an unstable direction in the vector field. In the “normal”



10.2 Steady states 83

Figure 10.2: Schematic representation of the simplified model, as defined in Eq. (10.3). The
autoreactive cells A recruit a regulatory population R which consists of both CD4+ and CD8+

cells. The regulatory cells R inhibit the autoreactive cells A (denoted by the dashed arrow).
This results in a negative feedback loop between A and R. The autoreactive cells proliferate
upon stimulation by presented self epitopes f(A) = SA. Since the autoreactive cells stimulate
the presentation of self epitopes on MHC molecules, for example by IFN-γ production, there is
a positive feedback loop between A and SA.
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Figure 10.3: Nullclines (a) and separatrix (b) of the TCV model. All initial conditions to the
right of the separatrix lead to the vaccinated state, while those to the left of the separatrix lead
to the normal state. Parameters are: mA = mR = 0.01, p = 2, i = 0.01, d = 1, kA = 0.1, kR = 1,
εA = 0.0001, εR = 0.05.

state of incomplete tolerance both feedback loops are non-functional. In the other stable
steady state, the autoreactive cells are actively controlled by the regulatory cells. We
interpret this state as the vaccinated state (V ); the individual is healthy, and resistant
to the autoimmune disease. The steady state in the middle is a saddle point that spans
up a separatrix dividing the basins of attraction of the normal and the vaccinated state
(Fig. 10.3b).
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Since the system has only two stable steady states, the injection of cells into a normal
individual will either lead to vaccination or to a return to the normal state. Although the
system will always end up healthy, i.e., in the normal state or in the vaccinated state,
the number of autoreactive cells can temporarily become very large. These transient
high numbers of autoreactive cells can be interpreted as autoimmunity (see the shaded
region in Fig. 10.4). Thus the intensity of autoimmunity is assumed to be proportional
to the number of autoreactive cells.

10.3 TCV virtual experiments

EAE can be evoked in susceptible animals by giving MBP or by giving activated au-
toreactive T cells. Since both methods ultimately amount to increasing the number of
autoreactive cells in the recipient, we model the induction of autoimmunity by intro-
ducing autoreactive cells into the naive state. Fig. 10.4a shows that this indeed evokes
an autoimmune response. Initially (see a in Fig. 10.4a) the autoreactive cells respond
vigorously, as they initiate their positive feedback loop, and reach the high levels that
we interpret as autoimmune disease. During the second phase of the response (see b in
Fig. 10.4a), however, the regulatory cells effectively control the autoreactive cells. The
autoimmune disease vanishes and the system approaches the vaccinated state (see c in
Fig. 10.4a). In this state the immune system is protected against autoimmunity; the
number of regulatory cells is so high that a previously pathogenic dose of autoreactive
T cells can no longer induce autoimmunity (Fig. 10.4b).

To protect animals against autoimmunity without inducing disease, one would have to
attain the vaccinated state by giving a low dose of autoreactive cells. Fig. 10.3 shows
that an injection of autoreactive cells can only lead to a switch to the vaccinated state if
the injected dose is large enough to cross the separatrix. Too small a dose of autoreactive
cells fails to initiate both feedback loops. Giving a dose of autoreactive cells that is small
but sufficient (Fig. 10.4c), we observe that the vaccinated state is approached while no
autoimmune disease is induced. The proliferation of autoreactive cells is so slow that
the regulatory cells can keep up with them and control the autoreactive cells from the
start.

T-cell vaccination has also been achieved with large doses of attenuated autoreactive
cells. Since attenuation blocks cell division, the ultimate effect of an injection of atten-
uated autoreactive cells is a stimulation of the regulatory cells. This will obviously lead
to protection against disease, because it is a way to stimulate the regulatory feedback
loop without stimulating the disease-causing positive feedback loop. According to the
separatrix of Fig. 10.3, however, it should be impossible to attain the vaccinated state
by giving attenuated cells. Stimulating the regulatory cells only, one can never cross
the separatrix, because the vaccinated state requires that the positive feedback loop
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Figure 10.4: T cell vaccination virtual experiments. The large panels show the model behavior
in conventional time plots; the insets show the same behavior in the state space of Fig. 10.3.
The thin lines in these state spaces represent the trajectories. The letters in the figures de-
note corresponding time points in the state spaces and the time plots. Note that to be able
to discriminate between the naive and the vaccinated state the state spaces have logarithmic
axes, while the behavior in time is plotted on a linear axis in order to discriminate between
autoimmunity and vaccination. The difference between the vaccinated state and the normal
state is hardly visible in the time plots, which reflects the realistic notion that the number of
autoreactive cells is small in both states. Panel (a): A large dose of autoreactive cells (A = 100)
given in the normal state N (see dashed line) causes a vigorous autoreactive response which is
interpreted as autoimmunity. Eventually the vaccinated state is approached, leaving the animal
healthy and resistant to autoimmunity. Panel (b): If the same large dose of autoreactive cells
(A = 100) is given in the vaccinated state V (see dashed line), the regulatory cells are able to
control the autoreactive response. There is no autoimmune disease and the system returns to
the vaccinated state. Panel (c): A small dose of autoreactive cells (A = 0.5) given in the normal
state N leads to a switch to the vaccinated state V while no autoimmune disease is induced.
Panel (d): Attenuated autoreactive cells or regulatory cells (R = 10) given in the normal state N
(see the vertical line) are able to confer transient protection. If a previously pathogenic dose of
live autoreactive cells (A = 100) is given when the concentration of regulatory cells is still large
(see the horizontal line), the system switches to the vaccinated state while no autoimmunity is
induced. From: Borghans et al. (1998).

between the autoreactive cells and the presented self epitopes is initialized. Thus as
soon as the attenuated cells have disappeared, the regulatory population will gradually



86 T cell vaccination

A

0.001 10 105

R

0.001

0.1

10

A

R

10−3 10 105
10−3

0.1

10

Figure 10.5: Relapsing disease: the nullclines of Eq. (10.3) for a stronger inhibition parameter
i = 12.

decrease due to normal turnover. We conclude that, according to the model, long-term
protection against autoimmunity can never be obtained by giving attenuated autoreac-
tive cells only. Transiently, however, the attenuated cells can provide protection against
disease and hence account for TCV. If the number of regulatory cells stimulated by the
attenuated autoreactive cells (see the vertical line in Fig. 10.4d) is still high when live
autoimmune cells are given to challenge an autoimmune disease (see the horizontal line
in Fig. 10.4d), the latter cells proliferate less vigorously and approach the vaccinated
state without reaching the high numbers required for autoimmunity (Fig. 10.4d).

In summary, the model predicts a qualitative difference between vaccination with normal
and with attenuated autoreactive cells. A low dose of normal autoreactive cells can lead
to a switch to the vaccinated steady state. Therefore it is an all-or-nothing phenomenon
which gives rise to long lasting protection. Inoculation with attenuated cells, in contrast,
can only confer transient protection. Since resistance reduces with time, the latter form
of vaccination should be dose dependent.

Relapsing disease

While animals often spontaneously recover from autoimmunity, many human autoim-
mune diseases are characterized by relapses. The vaccinated state of our model need
not be a stable steady state; instead for particular parameter combinations it can be
unstable (denoted by the open square in Fig. 10.5 and Fig. 10.6a), and be surrounded
by a stable limit cycle corresponding to oscillatory behavior. For the current parameter
setting such oscillations are observed if the inhibitory effect of the regulatory cells i is
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Figure 10.6: Relapsing autoimmunity. For i = 12 the vaccinated state V (denoted by the open
square) is no longer an attractor of the system. Instead the system oscillates around the unstable
vaccinated state. Here the oscillations are so large that the autoreactive cells repeatedly pass
through the region of disease. This can be interpreted as a relapsing autoimmune disease. Note
that, because of the parameter change, the axes had to be changed. From: Borghans et al.
(1998).

increased (or the saturation constant for stimulation of regulatory cells kr is decreased).
The system will then oscillate around the vaccinated state. If the oscillations are suffi-
ciently large, the autoreactive cells repeatedly pass through the region of disease, which
would be observed as a relapsing disease (Fig. 10.6). Recent experiments showing that
relapses in EAE do not require spreading determinants, but can be driven by T cells
reactive to the initial dominant determinant of MBP (Kumar et al., 1996), support this
mechanism for relapsing disease.

According to the model, TCV should fail to provide protection against such a relaps-
ing disease. If a large oscillation surrounds the vaccinated state, there is no state of
protection the system can switch to. The only possibility of curing such a relapsing
autoimmune disease, would be to induce a switch back to the normal state. Since this
would require breaking the positive feedback loop of autoreactive cell-induced antigen
presentation, this is probably too difficult. Moreover, if the cause of the autoimmune
disease is still present, one would expect autoimmunity to recur.

10.4 Exercises
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Question 10.1. Intraspecific competition
What happens with the steady states of Fig. 10.3 if one omits the intraspecific compe-
tition from the model?

Question 10.2. Relapsing disease
In Fig. 10.6 we obtained periodic behavior that can be interpreted as a relapsing au-
toimmune disease by increasing the inhibition parameter i.
a. Can you obtain similar behavior by changing other parameters?
b. Use the continue command in GRIND to find the parameter values for which the
vaccinated state is stable.
c. Is there always a stable limit cycle when the vaccinated state is unstable?
d. Try various initial conditions to see what happens with trajectories starting outside
of the limit cycle.
e. What does this tell you about the separatrix?

Question 10.3. Normal steady state
The model has a normal “naive” steady state due to a balance between a small thymic
production and normal turnover of the cells. The regulatory interactions are negligible
in the normal state.
a. What is the effect of increasing thymic production?
b. What is the effect of decreasing thymic production?
c. Some authors have argued that the normal state also involves active regulation be-
cause the regulator cells are primed by the common Vβ8.2 TCR. Can you modify the
model such that the normal state involves active regulation?

Question 10.4. Competitive proliferation
Try to find a phase space accounting for TCV with the following model:

dA

dt
= mA +

pAA
2

hA +A
− iAR− dA and

dR

dt
= mR +

pRRA

hR + cR+A
− dR

a. Give an interpretation of all terms in the model
b. What is the meaning of the c parameter?
c. Search for parameter values giving a phase space with two stable steady states and
one saddle point.

Question 10.5. Segel et al. (1995)
TCV was also obtained by “reverse engineering”. Read the paper by Segel et al. (1995)
and discuss similarities and differences between their model and the models presented
in this Chapter.



Chapter 11

TCR rearrangement excision
circles

The aim of this chapter is to show how an appropriate mathematical model helps the
interpretation of experimental data. We here develop a model for the TREC content
of naive T cells, and let you use the insights obtained with the model to interpret the
paper on TRECs in HIV-1 infected patients by Douek et al. (1998).

When the TCR is formed in the thymus, fragments of DNA are excised from the T cell
progenitor chromosome (see Fig. 11.1). These DNA fragments form circles that are
called “TRECs”, for TCR rearrangement excision circles, and are not replicated in cell
division, but are divided randomly over the two daughter cells. The average TREC
content of T cells can be measured by specific PCR, and seems a reasonable marker for
cells that have recently emigrated from the thymus (RTEs). Because thymocytes divide
after rearranging the TCR, most novel T cells emigrating from the thymus contain no
TRECs. Ye & Kirschner (2002) estimate that cells emigrating from the thymus have an
average TREC content of 0.118 TRECs/cell. The TREC content of thymocytes is not
changing with age (Jamieson et al., 1999). Throughout life naive T cells therefore leave
the thymus with the same average TREC content.

The TREC content of naive T cells decreases more than 10-fold occurs from 20-year-
olds to 80-year-olds (see Poulin et al. (1999) and Fig. 11.2). Because RTEs have the
highest TREC levels, the decline in the TREC content with age is thought to reflect the
age-related thymic involution (Steinmann et al., 1985). By developing a mathematical
model we will discover that a decrease in thymic output decreases the influx of RTE with
high TREC content, but that this alone does not influence the average TREC content of
the naive population. The only way the TREC content of a naive T cell can decrease is
by division or intracellular degradation. Here, we show that the decrease in the average
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Figure 11.1: TRECs are formed in the thymus when TCRs are formed by somatic recombination.
From: Rodewald (1998).

Figure 11.2: The average TREC content decreases with age. From: Douek et al. (1998).

TREC content of the naive population is determined by the decreasing thymic output,
homeostatically countered by renewal and/or an increased lifespan of naive T cells.

11.1 Model

We develop a mathematical model of two ordinary differential equations describing the
dynamics of naive T cells N (either CD4+ or CD8+ naive T cells) and the total number
of TRECs T in the naive T cell population. Production of recent thymic emigrants
(RTEs) in the thymus is represented by parameter σ(t), and ρ(N) is a renewal term.
Setting ρ(N) = 0, we can study naive T cells without renewal. The cells are removed
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Figure 11.3: The predicted changes in TREC contents and the TREC total after changing the
renewal rate (B), thymic production (C), or the death rate (D). Panel A depicts the normal
situation. The cells on the left are thymocytes, that may contain a TREC (yellow circle). The
cells in the middle depict peripheral naive T cells, that increase by increased renewal (ρ: B),
decrease by decreased thymic production (σ: C), or increased death (δ: D). The histograms
depict the TREC content and the total number of TRECs. From: De Boer (2006).

from the naive compartment at rate δ(N), which represents cell death plus priming by
antigen (the latter changes the cells to the memory phenotype). For the total number
of naive T cells we therefore write

dN

dt
= σ(t) + ρ(N)N − δ(N)N . (11.1)
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To describe the dynamics of the total number of TRECs T in the naive T cell population,
we let c be the TREC level of an RTE. TRECs disappear from the population by
intracellular degradation at rate δI , or, together with their host cell, by death or antigenic
priming at rate δ(N). In cell division, the TRECs are not replicated, and are randomly
divided over the two daughter cells, so the total number of TRECs in the naive population
is not affected by the renewal parameter ρ(N):

dT

dt
= cσ(t)− (δ(N) + δI)T . (11.2)

Since the experimental data suggest the average number of TRECs per naive T cell
decreases with age and with HIV-1 infection, we rewrite Eq. (11.2) in terms of the average
A = T/N . For the time derivative of A(t) defined as the ratio T (t)/N(t) we have to
invoke the quotient rule of differentiation (f(x)/g(x))′ = (f(x)′g(x)− f(x)g(x)′)/g(x)2,
i.e.,

dA

dt
=

[cσ(t)− (δ(N) + δI)T ]− [σ(t) + (ρ(N)− δ(N))N ]A

N

=
σ(t)

N
(c−A)− (δI + ρ(N))A . (11.3)

One obtains a better understanding by considering the, probably quite realistic scenario,
where the dynamics of the T cells and of the average TREC levels are much faster than
the slow thymic involution of σ(t). In such a regime A will approach a quasi steady state
(QSS)

Ā =
c

1 + N
σ(t)(δI + ρ(N))

. (11.4)

This QSS expression shows that in the absence of intracellular degradation and naive
T cell renewal (i.e., δI+ρ(N) = 0), there can be no decline in the average TREC content,
i.e., Ā = c. Further the expression shows that increasing the division rate ρ(N) has a
similar effect on the average TREC content A as decreasing the thymic production σ(t).
Further, if N were to decrease due to increased death, the average TREC content is
expected to increase (see Fig. 11.3).

11.2 Homeostasis

The thymic output σ(t) is an exponentially decreasing function of age t with a constant
exponential rate v

σ(t) = σ0e
−vt , (11.5)

where v is about 0.05 per year (Steinmann et al., 1985). The density-dependent renewal
rate ρ(N) can be modeled by a sigmoid Hill function with steepness parameter k. By
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setting k = 0, the renewal rate can be made non-homeostatic:

ρ(N) =
ρ0

1 + (N/h)k
. (11.6)

The rate of death may increase with increasing naive T cell numbers. A possible way to
model this is

δ(N) = δ0 [1 + (εN)m] . (11.7)

which can be made independent of the cell density by setting m = 0.

Before embarking on numerical analysis we approach the model analytically for the
simple case where there is no homeostasis. Eq. (11.4) shows that we need at least
renewal or intracellular degradation of TRECs to allow the average TREC levels to
drop, so let us now allow for a non-homeostatic renewal at rate ρ, and intracellular
degradation δI . Similarly, the cell death and antigenic priming occurs at a fixed rate δ.
The naive lymphocyte population will approach

N̄ =
σ(t)

δ − ρ
. (11.8)

Substitution of N̄ into the general QSS solution of the average TRECs (Eq. (11.4)) yields

Ā =
c

1 + (δI + ρ)/(δ − ρ)
. (11.9)

Thus, in the absence of homeostasis, the average TREC content of the naive T cells will
go to a fixed level, which is independent of the thymic output σ(t), and is only determined
by the (fixed) renewal and death rates. Thanks to our analytical approach this result is
independent of the values of the parameters ρ, δ or δI . The model demonstrates that
the continued decline in the average number of TRECs per cell with age can only be
observed in a system with homeostasis, even if δI + ρ > 0. Thus, renewal and/or death
rates of naive T cells have to be density-dependent.

11.3 Parameters

To set the parameters of this model one could consider the steady state for a healthy
30-year-old individual. On the basis of blood T cell numbers, blood volume and the
percentage of T cells residing in the blood, Clark et al. (1999) calculate that a human
adult has of the order of 1011 naive CD4+ and CD8+ T lymphocytes, and a thymic
output of about 108 naive CD4+ and CD8+ T cells per day. At low naive T cell counts,
a maximum of 10 % of the naive T cells was found to divide (Hazenberg et al., 2000),
setting a maximum of ρ0 = 0.1/day. But in a normal healthy individual less than
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0.1% of the naive T cells is in division. Because thymic production decreases about 5%
per year, i.e., v ≈ 0.05/year, throughout life (Steinmann et al., 1985), we need to set
σ0 = 4.48 · 108 cells/day to obtain the estimated thymic output of 108 cells/day in a
healthy 30-year-old adult. Ye & Kirschner (2002) estimate an average TREC content of
c = 0.118 TRECs/cell.

The numerical analysis of the model will be left to you. Fill in all parameters using the
estimates provided above. Test if you can get a realistic 10-20 fold decline in the TREC
content A over 100 years. Test what happens if you would perform a thymectomy at
various ages. Test what would happen when HIV infection would change σ, ρ, and/or δ.
Study the model when homeostasis is due to density dependent proliferation, and when
homeostasis is brought about by density dependent death. Answers to these questions
can be found in various papers (Hazenberg et al., 2000; Dutilh & De Boer, 2003; De Boer,
2006).

11.4 Exercises

Question 11.1. Average TREC content
The ODE for the average TREC content dA/dt was obtained by rewriting a model in
terms of total naive T cells and total TRECs.
a. Would you, in retrospect, be able to directly write down the dA/dt equation?
b. What is the average TREC content if we had made the stronger quasi steady state

assumption (QSSA) dN/dt = dT/dt = 0?
c. What is the difference between these two QSSA?

Question 11.2. Douek et al. (1998)
The Douek et al. (1998) paper was the first paper to report that the TREC content of
T cells was decreased in HIV-1 infected patients, like it is in thymectomized individuals.
The authors therefore conclude that HIV-1 infection ameliorates thymic production.
a. Read the paper and use the equilibrium results derived above to facilitate the inter-
pretation of the data.
b. The authors discuss the effect of an increased death rate of CD4+ T cells on their
TREC content. If naive CD4+ T cells have a shortened expected life span in HIV-1
infected patients, what would you predict for their TREC content?
c. HIV-1 infection induces generalized immune activation, which involves increased di-
vision of naive T cells. Given this generalized immune activation, do the data allow one
to conclude that thymic production is decreased in HIV-1 infected patients?
d. Study the model numerically, and so this separately for density dependent renewal
and death. See if you can obtain a realistic 10-20 fold decline in the TREC content with
age.
e. Study the effect of a decreased thymic production, or thymectomy, for different ex-
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pected life spans of the naive T cells.
f. More than 20 years after thymectomy healthy individuals still have TREC+ T cells.
How can this be, and what does this tell you about the intra-cellular decay of TRECs?

Question 11.3. Ye & Kirschner (2002)
A more complicated/realistic TREC model was developed by Ye & Kirschner (2002).
The authors also address the TREC content of T cells in HIV-1 infected patients, and
conclude that thymic production is affected by HIV-1.
a. Why do they reach this conclusion, while you were unable to do so in the previous
question?
b. What are the advantages and disadvantages of analyzing a more complicated/realistic
model?

Question 11.4. Lewin et al. (2002)
A model writing the dynamics of TREC+ and TREC− T cells was developed by Lewin
et al. (2002). Read the paper and discuss the similarities and differences between their
results and the results obtained in this Chapter.
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Chapter 12

Diversity of the Immune system

Diversity is a hallmark of the immune system. The repertoires of B cells and of CD4+

and CD8+ T cells each consist of more than 108 different clonotypes each characterized
by a unique receptor. Each immune response is characterized by a large panel of differ-
ent cytokines with –partly overlapping– functions. Each individual is characterized by
a unique combination of MHC molecules that play an essential role in the selection of
peptides presented to the cellular immune system. MHC loci are the most polymorphic
genes known for vertebrates, i.e., for most loci several hundreds of alleles have been
identified at the population level. However, each individual inherits only a limited num-
ber of MHC genes from its parents, and expresses no more that 10-20 different MHC
molecules. We will here address the question why lymphocytes are so diverse within
an individual, and why MHC molecules are diverse at the population level, and not
diverse within an individual. The consensus explanation of the enormous diversity of
lymphocyte repertoires is the improved recognition of pathogens with a large diversity
of lymphocytes. The consensus explanation for the limited diversity of MHC molecules
within an individual is the excessive negative deletion by self tolerance processes when
the number of presented self peptides is increased by increasing the diversity of MHC
molecules.

12.1 Diversity of the immune repertoire

We start with a simple toy model revealing some novel expectations for the relation-
ships between lymphocyte specificity p, the number of self epitopes S, and the initial
repertoire size R0 (De Boer & Perelson, 1993). Defining the lymphocyte specificity p
as the probability that a lymphocyte responds to a randomly chosen epitope, we have
a definition that remains close to the conventional concept of the “precursor frequency”
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of an epitope. A typical viral epitope activates about one in 105 naive CD8+ T cells
(Blattman et al., 2002), which also says that the probability that a lymphocyte recog-
nizes a randomly chosen epitope is about p = 10−5. It is difficult to estimate the number
of self epitopes in general. For the peptides of nine amino acids (9-mers) that are used
as epitopes by CD8+ T cells, we have recently made an estimate by enumerating all
unique 9-mers in the human genome (Burroughs et al., 2004). Given that there are
approximately 107 unique 9-mers in the human self, and that MHC molecules typically
present about 1% of these, we would have an estimate of S = 105 self epitopes per T
cell restricted to one particular MHC (Burroughs et al., 2004). Fortunately, for the ar-
guments presented here the precise number of self epitopes turns out to be unimportant,
we only need to know that it is large. The diversity of the repertoire before tolerization
R0 is also a large number. Because the size of the functional CD4+ T repertoire R in
man is at least 108 different receptors (Arstila et al., 1999; Keşmir et al., 2000), the
diversity of the pre-tolerance repertoire should at least be an order of magnitude higher,
i.e., R0 > 109.

Having these concepts at hand we write a simple mathematical model. The diversity
of the functional repertoire R is determined by the chance that a clonotype fails to
recognize all self epitopes S, i.e.,

R = R0(1− p)S . (12.1)

Similarly, the chance that an individual fails to respond to a foreign epitope is the prob-
ability that none of its clonotypes in the functional repertoire R recognize the epitope.
Expressing one minus the chance of failure as the probability of mounting an immune
response to a foreign epitope we obtain

Pi = 1− (1− p)R = 1− (1− p)R0(1−p)S . (12.2)

Plotting Pi as a function of the lymphocyte specificity p gives Fig. 12.1a which has
a very wide region of specificities where the chance of mounting a successful immune
response is close to one. If lymphocytes are too specific, i.e., at the left, epitopes remain
unrecognized. If they are too cross-reactive, too many clonotypes are deleted by self
tolerance processes, and the functional repertoire becomes too small.

Because (1− x)n ' e−xn whenever x� 1, we can approximate this model by

R ' R0e
−pS and Pi ' 1− e−pR . (12.3)

When plotted for the same parameters as those of Fig. 12.1 the approximation is in-
distinguishable from the original curve (not shown). The approximation allows us to
compute the “optimal” value of Pi by taking the derivative ∂pPi of Eq. (12.3) and solv-

ing ∂pPi = 0 to find that that the maximum is at P̂i = 1/S. This optimum suggests
that the lymphocyte specificity is largely determined by the number of self epitopes the
immune system has to be tolerant to. Thus, the specificity is not determined by the
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Figure 12.1: The probability of mounting an immune response Pi from Eq. (12.2) as a function
of the specificity p of the lymphocytes. Parameters S = 105 and R0 = 109. Panel (b) depicts
the effect of decreasing the initial repertoire size from R0 = 109, R0 = 108, to R0 = 107. Panel
(c) depicts the effect of incomplete tolerance induction, i.e., f = 1 and f = 0.8 in Eq. (12.6).

recognition of pathogens, but by the demand to remain tolerant to a large number of
self epitopes. Once lymphocytes are specific the repertoire has to be sufficiently diverse
to guarantee recognition of foreign epitopes (Fig. 12.1b).

Incomplete tolerance

Although there is promiscuous expression of self antigens in the thymus, it remains
unlikely that self tolerance is complete. Healthy individuals do harbor lymphocytes that
can recognize self epitopes (see Chapter 10). To study how the results change when
tolerance is incomplete we define a new parameter f for the fraction of self epitopes
that manage to induce tolerance. For f = 1 the new model should be identical to the
previous one. For a foreign epitope we now require that it is recognized, but that none
of the clonotypes recognizing the foreign epitope also recognize one of the (1− f)S self
epitopes that fail to induce tolerance. Otherwise the clone will be held responsible for
auto-immunity. Following Borghans et al. (1999) we let α be the fraction of clonotypes
recognizing at least one ignored self epitope, i.e.,

α = 1− (1− p)(1−f)S . (12.4)

The chance that the system remains tolerant when stimulated with a foreign epitope is
the probability that none of the clones in the functional repertoire R will respond (with
chance p) and is potentially auto-reactive (with chance α), i.e.,

Pt = (1− pα)R where R = R0(1− p)fS . (12.5)
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Now the chance of a “successful immune response” is the probability that the system
remains tolerant and responds to the foreign epitope, which is the chance to remain
tolerant minus the chance to not respond at all:

Ps = Pt − (1− p)R , (12.6)

where the functional repertoire R is given in Eq. (12.5). To study how incomplete
tolerance affects the results we plot Eq. (12.6) for f = 0.8 and f = 1 in Fig. 12.1c.

Fig. 12.1c demonstrates that the effect of incomplete tolerance is enormous. The region
of specificity values where the chance of a successful response Ps approaches one is
much narrower. Moreover the optimum has shifted leftwards, i.e., towards a specificity
much smaller than p = 1/S. Thus the p = 1/S estimate (De Boer & Perelson, 1993)
is an upper bound for the lymphocyte crossreactivity: when the initial repertoire is
sufficiently large the immune system operates even better when lymphocytes are more
specific (Borghans et al., 1999). The conclusion remains that lymphocytes are specific
to avoid auto-immunity, and not to recognize many pathogens.

12.2 MHC diversity within the individual

Since individual MHC diversity increases the presentation of pathogens to the immune
system, one may wonder why the number of MHC genes is not much higher than it is.
The argument that is mostly invoked is that more MHC diversity within the individual
would lead to T cell repertoire depletion during self tolerance induction. This argument
is incomplete, however, because more MHC diversity could also increase the number
of clones in the T cell repertoire through positive selection. In order to be rescued in
the thymus, lymphocytes need to recognize MHC–self peptide complexes with sufficient
avidity. A high MHC diversity thus increases both the number of lymphocyte clones
that are positively selected and the number of clones that are negatively selected. To
calculate the net effect of these two opposing processes we develop a simple mathematical
model (Borghans et al., 2003).

Consider an individual with M different MHC molecules and an initial T lymphocyte
repertoire consisting of R0 different clones. Let p and n denote the (unconditional)
chances that a clone is positively selected by a single MHC type, because its avidity is
higher than a threshold T1, or negatively selected because its avidity exceeds a higher
threshold T2, respectively (see Fig. 12.2). By this definition, thymocytes can only be
negatively selected by MHC molecules by which they are also positively selected, i.e.
n < p. Since T cell clones need to be positively selected by at least one of the MHC
molecules, and avoid negative selection by all of the MHC molecules, the number of
clones in the functional repertoire R can be expressed as

R = R0

(
(1− n)M − (1− p)M

)
, (12.7)
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Figure 12.2: Positive and negative selection according to the avidity model (Janeway & Katz,
1984). The curve in (a) depicts the distribution of thymocyte avidities for self peptide–MHC
complexes. In our model, the chance p to be positively selected by a single MHC type is the
chance that the avidity between the thymocyte T cell receptor and any of the self peptide–MHC
complexes exceeds threshold T1. Thymocytes with avidities for self peptide–MHC complexes
exceeding the upper threshold T2 are negatively selected (with chance n per MHC type). Panel
(b) depicts the size of the T cell repertoire as a function of MHC diversity. The number of clones
in the functional repertoire R is plotted as a fraction of the total initial lymphocyte repertoire
R0. Parameters are: p = 0.01, and n = 0.005.

(Borghans et al., 2003). The functional repertoire R thus contains all T cell clones that
fail to be negatively selected, minus the ones that also fail to be positively selected by
any of the M different MHC molecules of the host.

Experimental estimates for the parameters of this model have recently become available.
In mice, around 3% of the T cells produced in the thymus end up in the mature T cell
repertoire, and at least 50% of all positively selected T cells have been shown to undergo
negative selection in the thymus (Van Meerwijk et al., 1997). Thus, 94% of all thymic
T cells fail to be positively selected by any of the MHC molecules in the host (Van
Meerwijk et al., 1997). These estimates can be used to calculate the chances p and n of
a T cell clone to be positively or negatively selected by a single type of MHC molecule.
Taking into account that inbred mice are homozygous and therefore express 3 types of
class I MHC and 3 types of class II MHC molecules, p and n follow from: (1−p)6 = 0.94
and (1− n)6 = 0.97. This yields p = 0.01 and n = 0.005.

Using these experimental estimates, the number of clones in the functional T cell reper-
toire R increases with the number of different MHC molecules M in an individual until
M = 140 (see Fig. 12.2b). In other words, the size of the functional T cell repertoire
would increase if the MHC diversity M were to exceed its normal value of ten to twenty
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in heterozygous individuals. The intuitive reason is that only a very small part of the T
cell repertoire has sufficient avidity for self peptides presented by a single MHC type to
be positively selected by that MHC. As long as additional MHC types positively select
hardly overlapping parts of the T cell repertoire, negative selection will only waste T
cells that were not even positively selected in the absence of those MHC molecules. A
net negative effect of MHC diversity on the size of the functional T cell repertoire is only
attained once the individual MHC diversity is so large that thymocytes are selected by
multiple MHC types, i.e. when M > 140. Summarizing, the consensus explanation that
the MHC diversity per individual is limited to avoid repertoire depletion is untenable.

12.3 Exercises

Question 12.1. Probability of response
Plot Eq. (12.2) for several values of S and R0 using Maple.
a. How do the results explained above depend to the precise values of S and R0?
b. What do you learn from this?

Question 12.2. Incomplete tolerance
Write the approximation of Eq. (12.6) using (1− x)n ' e−xn.
a. Plot the approximation and the original equation with Maple to test the validity of
the approximation.
b. See if you can find the optimal specificity with Maple.

Question 12.3. Epitopes
In Eq. (12.2) we calculated the probability of an immune response to one single epitope.
Each pathogen obviously consists of a large number of epitopes.
a. How would you extend the model to calculate the probability to respond to a
pathogen with a number of epitopes?
b. Use Maple to study how this affects the results derived above.

Question 12.4. Pathogens
An organism has to survive infection with many different pathogens. In the “Epitopes”
project you calculated the chance to respond to a single pathogen consisting of a number
of epitopes.
a. Try to write an expression for the probability to respond to k different (and unrelated)
pathogens.
b. Use Maple to study how this affects the results derived above.

Question 12.5. Optimal #MHC
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Nowak et al. (1992) also addressed the question of the optimum number of MHC
molecules within an individual with a mathematical model. According to their model
the functional repertoire is given by

R = R0(1− (1− p)M )(1− n∗)M , (12.8)

where n∗ is the conditional probability that a positively selected clone is negatively
selected by a random MHC molecule, i.e. n∗ = n/p.
a. Discuss the interpretation of each term.
b. What is wrong with this model?
c. Study the model with Maple for the same parameters as used in Fig. 12.2b.

Question 12.6. MHC polymorphism
Having considered the evolution of the number of MHC loci per individual, it is tempting
to speculate about the reasons for the enormous polymorphism at the population level.
a. Why do you think the MHC is so polymorphic?
b. Can you think of an approach to study these speculations?
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Chapter 13

Theoretical immunology projects

Question 13.1. Early and Late antigens
Consider a pathogen with two developmental stages. During each stage there is one
immunodominant antigen evoking one specific immune response. Let E be the early
phase, that is recognized by immune response X, and let L be the late phases recognized
by immune response Y :

dE

dt
= rL

(
1− E + L

k

)
−mE − kxXE ,

dL

dt
= mE − kyY L− δL ,

dX

dt
= pxXE − dX and

dY

dt
= pyY L− dY .

a. Give a short interpretation of each term in the model.
b. Can the two responses coexist at steady state?

Question 13.2. Ho et al. (1995)
Read the classical Ho et al. (1995) paper estimating the half life of CD4+ T cells infected
by HIV-1.
a. Make sure you understand the model they use for fitting the data. What criticism(s)
do you have?
b. Suppose the treatment if not 100% effective. How would that influence the estimates?
c. Suppose their is a time delay before the drug enters the cells and becomes effective.
How would that influence the estimates?
d. The conclude that the production of CD4+ T cells is increased due to the HIV-1
infection. How do they reach this conclusion, and how do they compare it to the normal
production rate?
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Question 13.3. Diversity threshold
Nowak et al. (1991) argue that increasing the diversity of the HIV-1 quasi species within
a host is sufficient for to drive disease progression (see also the book on viral dynamics
by Nowak & May (2000)). Each novel strain of the virus elicits a new immune response,
but all strains can infect and lyse CD4+ T cells independent of their specificity. This
asymmetry is sufficient for having a “diversity threshold”, above which the immune
system deteriorates despite having clonotypes available to respond to novel variants. A
model to study this is the pair of one viral strain I with its specific helper T cell clone
H,

dI

dt
= rI − kIH and

dH

dt
= s+

pHI

h+ I
− dH − nIH ,

where the n parameter incorporates the diversity of the viral quasi species, i.e., each
helper cell can be infected by all n strains.
a. Explain each term of the model.
b. Analyze the model, draw the nullclines, etcetera.
c. Does this model have a diversity threshold?

Question 13.4. Th1 versus Th2
Helper T cell responses come in at least two types. Responses to intracellular pathogens
are of the Th1 type, which characterized by IL-12 produced by dendritic cells, and IFN-γ
produced by the Th1 cells. Immune responses to worms and other extracellular parasites
are typically of the Th2 type, which is characterized by IL-4 production. Th1 and Th2
phenotypes exclude eachother because the two types reinforce themselves and downreg-
ulate eachother. A naive T cell stimulated in the presence of IL-12 or IFN-γ express
the transcription factor T-bet which acts to remodel the repressed IFN-γ locus. Later
HLX is expressed which maintains the expression of the IFN-γ locus. This is a positive
feedback loop. If naive T cells are stimulated in the presence of IL-4, the GATA3 tran-
scription factor induces heritable remodeling of the IL-4 locus, which is also a positive
feedback loop. This scheme has recently been reviewed by Murphy & Reiner (2002).
a. Develop a simple mathematical model of a single ODE for the heritable remodeling
of repressed loci. Analyze the model to study its validity.
b. Is heritable remodeling sufficient for the exclusive phenotypes?
c. Extend your model into two ODEs, for for Th1 and one for Th2, and add a cross
down regulatory effect. Analyze the model to study its validity.
d. Read the paper by Hofer et al. (2002) and discuss differences and simililarities be-
tween their model and the one you devised yourself.
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GRIND

The phase portraits in this book are made with a computer program called GRIND, for
GReat INtegrator Differential equations. The user interface of GRIND is not as fancy as
that of similar programs (like Berkeley Madonna), but GRIND has phase plane analysis
as it major additional feature. GRIND allows you to study differential equation models
by means of numerical integration, steady state analysis, and phase space analysis (e.g.,
nullclines and separatrices). The model equations are defined in a very natural formal-
ism, and one can easily change parameters and initial conditions. The user interface
to GRIND is based upon a simple command language. The best way to learn more
about GRIND is to walk through the example listed below. Table 14.1 lists the most
important GRIND commands. GRIND commands have a help function to remind you
of their syntax.

GRIND is publically available from theory.bio.uu.nl/rdb/grind.html and operates
under Microsoft Windows, Macintosh Unix, and Linux. Windows should know that a
model.grd file has to be executed by C:\mingw\grind\windows\grind.bat (this path
depends on where GRIND was installed for you), and in Linux one just calls the grind

script on a text file containing the model.

All models described in this Chapter can be downloaded from
theory.bio.uu.nl/rdb/tb/models.

14.1 Lotka Volterra model

A Lotka Volterra model with a density dependent growth rate can be studied with
GRIND by typing the following text file, and saving it, for instance, under the name
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lotka.grd:

R ’= r*R*(1-R/k) - a*R*N;

N ’= c*a*R*N - d*N;

The model has two differential equations, R’=

and N’=, and five parameters a, c, d, k, and r.
Note that r is different from R!

Beforehand one can create a parameter file lotka.txt containing a parameter setting
belonging to this model. Alternatively, one can make such a file from GRIND with the
parameter lotka.txt command.

After firing up GRIND, by clicking the lotka.grd file in Windows, or typing grind

lotka in Lunix, you start typing commands and parameter values as soon as you get
the GRIND> prompt. For example:

display lotka.grd

a=1

c=1

d=.5

r=1;k=1

R=0.01;N=0

This first displays the model equations of the
lotka.grd file. The following lines set the pa-
rameters, and then gives an initial condition
with a little bit of prey and no predators. Note
again that GRIND is case sensitive.

Now you are ready to go. To obtain a numerical solution say that you want twenty time
steps and give the run command:

finish 20

run

timeplot

where

On your screen you get a listing of the preda-
tor and prey values obtained by “running” the
model and solving the differential equations nu-
merically. Timeplot makes a nice graph on your
screen. The where command gives the final
state.

The curve on the screen depicts the logistic growth of the prey.

Next we become interested in the predator:

N=0.01

run

ti

fin 50 50

run

ti

Which first sets the initial condition of the
predator, runs, and makes a new timeplot. Then
the integration time is changed to 50 time steps
asking for all 50 time points. The model is solved
and timeplot is called.

The main feature of GRIND is phase plane analysis:
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2d

nullcline

vector

run

d=0.9

nu

Which depicts a 2-dimensional phase space,
draws nullclines, shows the vector field, and the
trajectory. Finally, the phase space is redrawn
for d = 0.9.

GRIND can do local stability analysis for you:

axis x R 0 0.9

d=0.5

parameter lotka.txt

2d

nu

cursor

newton

eigen

Illustrates the usage of the axis command. Pa-
rameter values are listed and saved into a file
lotka.txt. Such a file can later be read with
the read command. Redraw the nullclines for
d = 0.5 and click with the mouse close to the
non-trivial intersection point of the two null-
clines. Then do a “Newton Raphson” iteration
to approach a nearby equilibrium point, and dis-
play the eigenvalues.

To set Gaussian variation on a parameter:

noise k 1 0.2

run

fin 500 500

run

ti

bye

Noise draws new values for k every time step
from a Gaussian distribution with mean 1 and
standard deviation 0.2. The model is solved.
The time length is increased, the model is run,
and the solution is plotted.

14.2 Exercises

Question 14.1. Tutorial
Here is a set of questions to test if you understood the tutorial you just made:
a. When you called run;timeplot you got a nice graph on your screen. What is the

meaning of this graph?
b. How is the system of ODEs defining this graphs?
c. When you called 2d;nullcline you also got nice graphs on your screen. What do

these mean?
d. With the Newton Raphson command you just jump to a nearby steady state, whether

it is stable or unstable. What do the eigenvalues mean that you get after issuing the
eigen command?

Question 14.2. The Monod functional response
In Chapter 4 we analyzed the following predator prey model with a saturated functional
response:
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2d make a 2-dimensional phase space
axis define the identity and scaling of an axis
bye leave GRIND
bifurcate make a series of Poincaré sections
continue follow a steady state as a function of a parameter
cursor ask for a mouse click to set the initial condition
display filename show the contents of a text file
eigen compute eigenvalues
finish set the time span and number of points reported
grid start many trajectories
help get help
keepvar copy the final state into the initial state
newton approach a close-by equilibrium point
noise set white noise on a parameter
nullcline draw nullclines
parameter list parameter setting and/or save them into a file
poincare make a poincaré section
read filename read a file with parameters and/or commands
run solve the model numerically
timeplot depict the solutions
vector show the vector field
where where am I?

Table 14.1: A sample of the most important GRIND commands. Note that GRIND commands
can be abbreviated to the first two letters.
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Figure 14.1: Logistic growth of Paramecium and non-logistic growth of Daphnia. From: Camp-
bell & Reece (2008)52.13.

F = R/(h + R);

R ’= r*R*(1-R/K) - b*N*F;

N ’= b*N*F - d*N;

The algebraic expression F defines the functional
response, and is used in the differential equations
R’= and N’=.

This model is available from theory.bio.uu.nl/rdb/tb/models as a file monod.grd

with the corresponding parameter file monod.txt.
a. Double click the monod model and start with read monod.txt. Check the equations
(display) and its parameter values (par).
b. Make a time plot showing the logistic growth of the prey by starting with zero
predators and few prey. Explain in words what this curve represents.
c. Now study the 2-dimensional system by making a phase space. List the parameter
values and make qualitatively different phase spaces. Sketch trajectories for each of these
systems.
d. When is the non-trivial steady state stable and when is it unstable? What is the
behavior when it is unstable?
e. What is the effect of changing the carrying capacity of the prey? Can you repeat
Rosenzweig’s paradox of enrichment?
f. Which population increases most when you increase the carrying capacity of the
prey?
g. In Figure 52.13 of Campbell & Reece (2005) the growth of Daphnia is compared with
logistic growth of Paramecium (see Fig. 14.1). A striking difference is that Paramecium
asymptotically approaches its carrying capacity, whereas Daphnia has an oscillatory
approach to its steady state. As Daphnia feeds on algae you can use this Monod saturated
predator prey model to see if you can understand Daphnia’s growth curve depicted in
Fig. 14.1b. Simulate the experimental curves in Fig. 14.1 by adding a few predators
to a prey population at carrying capacity. Can you obtain the oscillatory approach of
Daphina?
h. Can you also obtain the asymptotic approach of Paramecium with the same model
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for other parameter values?

Question 14.3. Viral rebound
Consider an HIV-1 infected patient that is treated with an anti-retroviral drug. Use the
following extension of Eq. (7.5):

dT

dt
= σ − δTT − α1βTI1 − α2βTI2 ,

dI1
dt

= α1βTI1 − δI1 ,
dI2
dt

= α2βTI2 − δI2 ,

where I1 are cells infected with the wild-type virus, and I2 are cells infected with a
pre-existing drug resistant mutant. The 0 < αi ≤ 1 parameter represents the effect of
treatment (where setting αi = 1 means absence of treatment). Because I2 is a drug
resistant mutant, α2 < α1 before treatment, and α2 � α1 during treatment. Help
yourself when setting parameter values by noting that the wild type virus requires R0 =
βσ
δδT

> 1. The model is available as hiv.*.
a. First study viral rebound in the absence of drug resistant virus. Set α1 = 1 and
I2 = α2 = 0 and let the model approach a state corresponding to a chronic viral infection.
Then give a mild “treatment” that decreases α1 several-fold. Can the wild type virus
rebound, and what is the new steady state?
b. Which population is most strongly affected by the treatment?
c. Now allow for the drug resistant virus, e.g., set α2 = 0.95 and see if the viruses can
coexist in the absence of treatment.
d. Assume that drug resistant virus is continuously created by mutation, i.e., study
treatment with drug resistant virus by giving I2 a small initial value at the onset of
treatment. Can the two viruses coexist under continuous treatment?
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Simple Maple examples

Maple is a system for doing mathematics with a computer. Maple has an excellent help
function with lots of examples. Start maple by typing xmaple to the Linux-prompt.
Then try the following examples:

Solve an algebraic equation:
solve(3*x=2,x);

Solve a quadratic equation with free parameters:
sol:=solve(a*x^2+b*x+c=0,x);

Later you can set a:=3; etcetera.

Get the second root:
sol2:=sol[2];

Solve a differential equation (i.e., Eq. (2.2)):
dsolve({diff(x(t),t)=s-d*x(t),x(0)=x0},x(t));.

Plot a function:
plot(x*exp(-x),x=0..10);

Substitution of functions:
r:=(1-p)^s;y:=1-(1-p)^r;plot(subs(s=10^5,p=10^m,y),m=-8..-3);

Find maximum of the function:
simplify(solve(diff(y,p)=0,p));

Approximate a function by a Taylor series:
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series(y,s=infinity);

Take the limit of a function:
limit(y,s=infinity);

Undefine all definitions:
restart;



Chapter 16

Appendix: mathematical
prerequisites

16.1 Sketching functions

Most models in this course are analyzed graphically by sketching nullclines in phase
space. Some experience with sketching functions is therefore required. To fresh up
these techniques we here discuss the general approach, and give a few examples. Since
most of the models have free parameters, we also have to sketch functions with free
parameters. This implies that one cannot simply resort to a computer program or a
graphical calculator.

The general procedure is:
1. Determine the intersects with the horizontal and vertical axis.
2. Check for vertical asymptotes, i.e., x values leading to division by zero.
3. Check for horizontal asymptotes by taking the limit x→∞ and x→ −∞.
4. Check where the function has positive positive values where negative values.
5. We typically do not need to determine minimum values, maximum values, or in-

flexion points.

Example 1
Sketch the function

y =
ax

b− x
(16.1)

in a graph plotting y as a function of x:
a. For x = 0 one finds y = 0 as the intersect with the y-axis. This is the only intersect

with the horizontal axis.
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(a)

X

Y 0

−a

b0

(b)

X

Y

0

σ+a
c

↖α
β

−b 0

Figure 16.1: Two examples for qualitatively sketching functions.

b. There exists a vertical asymptote at x = b. When x ↑ b one finds that y →∞, when
x ↓ b one sees that y → −∞.

c. To find horizontal asymptotes one rewrites the function into

y =
a

b/x− 1
. (16.2)

Both for x → ∞ and for x → −∞ one sees y → −a. Thus, we find one horizontal
asymptote at y = −a.

d. When x < 0 one sees that y < 0, when 0 ≤ x < b one sees that y ≥ 0, and when
x > b one finds y < 0. The function is sketched in Fig. 16.1a.

Example 2
Sketch the system

0 = σ +
aX

b+X
− cY , (16.3)

0 = −α+ βX − γY (16.4)

in one graph. Because both equations can easily be solved for the Y variable, it is most
easy to draw Y as a function of X. For the second equation one finds

Y = −α/γ + (β/γ)X , (16.5)

which is a straight line with slope β/γ.
a. The intersect with the Y -axis −α/γ, and that with horizontal axis X = α/β.
b. No vertical asymptotes.
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Figure 16.2: The increasing saturation functions defined by Eq. (16.15). The left panel depicts
f(x) = x/(h + x) and f(x) = 1 − e− ln[2]x/h which both have the convenient property that
0 ≤ f(x) < 1 and f(x) = 0.5 when x = h. In the panel on the right we draw their corresponding

sigmoid variants f(x) = x2/(h2 + x2) and f(x) = 1− e−ln[2](x/h)
2

.

c. No horizontal asymptotes.
d. When X < α/β one finds Y < 0, otherwise Y ≥ 0.

For the first equation we also write Y as a function of X

Y = σ/c+
(a/c)X

b+X
. (16.6)

a. The intersect with the vertical axis is Y = σ/c. That with the X axis is X =
−bσ/(σ + a).

b. These exists a vertical asymptote at X = −b. When X ↓ −b one finds that Y → −∞
and when X ↑ −b we see Y →∞.

c. For the horizontal asymptotes one first writes

Y = σ/c+
(a/c)

b/X + 1
, (16.7)

to see that for X →∞ and for X → −∞, Y → (σ + a)/c.
d. One finds that Y > 0 if X > −bσ/(σ + a) or if X < −b.
Although one does not know the parameters of this system, one can be sure that in the
positive quadrant the two curves have to intersect. Thus, qualitatively, there is only one
unique situation, which is depicted in in Fig. 16.1b.
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16.2 Mathematical background

Useful mathematical formulas

To fresh up your memory of earlier education in mathematics we provide a few standard
fornulas

ln 1 = 0 , lnxy = lnx+ ln y , lnx/y = lnx− ln y , eix = cosx+ i sinx , (16.8)

and the two roots of the quadratic equation

ax2 + bx+ c = 0 are x± =
−b±

√
b2 − 4ac

2a
. (16.9)

The standard rules of differentiation are

[cx]′ = c , [cxn]′ = ncxn−1 , [f(x) + g(x)]′ = f ′(x) + g′(x) , (16.10)

where the ′ means ∂x, and

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x) ,

[
f(x)

g(x)

]′
=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
, (16.11)

and the famous chain rule

f [g(x)]′ = f ′(g) g′(x) , e.g.,
√

1 + ax ′ =

[
1

2
(1 + ax)−

1
2

]
a =

a

2
√

1 + ax
. (16.12)

Linearization

Complicated non-linear functions, f(x), can be approximated by a local linearization
around any particular value of x. Fig. 16.3 shows that the local tangent at some point
linearizes the function such that nearby function values can be estimated. The underlying
formula is

f(x+ h) ' f(x) + ∂x f h , (16.13)

where h → 0 is a small distance to the x value for which f(x) is known. Basically, one
estimates the vertical displacement by multiplying the local slope with the horizontal
displacement. The same can be done for 2-dimensional functions, i.e.,

f(x+ hx, y + hy) ' f(x, y) + ∂x f hx + ∂y f hy . (16.14)
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x x+ h

f(x)

f(x+ h)
↙

≈ f(x+ h)

∂xf

Figure 16.3: Linearization of a non-linear function. The heavy line is the local tangent at f(x).

16.3 Convenient functions

Once we have a sketch of how some process should depend on a variable of the model,
we need to translate this graph into a mathematical function. We here let you become
familiar with a few families of convenient functions, i.e., Hill-functions and exponential
functions. These will be used to formulate positive and negative effects of populations
onto each other. Because these functions are dimensionless and remain bounded be-
tween zero and one, i.e., 0 ≤ f(x) ≤ 1, one can easily multiply any term in a model
(corresponding to some biological process) with such a function. We here define two
families of functions f(x) that increase with x, are zero when x = 0, and approach a
maximum f(x) = 1 when x→∞. Whenever one would need a different maximum in the
model, one could simply multiply f(x) with some parameter. Having increasing func-
tions 0 ≤ f(x) ≤ 1, one can easily define decreasing functions by taking g(x) = 1−f(x).

A very conventional and convenient family of functions are the Hill-functions

f(x) =
xn

hn + xn
and g(x) = 1− f(x) =

1

1 + (x/h)n
, (16.15)

in which you may recognize the classical Michaelis-Menten saturation function for n = 1
(see Fig. 16.2a). The “saturation constant” h is the value of x where f(x) or g(x) attains
half of its maximal value. The exponent n determines the steepness of the function.
Whenever n > 1 the function is sigmoid (see Fig. 16.2b), and for n→∞ both f(x) and
g(x) become step functions switching between zero and one at x = h. The slope of f(x)
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in the origin is determined from its derivative, which for n = 1 equals

∂xf(x) =
1

h+ x
− x

(h+ x)2
, (16.16)

which delivers a slope of 1/h for x = 0. For n > 1 the derivative is

∂xf(x) =
nxn−1

hn + xn
− nx2n−1

(hn + xn)2
, (16.17)

which means that for x = 0 the slope is zero. An advantage of using Hill functions
in mathematical models is that solving steady states corresponds to solving polynomial
functions.

The exponential functions

f(x) = 1− e− ln[2]x/h and g(x) = e− ln[2]x/h . (16.18)

are as conventional as Hill functions. They may be more convenient for finding solutions
of equations, but they are more cumbersome when it comes to finding steady states.
Like Hill functions we have f(0) = 0. For finding the half maximal value of f(x) one
solves 0.5 = e− ln[2]x/h to find that x = h. The slope in the origin is determined from
the derivative ∂x[1 − e− ln[2]x/h] = (ln[2]/h)e− ln[2]x/h which for x = 0 gives a slope of
ln[2]/h. Like the Michaelis-Menten function this exponential function is not sigmoid
(see Fig. 16.2a). The sigmoid form of the exponential function is known as the Gaussian
distribution

f(x) = 1− e− ln[2](x/h)2 , and g(x) = e− ln[2](x/h)2 . (16.19)

Thanks to our scaling with ln[2] these sigmoid functions are also half maximal when
x = h (and x = −h); see Fig. 16.2b.

16.4 Phase plane analysis

Most mathematical models in biology have non-linearities and can therefore not be
solved explicitly. One can nevertheless obtain insight into the behavior of the model
by numerical (computer) analysis, and/or by sketching nullclines and solving for steady
states. One determines the stability of the steady states from the vector field, and by
linearization around the steady states.

The long-term behavior of a model typically approaches a stable steady state, a stable
limit cycle, or a chaotic attractor. Phase plane analysis is a graphical method to analyze
a model to investigate these behavioral properties of a model. Consider a model of two
variables x and y,

dx

dt
= f(x, y) and

dy

dt
= g(x, y) . (16.20)
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One can define a “phase space” with x on the horizontal axis and y on the vertical
axis where each point in this space is one particular “state” of the model. To obtain
further insight in the model one sketches the “nullclines” f(x, y) = 0 and g(x, y) = 0.
This is useful because at the former nullcline dx/dt switches sign, and at the latter
dy/dt switches sign. Two simple nullclines therefore typically define four regions with
qualitatively different signs of the two differential equations. Nullclines enable one to
localize all steady states of the model because these correspond to the intersections of
the nullclines (i.e., f(x, y) = g(x, y) = 0). This is very useful because models may have
a number of steady states.

For each steady state one has to determine whether it is an attractor, i.e., a stable
steady state, or a repellor, i.e., an unstable equilibrium. The local vector field around a
steady state in a phase space with nullclines often provides sufficient information to see
whether the steady state is stable or unstable. In 2-dimensional phase spaces there are
three classes of steady states: nodes, saddles, and spirals. Nodes and spirals are either
stable or unstable, and a saddle point is always unstable because it has a stable and an
unstable direction. The two nullclines intersecting at the equilibrium point define four
regions of phase space, each with its unique local vector field. The four vector local fields
define the nature of the steady state.

A simple example is a “stable node”, for which all four vector fields points towards the
steady state (see Fig. 16.4a). A stable node is therefore approached by trajectories from
all four directions (Fig. 16.4b). When the vector fields point outwards in all four regions
the equilibrium is an “unstable node” (Fig. 16.4c), and trajectories are repelled in all
four directions (Fig. 16.4d). The local vector fields in Fig. 16.4e define a “saddle point”,
which has a stable and an unstable direction (Fig. 16.4f). The stable direction of a
saddle point defines a “separatrix” because all trajectories starting at either side of this
line end up in another attractor (i.e., a separatrix defines different basins of attractions).

The local vector field can also suggest rotation (see Fig. 16.5). Rotating vector fields are
typical for spiral points. The local vector field fails to provide sufficient information to
determine with absolute certainty whether a spiral point is stable or unstable. However,
one can get some good suggestion for the stability from the vector field. In Fig. 16.5c, for
instance, and one can see that increasing y from its steady state value makes dy/dt > 0.
Locally, there must be some positive feedback allowing y to increase further when y
increases. This is definitely destabilizing, and the trajectory in Fig. 16.5d confirms that
this is an “unstable spiral” point. Conversely, the spiral point in Fig. 16.5a is stable, and
locally has negative feedback for both x and y (i.e., increasing x makes dx/dt < 0 and
increasing y makes dy/dt < 0), which has a stabilizing influence. Because the stability
of spiral points also depends on the local difference in time scales of the horizontal (x)
and vertical (y) variables, the local vector field is not always sufficient to determine the
stability of the steady state. Even the suggestion of rotation in a local vector field is
not sufficient to determine with certainty that the steady state is a spiral. Fig. 16.5e &
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Figure 16.4: Qualitatively different steady states determined by the local vector field
in the four regions defined by the nullclines. Stable node (a,b): the vector field points
inwards in all four sections. Unstable node (c,d): the vector field points outwards in all
four sections. Saddle point (e,f): the vector field points inwards in two sections, and
outwards in the other two regions. A saddle point is an unstable steady state with a
stable and an unstable direction.

f show that the same vector field defining a stable spiral point in Fig. 16.5a can actually
also correspond to a stable node.
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Example: Lotka Volterra model

Using the famous Lotka Volterra model as an example we review a few methods for
analyzing systems of non-linear differential equations. The Lotka-Volterra predator prey
model can be written as:

dR

dt
= aR− bR2 − cRN dN

dt
= dRN − eN , (16.21)

where a, b, c, d, e are positive constant parameters, and R and N are the prey and preda-
tor densities. The derivatives dR/dt and dN/dt define the rate at which the prey and
predator densities change in time.

A first step is to sketch nullclines (0-isoclines) in phase space. A nullcline is the set
of points (R,N) for which the corresponding population remains constant. Thus, the
R-nullcline is the set of points at which dR/dt = 0. Setting dR/dt = 0 and dN/dt = 0
in Eq. (16.21) one finds

R = 0 , N =
a− bR
c

and N = 0 , R =
e

d
, (16.22)

for the prey nullcline and the predator nullclines, respectively. These four lines are
depicted in Fig. 16.6. For biological reasons we only consider the positive quadrant.

A second step is to determine the vector field. Not knowing the parameter values, one
considers extreme points in phase space. In the neighborhood of the point (R,N) =
(0, 0), for example, one can neglect the quadratic bR2, cRN , and dRN terms, such that

dR

dt
≈ aR ,

dN

dt
≈ −eN . (16.23)

Since the former is strictly positive, and the latter strictly negative, we assign (+−)
to the local direction of the vector field (see Fig. 16.6). This means that dR/dt > 0
below the R-nullcline, i.e., we sketch arrows to the right, and that at the left hand side
of the N -nullclines dN/dt < 0, i.e., we sketch arrows pointing to the bottom. At the
R and N -nullclines the arrows are vertical and horizontal, respectively. The derivatives
switch sign, and the arrows switch their direction, when one passes a nullcline. Nullclines
therefore separate the phase space into regions where the derivatives have the same sign.

An important step is to determine the steady states of the system. A steady state,
or equilibrium, is defined as dR/dt = dN/dt = 0. Graphically steady states are the
intersects of the nullclines. Analytically, one finds

(R,N) = (0, 0) , (R,N) = (a/b, 0) and (R,N) =

(
e

d
,
da− eb
dc

)
(16.24)

as the three steady states of this system. Note that the non-trivial steady state only
exists when da−eb

dc > 0. We will further analyze the model for the parameter condition
that all three steady states exist, i.e., we consider da > eb.
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Finally, one has to determine the nature of the steady states. For the steady states (0, 0)
and (a/b, 0) one can read from the vector field that they are saddle points. Around
(a/b, 0) the vertical component is the unstable direction, and around (0, 0) the horizontal
component is the unstable direction. This is not so simple for the non-trivial point.
Because there is no stable and unstable direction in the vector field the non-trivial
steady state cannot be a saddle point, and it has to be a node or a spiral point. To
determine its stability one can check for local feedback. Increasing R in the steady state
makes dR/dt < 0, and increasing N in the steady state keeps dN/dt = 0 because one
lands exactly on the dN/dt = 0 nullcline (see Fig. 16.6). Because there is no positive
feedback we suggest that the non-trivial steady state is stable.

16.5 Exercises

Question 16.1. Sketch a few functions
In this course we sketch nullclines from models with free parameters. It is very important
therefore to know how to sketch arbitrary functions with free parameters.
a. Sketch y = h

h+x .
b. Sketch y = x

h+x .
c. Sketch aA− bLA− cL = 0 plotting L as a function of A, and plotting A as a function

of L.
d. Sketch 0 = aY (1 − Y ) − bY X

c+Y . Hint: think beforehand which variable can best be
expressed as a function of the other variable.

e. Sketch y = a k−x
q+k−x − d assuming that a > d.

f. Sketch y = a
√
x(b− x). What is the derivative when x = 0? At what value of x will

y have a maximal value?

Question 16.2. Linearization
Consider the function f(x) = x2.
a. What is the derivative ∂xf(x)?
b. What is the function value at x = 3?
c. Use linearization to estimate the function value at x = 3.1. What is the true value

at x = 3.1?
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Figure 16.5: Qualitatively different steady states determined by the local vector field in
the four regions defined by the nullclines. Spiral points (a-d): the vector field suggests
rotation. The spiral point in (a,b) is stable which can be guessed because increasing
x at the steady states makes dx/dt < 0 and increasing y at the steady states makes
dy/dt < 0 (which is stabilizing). The spiral in (c,d) is unstable which can be guessed
because increasing y at the steady states makes dy/dt < 0 (which is stabilizing). Panels
(e & f) illustrate that nodes can also have a rotating vector field, i.e., that one cannot
tell with certainty from the local field whether or not a steady state is a spiral point.
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Figure 16.6: The phase space of the Lotka Volterra model with the vector field indicated by
the arrows.



Chapter 17

Answers to the exercises

Question 1.1. Red blood cells
A possible good answer has the following sketches:
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a. dN/dt = m− dN .
b. See the sketch in Panel (a)
c. See the sketch in Panel (b)

Question 1.2. SARS

a. First count the total number of infected patients I(t). R0 = 3 in two weeks means
that β = 1.5 per week. For a time scale of weeks the model therefore is dI/dt =
1.5I − 0.5I = I. The equation to solve is 3 × 109 = I(0)ert, where r = (β − δ) = 1,
and where one starts with one infected individual, i.e., I(0) = 1. Solving 3× 109 = et
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yields t = 22 weeks for the time required to have I(t) = 3× 109.
One could argue that it is more interesting to calculate the time required to have killed
half of the population, but this is more difficult. For that one also should keep track of
the total number of dead individuals dD/dt = δI. With I(t) = e(β−δ)t and D(0) = 0

the solution of dD/dt = δe(β−δ)t is D(t) = δ[e(β−δ)t−1]
β−δ . Solving I(t) +D(t) = 3× 109

for β = 1.5 and δ = 0.5 per week gives a total time of t = 21 weeks. The difference is
small because the number of dead patients approaches a fixed fraction δ

β−δ = 0.5 of
the total number of patients that are alive.

b. No, it will go slower because the epidemic will limit itself by depleting the number
of susceptibles. A better model is to add an ODE for the susceptibles, S, where
S(0) = 6× 109 is the initial population size. Redefining β as the chance to meet and
infect a susceptible person the model becomes

dI

dt
= βIS − δI and

dS

dt
= −βIS .

Another improvement of the model that would slow down the epidemic is to allow
for an incubation period, i.e., to introduce a time lag in the two week period during
which patients are not yet infective.

Question 1.3. Pesticides on apples
A possible good answer has the following sketch:
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(t
)

a. See the sketch in Panel (a)
b. P̄ = σ/δ.
c. The model becomes dP/dt = −δP with the initial condition P (0) = σ/δ. Solving
P (0)/2 = P (0)e−δt yields t1/2 = ln[2]/δ.

d. From dP/dt = 2σ− δP with P̄ = 2σ/δ, one obtains the same ln 2/δ days for the half
life.

e. From 50 = ln 2/δ one obtains δ = 0.014 per day.

Question 1.4. Injecting anesthesia
A possible good answer has the following sketch:
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a. See the sketch in Panel (a)
b. ln 2/e time steps
c. No, it all depends on the clearance rate from the blood. If c is small one should wait

longer than ln 2/e time steps.
d. For δ = 0 everything ends op in the liver: L(∞) = M(0).

Question 1.5. Chemical reactions
a. dA/dt = k1AS − k2AB − 2k3E1A

2 and dB/dt = k2AB − k4BE2.

Question 1.6. Physics
a. The dimension of v is m/s and that of a is m/s2.
b. The derivative of the v(t) solution is dv/dt = a and that of the x(t) solution is

dx/dt = at+ v(0).
c. The amount of nitrogen in the moorland obeys dN/dt = cA where A is the amount

of nitrogen in the air, and c is the fraction that drops out onto the moorland. The
amount of nitrogen in the air is given by dA/dt = α or A(t) = A(0) + αt, where α is
the slope with which nitrogen in the air increases.

Question 2.1. Density dependent growth
A possible good answer has the following sketches:
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a. See the sketch in Panel (a).
b. The population growth is bN

1+N/h = bhN
h+N , which approaches the horizontal asymptote

bh. See the sketch in Panel (b).
c. N = 0 and N = h(b− d)/d
d. R0 = b/d and N = h(R0 − 1).
e. Yes: 1/(1 +N/h) is the same as h/(h+N) which is a declining Hill function with for
n = 1.

Question 2.2. Density dependent death
A possible good answer has the following sketches:
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b

a. See the sketch in Panel (a)
b. See the sketch in Panel (b)
c. N̄ = b/c.
d. Because there is no generation time.
e. The derivative with respect to N is b−2cN . Substituting N = b/c yields λ = −b < 0.

Thus the return time TR = 1/b is fully determined by the birth rate and is independent
of the density dependent death rate c.

Question 2.3. Growth of insects
A possible good answer has the following sketches:
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(a)

L

A
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L

A

a. aA: adults reproducing into larvae, dL(1+eL): density dependent death of the larvae,
cL: larvae mature into adults, δA: death of the adults.

b. dL/dt = 0 gives the parabola A = d+c
a L + de

a L
2, and dA/dt = 0 gives the straight

line A = (c/δ)L. There are two possibilities; see Panels (a) and (b).
c. Panel (a) (0,0): unstable, non-trivial: stable node, Panel (b) (0,0): stable.

Question 2.4. Stem cells
A possible good answer has the following sketch:
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a. dS/dt = rS(1− S/k)−mS
b. dD/dt = mS − δD
c. The dS/dt = 0 nullcline is independent of D, and is a line at S = k(r −m)/r. The

dD/dt = 0 nullcline is a diagonal line through the origin: D = (m/δ)S. See the
sketch in Panel (a). The vector field shows that the equilibrium is stable.

Question 2.5. Freitas
a. No, the steady state of dB/dt = m − dB is B̄ = m/d. In such a model the number

of peripheral B cells is proportional to the number of bone marrow precursors (which
determines m).
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b. For instance with density dependent death, dB/dt = m−dB(1+eB), or with density
dependent production, dB/dt = m/(1 + eB)− dB.

c. Yes clearly, in the absence of homeostasis the steady number of peripheral B cells is
proportional to the number of bone marrow precursors.

d. No, it is accounting for a steady state, but not for density dependent population
regulation.

Question 2.6. Negative birth
In the text we derived that the non-trivial steady state is located at N̄ = k(1 − 1/R0)
which is less than k. At the equilibrium point we therefore have a positive birth rate.
Note that this should always be the case because there can be no equilibrium point when
both the birth rate and the death rate have a negative contribution to the population
size.

Question 2.7. Logistic growth
a. N = K
b. rN(1−N/K) = rN−(r/K)N2 and [b(1−N/k)−d]N = (b−d)N−(b/k)N2. Setting
r = (b− d) and r/K = b/k (i.e., K = kr/b) makes the two models identical.

c. [b − d(1 + N/k)]N = (b − d)N − (d/k)N2. Setting r = (b − d) and r/K = d/k (i.e.,
K = kr/d) makes the two models identical.

Question 2.8. Red blood cells
a. If P is the erythropoietin concentration, it should drop with the number of erythro-

cytes, i.e., with the oxygen level. One could model this with a simple decreasing
function and write P = 1/(1+[B/h]k). For simplicity we could assume that the daily
production is proportional to P , and write dB/dt = mP − dB, where d = 1/120 per
day.

b. For k = 1, i.e., P = 1/(1 +B/h) the model is identical to Eq. (2.2). The steady state
is the positive root of the quadratic equation solved in the text.

c. The dependence of the steady state level on the bone marrow productionm is less than
linear because m is part of the

√
term. For higher Hill-coefficients the dependence

becomes even weaker.

Question 2.9. Naive T cell renewal
a. dN/dt = s(t) + pN

1+N/k − dN

b. Solving 0 = s+ (s/k)N + pN − dN − (d/k)N2 yields N =
s+pk−dk±

√
(s+pk−dk)2−4dsk
2d .

The negative root is not physically meaningful. The fact that the model has a unique
steady state level for the naive T cell counts supports its feasibility.

Question 2.10. Tumor growth
a. dT/dt = b

√
T − dT

b.
√
T = b/d.

c. plot b
√
T/T = b/

√
T as a function of T . This is a hyperbolic graph having the x-axis

and the y-axis as asymptotes. Per capita growth thus goes to infinity when the tumor
is small.
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Question 3.1. Lotka Volterra model
A possible good answer has the following sketches:
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a. dT/dt = rT (1 − T/K) − βTI and dI/dt = βTI − δII The R0 of the infection is
R0 = (βK)/δI

b. (0, 0), (K, 0) and (K/R0,
r
β (1− 1

R0
).

c. See the sketches in Panel (a) and (b).

Question 3.2. Seals
This is basically a Lotka-Volterra model with explicit parameter for the death of the
seals. A possible good answer has the following sketches:
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a. S = 0 and S = K = k(1− d/b).
b. R0 = b/d. For the infection R0 = βK/δ where K = k(1−d/b) is the carrying capacity

of the seals.
c. S = 0 and S = k(1− 1/R0)
d. Let b′ = b/2 then S = k(1− d/b′) is the new steady state.
e. S = δ/β
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f. Not changed: b′ is not influencing S = δ/β
g. The situation with a chronic infection is sketched in Panel (a). These are the Lotka-

Volterra nullclines: stability is the same.
h. The nullclines in the presence and absence of PCBs are sketched in Panel (b).

Question 3.3. Solving the steady state
First find the equation from which can solve B most easily. This is dC/dt = 0 =
eBC − fC yielding B̄ = f/e.

Question 3.4. Viral fitness
The steady state is the same as that of Eq. (3.1) when one substitutes β′ = fβ.
a. T̄ = δI

fβ and Ī = σ
δI
− δT

fβ .
b. The viral load obeys the function y = a−b/x, which approach the asymptote a = σ/δI

when the fitness is low. We need not expect a large change in viral load when the
fitness changes.

c. Changing viral fitness has a much larger effect on the target cell density. Viruses with
a poor fitness cause less target cell depletion and therefore approach higher loads then
would intuitively be expected.

Question 4.1. Host-parasite model

Question 4.2. Immune control
a. the steady state of I does not contain the β parameter. Ultimately the viral load

should return the pretreatment level.
b. Yes, Eq. (3.5) shows that the target cell levels go up.

Question 4.3. Oscillations
a. Yes this model is capable of periodic oscillations when the steady state is stable. It

can give transient oscillations when the equilibrium point is a stable spiral.
b. The simpler model can also account for transient oscillations because the steady state

can also be a stable spiral.

Question 5.1. Michaelis Menten
A possible good answer has the following sketch:
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a. dC/dt = k1ES − (k−1 + k2)C = k1(E0 − C)S − (k−1 + k2)C and dP/dt = k2C

b. dC/dt = 0 = k1E0S − (k1S + k−1 + k2)C and C = E0S
Km+S where Km = k−1+k2

k1
.

c. dP/dt = k2E0S
Km+S

d. See the sketch in Panel (a).
e. dS/dt = − k2E0S

Km+S

Question 5.2. mRNA
A possible good answer has the following sketch:

(a)
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M

The new model is

dM

dt
=

c

1 + P 2
− dM dP

dt
= lM − δP

a. The dM/dt = 0 nullcline now is M = c/d
1+P 2 which is a decreasing sigmoid function.

The dP/dt = 0 nullclines remains the same. See the sketch in Panel (a).
b. The vector field shows that it is a stable node
c. dP/dt = lc/d

1+P 2 − δP

Question 5.3. Lac-operon
A possible good answer has the following sketches:
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M

(a)

A

M

A

M

(b)

A

M

A

M

(c)

A

M

a. The model becomes dA/dt = ML − δA, which has M = (δ/L)A as the allolactose
nullcline. This is a diagonal line through the origin. The mRNA nullcline remains
the same. There are three possibilities; see Panels (a-c).

b. Left panel: stable node; Middle panel: two stable nodes one saddle point. Right
panel: stable node (sorry: not visible).

c. dA/dt = c0L
d + (c/d)LAn

1+An − δA

Question 6.1. Tyson model
A possible good answer has the following sketches:
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a. Three situations, made by setting Pc = 0.001, Pc = 0.1 and Pc = 10 are depicted in
Panels (a)–(c).
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b. None of the steady states is a saddle point. The steady state in the middle can be
unstable because of the positive feedback of T on itself. The steady states in the
left and right panels are stable because the feedbacks of T and M on themselves are
negative.

c. See the phase spaces.

Question 6.2. Goldbeter
As yet, no answer is available.

Question 6.3. Michaelis-Menten
a. For i = 1, 2 one writes

dCi
dt

= kiSi(E0−C1−C2)−Ci(k−i+pi) and
dSi
dt

= −kiSi(E0−C1−C2)+k−iCi ,

b. Solving dCi/dt = 0 yields

C1 =
S1(E0 − C2)

S1 +K1
and C2 =

S2(E0 − C1)

S2 +K2

where Ki = k−i+pi
ki

. Substituting C1 into the C2 equation yields:

C2(S2 +K2) = S2E0 −
S1S2(E0 − C2)

S1 +K1

C2(S2 +K2)(S1 +K1) = S2E0(S1 +K1)− S1S2E0 + S1S2C2

C2 =
K1S2E0

K1K2 + S2K1 + S1K2

C2 =
S2E0

K2 + S2 + S1K2/K1
.

Because of the symmetry of the problem this implies

C1 =
S1E0

K1 + S1 + S2K1/K2
.

For the substrates one adds dCi/dt to dSi/dt to obtain dSi/dt = −piCi.

Question 7.1. CD4+ T cells
A possible good answer has the following sketch:
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Kσ
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a. dT/dt = Kσ−δTT −βTI ,dI/dt = βTI−δII , where K > 1 implements an increase
in CD4+ T cell production.

b. we base our expectation on the nullclines shown in Panel (a), where the heavy lines
denote the nullclines during treatment. One can see that the new steady state lies at
the same CD4+ T cell count.

c. Reduce (!) CD4+ T cell production to Kσ/δT = δI/β.
d. The count remains T = δI/β.

Question 7.2. Rebound
A possible good answer has the following sketches:
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(b)
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I

a. See the sketch in Panel (a): light nullclines before and heavy nullclines during treat-
ment.

b. See the phase space in Panel (a).
c. See the sketch in Panel (b)
d. No

Question 7.3. Immune control
a. the steady state of I does not contain the β parameter. Ultimately the viral load

should return the pretreatment level.
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b. Yes, target cell levels go up.

Question 7.4. Ogg et al., 1998

(a)

I

E

δE/α

r
αk

a. V = (p/δV )I which by substitution yields dI/dt = rI−αkEI, where r = pβ/δV − δI .
b. See the sketch in Panel (a). The heavy line is the dE/dt = 0 nullcline; the light the

dI/dt = 0 nullcline.
c. I = δE/α and E = r/(αk)
d. Because both are inversely related to α they should be positively correlated when α

varies between patients.

Question 7.5. Competitive exclusion
a. Ī = δE/α1.
b. Ī = δE/α2.
c. No.
d. dE2/dt = δEE2 (α2/α1 − 1) < 0 because α2/α1 < 1. The second immune response

declines when dE1/dt = 0.

Question 8.1. Saturated proliferation
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E1

E2

(a)

E1

E
2

a. dE1/dt = pE1A
h1+A

− dE1 = 0 yields E1 = 0 and pA − dh1 − dA = 0 or A = dh1
p−d =

1 − kE1 − kE2. Solving for E2 yields E2 = 1/k − dh1
k(p−d) − E1. Repeating this for

dE2/dt = 0 yields E2 = 1/k − dh2
k(p−d) − E1. Thus, both nullclines have a slope of −1

in the phase space depicted in Panel (a).
b. No, parallel nullclines cannot intersect
c. Hardly any difference: competitive exclusion

Question 8.2. Competitive proliferation

E1

E2

(a)

E1

E
2

a. Solving dE1/dt = pE1A
1+c1E1

−dE1 = 0 yields E1 = 0 and p(1−kE1−kE2) = d+dc1E1.

Expressing this in terms of E2 gives E2 = p−d
pk −

pk+dc1
pk E1. The dE2/dt = 0 nullcline

yields p(1 − kE1 − kE2) = d + dc2E2 or E2 = p−d
pk+dc2

− pk
pk+dc2

E1. In a phase space
with E2 on the vertical axis, the slope of the dE2/dt = 0 nullcline is larger than −1,
and the slope of the dE1/dt = 0 nullcline is less than −1. The nullclines in Panel (a)
are straight lines with different slopes.

b. Yes, the nullclines can intersect in a stable node.
c. Due to the intra-specific competition coexistence is possible: T cells are directly

competing for APCs.

Question 8.3. Virus competition experiments
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a. When ρ(t) ≡ V2(t)/V1(t), the derivative dρ/dt ≡ ρ′ obeyes

dρ

dt
=

V ′2V1 − V ′1V2
V 2
1

,

=
r(1 + s)V2V1 − rV1V2

V 2
1

,

= rsρ .

b. Since dρ/dt = rsρ has the solution ρ(t) = ρ(0)erst, the natural logarithm of the ratio
plotted in time should be a straight line with slope rs. Note that this slope is not
reflecting the relative fitness, s, but the difference in the growth rate, rs (Marée et
al., J. Virol., 2001).

Question 9.1. Time scales
A possible good answer has the following sketches:
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a. For the stability of the steady state we note that dx/dt < 0 when we increase x, and
that dy/dt < 0 when we increase y. Since this cannot be a saddle point, it should be
stable.
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b. The a parameter: note that dy/dt = kSx, and hence a = kS.
c. Because the dy/dt = 0 nullcline is given by y = (a/b)x, te slope is proportional to a.

The dx/dt = 0 nullcline is independent of a.
d. The two possibilities are depicted in Panels (b) and (c).
e. Increasing x now makes dx/dt > 0 which is a destabilizing local positive feedback.

Indeed, due to the large difference in time scales we can conclude from the vector
field that the steady state is unstable. In the right panel increasing x or y makes
dx/dt < 0 or dy/dt < 0, respectively. Since this cannot be a saddle point, the steady
state should be stable.

f. The trajectories are depicted in Panels (d) and (e).

Question 9.2. Inhibition
The h∞ line gives for every voltage the equilibrium value of h. The dh/dt = 0 nullcline
is the set of h and V values where dh/dt = 0. That is the same.

Question 9.3. Hodgkin Huxley
A possible good answer has the following sketches:

-120 -50 20V
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(a)

V

h

Time

-120

V

20

(b)

Time in milliseconds

V

a. The vector field is indicated in the phase space in Panel (a). This is not a saddle-
point, and increasing V makes dV/dt > 0, which is a destabilizing positive feedback.
Because we know that h is slow one can see from the vector field that the steady state
is unstable.

b. See the sketch in Panel (a).
c. See the sketch in Panel (b).
d. A neuron firing spontenously

Question 9.4. FitzHugh-Nagumo model
A possible good answer has the following sketches:
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W

V
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W
0

0

W

V

(b)

V

W

a. See the sketch in Panel (a).
b. This is not a saddle-point and both in the horizontal (V ) and vertical (W ) direction

there is a negative feedback: the steady state should be stable.
c. See the sketch in Panel (b).
d. Yes, very much.
e. Yes, although it is not mechanistic, the model is attractively simple, and has very

similar behavior.
f. With an external input the nullclines become:
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For a = 0.5, b = 1, ε = 0.01 we get for i = 0 the phase space of Panels (a) and (d).
For i = 0.5 we get those of Panels (b) and (e), and for i = 1 one gets those of Panels
(c) and (f).

g. No of the three steady states is a saddle-point. Only in the middle picture (b,e) there
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is a positive feedback because increasing V makes dV/dt > 0. This is not so in the
other two. Because of the large difference in time scales one can see that the steady
state is unstable.

h. See Panels (d)–(f).

Question 16.1. Sketch a few functions
A possible good answer has the following sketches:
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x
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a− d

q +K0

0

a. y = h
h+x = 1 when x = 0. For x → ∞, y → 0. For x → −∞, y → 0. There is an

vertical asymptote at x = −h. See the sketch in Panel (a).
b. y = x

h+x = 0 when x = 0. For x → ∞, y → 1. For x → −∞, y → 1. There is an
vertical asymptote at x = −h. See the sketch in Panel (b).

c. L = aA
c+bA with horizontal asymptote L = a/b or A = cL

a−bL with vertical asymptote
L = a/b. See the sketch in Panel (c).

d. Write Y = 0 and X = (a/b)(1− Y )(c+ Y ). See the sketch in Panel (d).
e. Intersection with x-axis: x = ak−dq−dk

a−d , intersection with y-axis: y = ak
q+k − d. Hor-

izontal asymptote: y = a − d, and vertical asymptote: x = q + k. See the sketch in
Panel (e), where the dashed lines denote the two asymptotes.
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f.

Question 16.2. Linearization
a. ∂xx

2 = 2x
b. For x = 3 one obtains x2 = 9
c. y = 9 + 0.1× 2× 3 = 9.6. The true value is 3.12 = 9.61.
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Chapter 17

Credits

The first part of Chapter 6 describes the stable limit cycles occurring in classical
predator-prey, or host-parasite models; the second part describes the model by Tyson
et al. (1999). Chapter 9 is copied from our Theoretical Biology course given to biology
students. Chapter 11 was based upon the work of Hazenberg et al. (2000) and Dutilh
& De Boer (2003). Chapter 10 is based upon the work of Borghans et al. (1998). The
first part of Chapter 12 was largely based upon the work of Borghans et al. (1999); the
second part on MHC diversity comes from an unpublished manuscript by Borghans et al.
(2003).
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