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Chapter 2: Introduction

4 Introduction

day. Actually, k should also be increasing over time, as we have been dumping more and more
plastics, but for simplicity we here consider a time period over which k is relatively constant
(see the last question).

This equation is so simple that one can derive its general solution

P (t) = P (0) + kt , (2.2)

where P (0) is the amount of plastic that was already in the ocean at the time we started
dumping k tons per day. Plotting P (t) over time therefore gives a straight line with slope k,
intersecting the vertical axis at P (0). The slope of this line is k, which is indeed the derivative
defined by Eq. (2.1). Thus, the di↵erential equation Eq. (2.1) gives the “rate of change”, and the
solution of Eq. (2.2) gives the “population size at time t”. Typically, di↵erential equations are
too complicated for solving them explicitly, and their general solutions are not available. In this
course we will therefore not consider the integration methods required for obtaining solutions of
ODEs. However, having a solution one can easily check it by taking the derivative with respect
to time. For example, the derivative of Eq. (2.2) with respect to time is @t[P (0) + kt] = k,
which is indeed the right hand side of Eq. (2.1). Summarizing, the solution in Eq. (2.2) gives the
amount of plastic at time t, and Eq. (2.1) gives its daily rate of change. Note that if we were to
take measures reducing the amount of plastic that streams into the ocean, we would only need
to change the value of the parameter k. The model remains the same.

We can change the model by making it somewhat more realistic, e.g., by accounting for the fact
that plastic in the ocean is decaying slowly, i.e., with a very long half-life. Defining a rate of
decay, d, the model becomes

dP

dt
= k � dP , (2.3)

where the parameter d defines the rate at which individual plastic molecules decay. d has a
dimension per day (or per unit of time), and therefore is called a “rate”. In the ODE this can
be checked by observing that the term dP should have the same dimension “tons per day” as
k (otherwise they cannot be subtracted from another). Biological examples of Eq. (2.3) would
be red blood cells produced by bone marrow, shrimps being washed onto a beach, daily intake
of vitamins, and so on. The k parameter then defines the inflow, or production, and the d

parameter is a death rate. Although this seems a very simple extension of Eq. (2.1), it is much
more di�cult to obtain the solution

P (t) =
k

d

⇣
1� e�dt

⌘
+ P (0)e�dt

, (2.4)

which is depicted in Fig. 2.1a. The term on the right corresponds to the exponential loss of the
initial value, P (0). The term on the left is more complicated, but when evaluated at long time
scales, i.e., for t ! 1, the term (1� e�dt) will approach one, and one obtains the “steady state”
P̄ = k/d. We conclude that the solution of Eq. (2.4) ultimately approaches the steady state
P̄ = k/d, which is ultimate amount of plastic in the oceans when we keep on dumping k tons
per day. Note that this predicted steady state value is independent of the initial condition P (0).

Fortunately, we do not always need a solution to understand the behavior of a model. The same
steady state can also directly be obtained from the di↵erential equation. Since a steady state
means that the rate of change of the population is zero we set

dP

dt
= k � dP = 0 to obtain P̄ =

k

d
. (2.5)

which is the same value as obtained above from the solution for t ! 1. Note that a steady
state also gives a population size, and therefore provides some insight in the behavior of the
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Figure 2.1: Population growth. Panel (a) depicts the solution of Eq. (2.4). Panels (b) and (c) depict
exponential growth on a linear, and a logarithmic vertical axis, respectively. A di↵erential equation
describes the slope of the solution for each value of the variable(s), i.e., in Panel (b) the slope of the
N(t) = N(0)ert curve for each value of N(t) is dN/dt. This figure was made with the model intro.R.

Doubling times and half-lives are solved from the solution of the exponential growth (or decay)
equation N(t) = N(0)ert. The fitness, R0, of a population is the expected number of o↵spring
of one individual over one generation, under the best possible circumstances.

2.4 Exercises

Question 2.1. Red blood cells
Red blood cells are produced in the bone marrow at a rate of m cells per day. They have a
density independent death rate of d per day.
a. Which di↵erential equation from this chapter would be a correct model for the population

dynamics of red blood cells?
b. Suppose you donate blood. Sketch your red blood cell count predicted by this model in a

time plot.
c. Suppose a sportsman increases his red blood cell count by receiving blood. Sketch a time

plot of his red blood cell count.

Question 2.2. Pesticide on apples
During their growth season apples are frequently sprayed with pesticide to prevent damage by
insects. By eating apples you accumulate this pesticide in your body. An important factor
determining the concentration of pesticide is their half life in the human body. An appropriate
mathematical model is

dP

dt
= � � �P ,

where � is the daily intake of pesticide, i.e., � = ↵A where A is the number of apples that you
eat per day and ↵ is the amount of pesticide per apple, and � is the daily rate at which the
pesticide decays in human tissues.
a. Sketch the amount of pesticide in your body, P (t), as a function of your age, assuming you

eat the same number of apples throughout your life.
b. How much pesticide do you ultimately accumulate after eating apples for decades?
c. Suppose you have been eating apples for decades and stop because you are concerned about

the unhealthy e↵ects of the pesticide. How long does it take to reduce your pesticide level by
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In replicating biological populations, this natural rate of increase of dN/dt = rN should obvi-
ously be a composite of birth and death rates. A more natural model for a biological population
that grows exponentially therefore is

dN

dt
= (b� d)N with solution N(t) = N(0)e(b�d)t

, (2.9)

where b is a birth rate with dimension t
�1, and d is the death rate with the same dimension.

Writing the model with explicit birth and death rates has the advantage that the parameters of
the model are strictly positive (which will be true for all parameters in this course). Moreover,
one now knows that the “generation time” or “expected life span” is 1/d time units. Since every
individual has a birth rate of b new individuals per unit of time, and has an expected life span
of 1/d time units, the expected number of o↵spring of an individual over its entire life-span is
R0 = b/d (see Chapter 6). We will use this R0 as the maximum “fitness” of an individual, i.e., the
life-time number of o↵spring expected under the best possible circumstances. In epidemiology
the R0 is used for predicting the spread of an infectious disease: whenever R0 < 1 a disease will
not be able to spread in a population because a single infected host is expected to be replaced
by less than one newly infected host (Anderson & May, 1991); see Chapter 6.

Biological examples of Eq. (2.9) are mankind, the exponential growth of algae in a lake, and
so on. Similarly, the natural rate of increase r = b � d yields a “doubling time” solved from
2N(0) = N(0)ert giving t = ln[2]/r time units. A famous example of the latter is the data from
Malthus (1798) who investigated the birth records of a parish in the United Kingdom, and found
that the local population had a doubling time of 30 years. Solving the natural rate of increase r
per year from 30 = ln[2]/r yields r = ln[2]/30 = 0.0231 per year, which is sometimes expressed
as a growth rate of 2.31% per year. More than 200 years later the global human growth rate
is still approximately 2% per year. Simple exponential growth therefore seems a fairly realistic
model to describe the growth of the quite complicated human population over a period of several
centuries.

In this book we will give solutions of di↵erential equations whenever they are known, but for
most interesting models the solution is not known. We will therefore not explain how these
solutions are obtained (see textbooks like the one by Adler (1997) for an overview of methods of
integration). You can also use symbolic software like Mathematica to find the explicit solution
of some of the di↵erential equations used here.

Finally, It is important to realize that most models introduced in this book require a number
of “unrealistic assumptions”: (1) all individuals are equal, (2) populations are well-mixed and
therefore interact at rates proportional to their densities, (3) population sizes are so large that
we do not have to worry about small populations containing less than one member, and (4)
parameters are constants that do not vary over time. Nevertheless such “unrealistic” models
help us to think clearly about the biology described by the model (May, 2004).

2.3 Summary

An ordinary di↵erential equation (ODE) describes the rate of change of a population. The
actual population size is given by the solution of the ODE, which is generally not available. To
find the population size one can compute the steady state(s) of the model (the ODE), and/or
solve the ODEs numerically on a computer, which gives the model behavior. Steady states
are derived by setting the rate of change to zero, and solving for the actual population size.


