
Linear differential equations

The solution of dx(t)/dt = ax(t) is x(t) = Ceat, where C = x(0).

Check this:
∂t Ceat = aCeat = ax(t)

Now two-dimensional systems:

{
dx/dt = f (x, y)
dy/dt = g(x, y)

where x(t) and y(t) are unknown functions of time t, and f and g
are functions of x and y.
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An example:{
dx/dt = ax + by
dy/dt = cx + dy

and

{
dx/dt = −2x + y
dy/dt = x− 2y

where x and y decay at a rate−1, and are converted into one another
at a rate 1. Steady state x = y = 0.

In matrix notation: (
dx/dt
dy/dt

)
=

(
a b
c d

)(
x
y

)
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We claim that

(
dx/dt
dy/dt

)
=

(
a b
c d

)(
x
y

)
has as a general solution:

x(t) = C1x1eλ1t + C2x2eλ2t

y(t) = C1y1eλ1t + C2y2eλ2t

or (
x(t)
y(t)

)
= C1

(
x1
y1

)
eλ1t + C2

(
x2
y2

)
eλ2t

where λ1,2 are eigenvalues and (xi yi) are the corresponding eigen-
vectors of the matrix given above.

Like x(t) = Ceat, this has only one steady state: (x, y) = (0, 0).
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Notice that the solutions

(
x(t)
y(t)

)
= C1

(
x1
y1

)
eλ1t + C2

(
x2
y2

)
eλ2t

are a linear combination of the growth along the eigenvectors.

Since x(t) and y(t) grow when λ1,2 > 0 we obtain:

• a stable node when both λ1,2 < 0
• an unstable node when both λ1,2 > 0
• an (unstable) saddle point when λ1 > 0 and λ2 < 0 (or vice versa)

When λ1,2 are complex, i.e., λ1,2 = α± iβ, we obtain

• a stable spiral when the real part α < 0
• an unstable spiral when the real part α > 0
• a neutrally stable center point when the real part α = 0
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Example:

(
dx/dt
dy/dt

)
=

(
a b
c d

)(
x
y

)
=

(
−2 1
1 −2

)(
x
y

)
Since tr = −4 and det = 4− 1 = 3 we obtain:

λ1,2 =
−4±

√
16− 12

2
= −2± 1

so λ1 = −1 and λ2 = −3.

Hence solutions tend to zero and (x, y) = (0, 0) is a stable node.

To find the eigenvector ~v1 we write:

~v1 =

(
−b

a− λ1

)
=

(
−1
−1

)
or ~v1

(
1
1

)
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For ~v2 we write

~v2 =

(
−b

a− λ2

)
=

(
−1
1

)
In combination this gives(

x(t)
y(t)

)
= C1

(
1
1

)
e−t + C2

(
−1
1

)
e−3t

or

x(t) = C1e−t − C2e−3t

y(t) = C1e−t + C2e−3t

The integration constants C1 and C2 can be solved from the initial
condition: i.e., x(0) = C1 − C2 and y(0) = C1 + C2.

25



(
x(t)
y(t)

)
= C1

(
1
1

)
e−t + C2

(
−1
1

)
e−3t
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Finally let’s check this solution:

x(t) = C1e−t − C2e−3t

y(t) = C1e−t + C2e−3t

or
dx

dt
= −C1e−t + 3C2e−3t

dy

dt
= −C1e−t − 3C2e−3t

which should be equal to

dx

dt
= −2x+y = −2(C1e−t−C2e−3t)+C1e−t+C2e−3t = −C1e−t+3C2e−3t

dy

dt
= x−2y = C1e−t−C2e−3t−2(C1e−t+C2e−3t) = −C1e−t−3C2e−3t
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Linear approximations

Derivative:

f ′(x̄) = lim
x→x̄

f (x)− f (x̄)

x− x̄
or f ′(x̄) = lim

h→0

f (x̄ + h)− f (x̄)

h
,

Rewrite this into:

f (x) ' f (x̄) + f ′(x̄) (x− x̄) or f (x) ' f (x̄) + f ′(x̄)h ,

Example:
f (x) = ax2 + b → ∂xf (x) = 2ax

a = 2 , b = 1 , x = 3 → f (3) = 2×9+1 = 19 , ∂xf (3) = 2×2×3 = 12

f (3.1) = 20.22 or f (3.1) ' f (3)+∂xf (3)×0.1 = 19+12×0.1 = 20.2
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f (x) ' f (x̄) + ∂xf (x̄) (x− x̄)

x̄ x

f (x̄)

f (x)
∂xf (x̄)



The function f (x, y) = 3x− x2 − 2xy:

∂xf (x, y) = 3− 2x− 2y and ∂yf (x, y) = −2x

and in the point f (1, 1) = 0:

∂x f (x, y) = −1 and ∂y f (x, y) = −2



Generally

f (x, y) ' f (x̄, ȳ) + ∂xf (x− x̄) + ∂yf (y − ȳ)

Or, after defining hx = x− x̄ and hy = y − ȳ:

f (x, y) = f (x̄ + hx, ȳ + hy) ' f (x̄, ȳ) + ∂xf hx + ∂yf hy

Example:

f (x, y) = 3x− x2 − 2xy , f (1, 1) = 0 , ∂x = −1, ∂y = −2

f (1.25, 1.25) = 3.75− 1.5625− 3.125 = −0.9375

f (1.25, 1.25) ' 0− 1× 0.25− 2× 0.25 = −0.75
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Consider {
dx/dt = f (x, y)
dy/dt = g(x, y)

close an equilibrium point at (x̄, ȳ), i.e., f (x̄, ȳ) = g(x̄, ȳ) = 0

Linear approximation of f (x, y) close to the equilibrium:

f (x, y) ' f (x̄, ȳ) + ∂xf (x− x̄) + ∂yf (y − ȳ)

As f (x̄, ȳ) = 0 we obtain

f (x, y) ' ∂xf (x− x̄) + ∂yf (y − ȳ)

For g(x, y) this yields:

g(x, y) ' ∂xg (x− x̄) + ∂yg (y − ȳ)
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{
dx/dt = f (x, y)
dy/dt = g(x, y)

became

{
dx/dt ' ∂xf (x− x̄) + ∂yf (y − ȳ)
dy/dt ' ∂xg (x− x̄) + ∂yg (y − ȳ)

Since the partial derivatives are merely the slopes of f (x, y) and
g(x, y) at the point (x̄, ȳ), they are constants that we can write as

a = ∂xf, b = ∂yf, c = ∂xg, d = ∂yg

Steady states x̄ and ȳ are also constants, with derivatives zero:

dx

dt
=

dx

dt
− dx̄

dt
=

d(x− x̄)

dt
and

dy

dt
=

dy

dt
− dȳ

dt
=

d(y − ȳ)

dt

Hence {
d(x− x̄)/dt = a(x− x̄) + b(y − ȳ)
d(y − ȳ)/dt = c(x− x̄) + d(y − ȳ)
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Changing variables to the distances hx = x− x̄ and hy = y − ȳ:{
dhx/dt = ahx + bhy
dhy/dt = chx + dhy

having the solution(
hx(t)
hy(t)

)
= C1

(
x1
y1

)
eλ1t + C2

(
x2
y2

)
eλ2t

where λ1,2 and (xi yi) are the eigenvalues and corresponding eigen-
vectors of the Jacobi matrix

J =

(
∂xf ∂yf
∂xg ∂yg

)
=

(
a b
c d

)
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Knowing the two eigenvalues of

J =

(
∂xf ∂yf
∂xg ∂yg

)
=

(
a b
c d

)
the steady state will be stable when λ1 < 0 and λ2 < 0.

If so the return time is defined by the largest eigenvalue:

TR =
−1

max(λ1, λ2)
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Example:

dx

dt
= f (x, y) = a− bx− cxy and

dy

dt
= g(x, y) = dxy − ey ,

with x̄ = a
b when y = 0, and x̄ = e

d and ȳ = ad
ce −

b
c

J =

(
∂xf ∂yf
∂xg ∂yg

)
=

(
−b− cȳ −cx̄
dȳ dx̄− e

)
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J =

(
∂xf ∂yf
∂xg ∂yg

)
=

(
−b− cȳ −cx̄
dȳ dx̄− e

)
Fill in x̄ = a

b and ȳ = 0,

J1 =

(
−b −cab
0 da

b − e

)
Since this matrix is in a diagonal form we know that the diagonal
elements provide the eigenvalues, i.e., λ1 = −b and λ2 = da

b − e.

Hence this state is stable whenever λ2 < 0, i.e., ab <
e
d.
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J =

(
∂xf ∂yf
∂xg ∂yg

)
=

(
−b− cȳ −cx̄
dȳ dx̄− e

)
Now consider x̄ = e

d and ȳ = ad
ce −

b
c and first fill in x̄:

J2 =

(
−b− cȳ −ced
dȳ 0

)
When ȳ > 0 the signs of this matrix are given by

J3 =

(
−α −β
γ 0

)
with trJ3 = −α < 0 and det J3 = βγ > 0 ,

such that

λ1,2 =
tr±

√
tr2 − 4 det

2
=
−α±

√
α2 − 4βγ

2
< 0 ,

Since λ1,2 < 0 the non-trivial steady state is stable.



Having

J =

(
∂xf ∂yf
∂xg ∂yg

)
=

(
a b
c d

)
we know that

λ1,2 =
tr±
√
D

2
where D = tr2 − 4 det

Observing that

λ1 + λ2 = tr[J ] and λ1 × λ2 = det[J ] ,

the latter because
1

4
(tr +

√
D)(tr−

√
D) =

1

4
(tr2 −D) =

1

4
(tr2 − tr2 + 4 det) = det

we can classify steady states by just the trace and determinant of
their Jacobi matrix.
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center

saddle

node
stable non−stable

 node

non−stable spiralstable spiral

tr 

det 

5

1

23 4
6

D=0

λ1,2 =
tr±
√
D

2

D = tr2 − 4 det

λ1 + λ2 = tr

λ1 × λ2 = det

1. if det < 0 then D > 0: λ1,2 are real with unequal sign: saddle
2. if det > 0, tr > 0 and D > 0 then λ1,2 > 0: unstable node.
3. if det > 0, tr < 0 and D > 0 then λ1,2 < 0: stable node.
4. if det > 0, tr > 0 and D < 0 then λ1,2 > 0: unstable spiral.
5. if det > 0, tr < 0 and D < 0 then λ1,2 > 0: stable spiral.



Graphical Jacobian: use the signs only

J =

∂xf '
f (x̄ + h, ȳ)

h
∂yf '

f (x̄, ȳ + h)

h

∂xg '
g(x̄ + h, ȳ)

h
∂yg '

g(x̄, ȳ + h)

h

 =

α β

γ δ


with tr[J ] = α + δ and det[J ] = αδ − βγ.

If tr < 0 and det > 0 the state will be stable.
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x

y

(x,y)

a b

x

y

(x,y)
(x+h,y)

(x,y+h)

x

y

(x,y)

c

J =

∂xf '
f (x̄ + h, ȳ)

h
∂yf '

f (x̄, ȳ + h)

h

∂xg '
g(x̄ + h, ȳ)

h
∂yg '

g(x̄, ȳ + h)

h

 =

− −
+ −


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