Linear differential equations
The solution of dz(t)/dt = ax(t) is 2(t) = Ce™, where C' = x(0).

Check this:
Oy Ce™ = aCe™ = ax(t)

Now two-dimensional systems:

{ dz/dt = f(z,y)
dy/dt = g(z,y)

where x(t) and y(t) are unknown functions of time ¢, and f and g
are functions of x and y.
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An example:

dx/dt = ax + by o de/dt = 2z 4y
dy/dt = cx +dy dy/dt = x — 2y

where x and y decay at a rate —1, and are converted into one another
at a rate 1. Steady state x =y = 0.

(aie) = (¢ 2) ()

In matrix notation:
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. de/dt\  [a b\ [z -
We claim that ( dy/d t) = (c d) (y) has as a general solution:

x(t) = C’lmle)‘lt + C'Q:L’Qe)‘Qt
y(t) = Cryre’ + Coype!

(i) = () (o)

where A1 o are eigenvalues and (z; y;) are the corresponding eigen-
vectors of the matrix given above.

Like z(t) = Ce™, this has only one steady state: (x,y) = (0, 0).

22



Notice that the solutions (x(t)) = (] <x1> Mt Co <x2> et
y(t) Yl Yo
are a linear combination of the growth along the eigenvectors.

Since x(t) and y(t) grow when A1 o > 0 we obtain:

e a stable node when both Aj 9 <0
e an unstable node when both Aj 9 >0
e an (unstable) saddle point when A\; > 0 and A9 < 0 (or vice versa)

When A o are complex, 1.e., A\j o = a £ 1, we obtain

e a stable spiral when the real part @ < 0
e an unstable spiral when the real part o« > 0
e a neutrally stable center point when the real part oo = 0
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Fxcarlo de/dt\  fa b\ (z\ (-2 1 T
Ratpee: dy/dt)] \ecd) \y) \1 —=2) \y
Since tr = —4 and det =4 — 1 = 3 we obtain:

44+ 4/16— 12
2

=—2=x1

A2 =
so A1 = —1 and Ay = —3.
Hence solutions tend to zero and (x,y) = (0,0) is a stable node.

To find the eigenvector v; we write:

i=(,2)=(5) o ()
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For v9 we write

In combination this gives
x(t)\ _ L\ —t =1\ -3t
(i) = () (V)

z(t) = Cre™t — Coe™
y(t) = Cle_t + 026—375

or

The integration constants C'; and C9 can be solved from the initial
condition: i.e., x(0) = C] — Cy and y(0) = Cy + Cy.
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Finally let’s check this solution:

y(t) = Cre t 4+ Che™

or
i_f = —Cre " + 305
(jl_i — —Che = 3Che !
which should be equal to
i—f = x4y = —2(Cre T=Coe ) +C1e T +Che ™ = —Cle I 4+3CHe ™
dy

g — ZE—Qy — Cle_t_Cze—3t_2<cfle—t_|_c2e—3t) _ _Cle_t—SCQG_St
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Linear approximations

Derivative:
f(z) = lim fla) = 1@ f(z) = lim f@+h) - fz)

T—T T — T h—s0 h ’

Rewrite this into:
flx) = f(z)+ f(z)(x—2) or flz)=f(@)+ f(2)h,

Example:

flz)=az®+b — Opf(zx)=2az
a=2,b=1,x=3 — f(3) =2x9+1=19,0,f(3) = 2x2x3 = 12
f(3.1)=2022 or f(3.1) ~ f(3)4+0:f(3)x0.1 = 19+12x0.1 = 20.2
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The function f(z,y) = 3z — z° — 2zy:

Opf(z,y) =3 -2 —2y and Oyf(z,y) = —27
and in the point f(1,1) = 0:
a:l? f(il?,y):—l and ay f<x7y>:_2



Generally

flo,y) =~ f(2,9) + 0uf (v — %) + Iy f (y — y)

Or, after defining hy = x — T and by =y — ¥

fle,y) = f(Z+he,y+ hy) = f(Z,9) + 0 f ha+Oyf hy

Example:
flx,y) = 3 — x° — 22y | f(1,1)=0, 0y=-1,0,=—2
£(1.25,1.25) = 3.75 — 1.5625 — 3.125 = —0.9375
f(1.25,1.25) ~0—1x0.25 —2 x 0.25 = —0.75
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Consider

{ de/dt = f(x,y)
dy/dt = g(z,y)

close an equilibrium point at (z,y), i.e., f(Z,y) = g(Z,y) =0
Linear approximation of f(z,y) close to the equilibrium:
flo,y) = f(2,9) + O f (v —7) +0yf (y —y)
As f(Z,y) = 0 we obtain
fla,y) = 0uf (v —7) + 0yf (y —y)
For g(z,y) this yields:
g(x,y) = Oxg (x —T) + Oyg (y — Y)
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{d:z;/dt = f(z,y) bocane {daz/dt ~ Opf (x —2)+Oyf (y —9)
dy/dt = g(z,y) dy/dt = Ozg (v — %) + Oyg (y — V)

Since the partial derivatives are merely the slopes of f(x,y) and
g(x,y) at the point (Z, ), they are constants that we can write as

a:al’f7 b:ayfa C:axga d:ayg

Steady states & and y are also constants, with derivatives zero:

de  dz dz d(z -1 nd dy dy dy dly—19)
dt dt dt  dt dt At At dt

Hence
{ dlx —z)/dt =a(lx —Z) + by — ¥)
dly —y)/dt = clz — ) +d(y — y)
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Changing variables to the distances hy = x — T and hy =y — ¥

dhy/dt = ahg + bhy,
dhy/dt = chy + dh,,

having the solution
hx(t)) (5171) At (3?2) Aot
=C e"1" + C e’
(hy(t) i “\

where A1 9 and (z; y;) are the eigenvalues and corresponding eigen-
vectors of the Jacobi matrix

7 Orf Oyf\ _ (abd
- \0zg Oyg) \cd
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Knowing the two eigenvalues of

7 Orf Oyf\ _(abd
- \0zg Oyg) \cd
the steady state will be stable when Ay < 0 and Ay < 0.

If so the return time is defined by the largest eigenvalue:

—1
T —
T max(X, Ao)

35



Example:

dx dy

dt—f(x y) =a—br —cxry and d—tzg(l’y) dry — ey ,
with 7 = 7 when y =0, and 7 = gandgz%i—g

7 Orf Oyf\  (—b—cy —cx
- \Ozg Oyg) dy dr—e
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Fill in

S|

=2 and § =0,

Since this matrix is in a diagonal form we know that the diagonal
elements provide the eigenvalues, i.e., A\{ = —f)&ﬂd.AQ:::%?——ca

Hence this state is stable whenever Ay < 0, i.e., § < %.

37



7 Orf Oyf\  (—b—cy —cx
- \Ozg Oyg) dy dz—e

Now consider & = C% and y = ‘é—g — % and first fill in Z:

by -
‘]2< g 0)

When y > 0 the signs of this matrix are given by

J3_<_WO‘ _(f) with trJs=—a <0 and detJs = By >0,

such that

0,

tr+£tr2 —4det —a+ Va2 — 48y
)\172: = 5 <

2

Since A1 9 < 0 the non-trivial steady state is stable.



Having
7 Orf Oyf\ _ (abd
- \0zg Oyg) \cd

A9 = ; where D = tr? — 4 det

we know that

Observing that
A+ Ay =tr[J] and A x A9 =det]J],
the latter because

1 1 1
S+ VD)(tr — VD) = Z(1;12 — D) = Z(tr2 — tr° + 4 det) = det

we can classify steady states by just the trace and determinant of
their Jacobi matrix.
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St W o=

stable spiral

stable center non—-stable
node node
tr

saddle

D = tr° — 4 det
Al + Ao =tr
A1 X A9 = det

if det < 0 then D > 0: Aq 9 are real with unequal sign: saddle

it det > 0, tr > 0 and D > 0 then Aj 9 > 0:
it det > 0, tr <0 and D > 0 then Aj 9 <0:
it det > 0, tr > 0 and D < 0 then Aj 9 > 0:
it det > 0, tr <0 and D < 0 then Aj 9 > 0:

unstable node.
stable node.
unstable spiral.
stable spiral.



Graphical Jacobian: use the signs only

f(x+h,y)

(0, f =
0 =

g(Z + h,y)
h

\(%g ~

oy @I (N

Wg==——) \19)

with tr[J] = a + § and det|J| = ad — 5.

If tr < 0 and det > 0 the state will be stable.
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