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This is a short tutorial to fresh up some of your high school mathematics using examples with
free parameters. Working with free parameters, instead of the numbers that you may be used to,
mathematically makes little difference because the same rules apply, e.g.,

a+ b+ c = (a+ b) + c = a+ (b+ c) , a(b+ c) = ab+ bc ,
a + b

c + d
=

a

c + d
+

b

c + d
,

a

b
× c

d
=

ac

bd
.

Just fill in integer numbers for the letters to check these expressions. We will use x, y and z as
variables (that need to be solved), and a, b, c, d and e as parameters (constants). Let us agree here
that all parameters are non-zero and positive (e.g., a − b means the subtraction of two positive
numbers).

This tutorial provides various exercises to improve your skills on each topic. Answers can be ob-
tained by entering the equation of the exercise into the website of WolframAlpha. Equations can
be solved by typing ‘solve ax-b=0’ (or more explicitly ‘solve ax-b=0 for x’), and simplified by
typing ‘simplify a/b + c/d’. One can add a * character, or a space, to make clear that ax means
a× x.

There are many tutorials on the web covering the same topics. The very best of them is the Khan
Academy providing an excellent variety of videos on math. The only reason for duplicating a few of
them here is our emphasis on parameter-free expressions. Most of the other tutorials use digits rather
than letters, i.e., 3x+ 2 = 0 instead of ax+ b = 0. Finally, for Dutch students we highly recommend
the book ‘Basisboek wiskunde’ by Jan van de Craats and Rob Bosch (a pdf can be downloaded
from https://staff.fnwi.uva.nl/j.vandecraats/BasisboekWiskunde2HP.pdf), which provides
short and crisp-clear explanations, and lots of exercises. As always, the skills explained in this short
tutorial can only be absorbed by making lots of exercises.

1 Linear equations

The procedure for solving equations of the form f(x, y) = g(x, y), where f() and g() are arbitrary
expressions in terms of some variables x and y, is to first simplify both sides by modifying them
equally. There are two rules for modification: (1) one can always add a factor to (or subtract from)
the left- and right-hand side simultaneously, and (2) one can always multiply (or divide) both sides
of the equation with (by) the same factor. For instance, the linear equation a + bx = c + dx can be
simplified by moving all terms involving the variable x to one side, e.g.,

a + bx = c + dx ↔ bx− dx = c− a ↔ x(b− d) = c− a ↔ x =
c− a

b− d

where we first subtract dx and a from both sides, then factor out the variable x on the left-hand
side, and finally divide left and right by (b− d) to find the solution of x.

Thus, the general procedure for solving equations is to first bring one of the variables to one side of
the equation, by modifying both sides equally. Finally one factors out the variable singled out on
one side, and divides left and right by this factor.

This procedure is also valid for non-linear equations. Reconsider the general expression f(x, y) =
g(x, y), and note that one can always add something to (or subtract from) the left- and right-hand
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side simultaneously, e.g.,

f(x, y) = g(x, y) ↔ a + y + f(x, y) = a + y + g(x, y) ,

where we have added a constant and a variable to both sides. Likewise one can multiply (or divide)
the left and right sides with (by) the same factor, e.g.,

f(x, y) = g(x, y) ↔ (a + y)f(x, y) = (a + y)g(x, y) .

1.1 Systems of linear equations

Systems of linear equations are solved similarly, by first solving one variable, and then substituting
the solution in the other equations. For instance,

ax + by = c ,

dy = ex ,

can be solved by starting with the simplest equation, dy = ex, giving y = ex/d. Substituting this
solution into the first equation gives

ax + bex/d = c ↔ x(a + be/d) = c ↔ x =
c

a + be/d
↔ x =

cd

ad + be
,

where we factor out x on the left-hand side, divide by this factor, and simplify by multiplying
numerator and denominator with d. Since y = ex/d we find by substitution

y =
e

d

cd

ad + be
=

ec

ad + be
,

which completes the full solution of the system. For solving complicated systems of equations it is
really important to start with the simplest equations: work from simple to complex rather than from
top to bottom (see also below).

A common procedure is multiplying one equation with a clever factor, and then subtracting the
equations from each other to obtain a new simple equation with just one variable. For instance,

ax + by = c ,

dx + ey = f ,

can be solved by multiplying the second equation with a/d,

a

d
× (dx + ey) =

a

d
× f ↔ ax + aey/d = af/d ,

which by design has the same term for x as the first equation. When we now subtract the left-hand
side from this from the left-hand side of the first equation, and the two right-hand sides from each
other, one obtains

by−aey/d = c−af/d ↔ bdy−aey = cd−af ↔ y(bd−ae) = cd−af ↔ y =
cd− af

bd− ae
,

where we first mutiply both sides with d, then factor out y on the left-hand side, and finally divide
both sides by (bd− ae). Similarly, multiplying the first equation with e/b gives

e

b
× (ax + by) =

e

b
× c ↔ aex/b + ey = ec/b ,
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and subtracting this from the second equation gives

dx− aex/b = f − ec/b ↔ bdx− aex = fb− ec ↔ x(bd− ae) = fb− ec ↔ x =
fb− ec

bd− ae
,

which by similar algebra completes the solution of the whole system.

As an alternative for the second step, one could also have substituted the solution of y, i.e., ȳ = cd−af
bd−ae ,

into the first equation to find the solution of x, i.e.,

ax + bȳ = c ↔ x =
c

a
− b

a
ȳ ↔ x =

c

a
− b

a

cd− af

bd− ae
↔

x =
c(bd− ae)

a(bd− ae)
− b(cd− af)

a(bd− ae)
↔ x =

−cae
a(bd− ae)

+
baf

a(bd− ae)
↔ x =

fb− ec

bd− ea
,

where we first write x in terms of the above solution ȳ, by subtracting bȳ and dividing by a, then
we fill in the solution for ȳ, give the first fraction, c/a, the same denominator as the second one (by
multiplying numerator and denominator with (bd − ae)), add them, and simplify. This procedure
involves more work, so one better thinks beforehand how to best solve a system of equations.

Note that subtracting one equality from another equality is nothing more than the application of our
first rule: one can always add the same factor to both sides of an equation. Here the factor added
(or subtracted) looks different on both sides, but its equality symbol tells us the two sides are just
the same. Finally, solving systems of more than two equations just works the same way: work from
the simplest to the most complex equation, solving variable by variable.

Exercises

1.1. Solve:
a. ax + by = c for x or y.
b. ax = b , cx + dy = e .
c. ax + by = cz , dx + ey = f , gz = hx .

Check your answers using WolframAlpha. For instance ‘solve a x + b y = c and d y = e x for

x and y’ gives the solutions for one of the examples discussed above (note that Mathematica also
considers cases where some of the parameters are zero). Actually, WolframAlpha is clever and will
also understand what you mean when your type ‘solve a x + b y = c, d y = e x’.

2 Solving quadratic equations

An equation is called linear if the highest order of its variables is one, and is called quadratic if its
highest order involves squared variables like ax2 or by2. Solving quadratic equations uses the same
rules, for instance for solving ax2 − b = 0, we obtain from

ax2 − b = 0 ↔ ax2 = b ↔ x2 = b/a that x1,2 = ±
√
b/a,

by first adding b to both sides, then dividing both sides by a, and finally taking the square root of
the left- and right-hand side.

For solving quadratic equations it is good to remember the famous expressions

(a + b)2 = a2 + 2ab + b2 , (a− b)2 = a2 − 2ab + b2 and a2 − b2 = (a + b)(a− b) ,
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which can easily be checked by multiplying the terms between the brackets and simplification. Many
equations are rearranged by using these expressions.

For instance, the famous quadratic formula, x1,2 = −b±
√
b2−4ac
2a , for the solution of a quadratic

equation can be obtained by working towards the first of these 3 expressions (see Wikipedia). Starting
with the general quadratic equation,

ax2 + bx + c = 0 ,

one multiplies the left- and right-hand side with 4a,

4a2x2 + 4abx + 4ac = 0 ,

adds b2 to both sides, and subtracts 4ac from both sides, to create the square (2ab + b)2 on the
left-hand side

4a2x2 + 4abx + b2 = b2 − 4ac ↔ (2ax + b)2 = b2 − 4ac .

The right-hand side is called the discriminant, i.e., when b2 − 4ac < 0 there will be no real solution.
If the discriminant is positive, one takes the square root left and right

2ax + b = ±
√
b2 − 4ac giving x1,2 =

−b±
√
b2 − 4ac

2a
.

Note that this quadratic equation defines the points where the parabola, y = ax2 + bx+ c, intersects
the horizontal x-axis. A parabola can indeed intersect twice, touch the x-axis once, or fail to intersect
it (when b2 − 4ac < 0).

2.1 Solving systems of quadratic equations

Systems of quadratic equations are solved in the same way as systems of linear equations: Manipulate
both sides of the equations by the two rules defined above, and first solve the most simple equations.

For instance, solving x and y from

ax2 − by = c

dy2 = e ,

one could first solve ȳ = ±
√
e/d from the second equation, which is a positive or negative constant

(not involving x), and then substitute this into the first equation

ax2 − bȳ = c ↔ ax2 = bȳ + c ↔ x2 = bȳ/a + c/a ↔ x = ±
√

bȳ/a + c/a ,

where we bring all terms not involving x to the right-hand side, divide left and right by a, take a
square root, and finally substitute ȳ to find four solutions:

x = ±

√
b

a

√
e

d
+

c

a
or x = ±

√
c

a
− b

a

√
e

d
.

Note that substituting the pair of constants, ȳ, only at the end saves us a lot of writing.

The approach of multiplying an equation with a clever factor such that one can eliminate a variable by
subtracting the modified equation from another equation works equally well with quadratic equations:
For instance, solving x and y from

ax2 − by = c

dx2 + ey = f ,
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where x and y have the same order in both equations, one could multiply the second equation with
a/d to obtain

a

d
× (dx2 + ey) =

a

d
× f ↔ ax2 + aey/d = af/d ,

and subtracting this from the first equation delivers

−by−aey/d = c−af/d ↔ bdy+aey = af−cd ↔ y(bd+ae) = af−cd ↔ y =
af − cd

ae + bd
,

where we multiply left and right with −d, factor out y, and divide left and right by (bd + ae).

Similarly, we could multiply the second equation with b/e to obtain

b

e
× (dx2 + ey) =

b

e
× f ↔ bdx2/e + by = bf/e ,

and add that to the first equation

ax2+bdx2/e = c+bf/e ↔ aex2+bdx2 = ce+bf ↔ x2(ae+bd) = ce+bf ↔ x2 =
ce + bf

ae + bd
,

where we multiply left and right with e, factor out x2, and divide left and right by (ae+ bd). Finally

taking the square root we obtain x = ±
√

ce+bf
ae+bd = ±

√
ce+bf√
ae+bd

.

Exercises

2.1. Expand the following:
a. (ax2 + by)2

b. (ax + b)2 + (x− c)2

c. (x + b)(x− b)

2.2. Solve for x:
a. (x− a)(x− b) = 0
b. −ax2 − bx + c = 0
c. ax(b + x) = c

3 Solving equations with fractions

Fractions are composed of a numerator and a denominator, and fractions with a complicated numer-
ator can be split by separating its terms, e.g.,

a + b

c + d
=

a

c + d
+

b

c + d
.

Different fractions can be added by giving them the same denominator,

a

b
+

c

d
=

ad

bd
+

bc

bd
=

ad + cb

bd
,

multiplication corresponds to multiplying the numerators and the denominators,

a

b
× c

d
=

ac

bd
,

and division is just the inverse of multiplication,

a

b
:
c

d
=

a

b
× d

c
=

ad

bc
,

where one should take care to not divide by zero, i.e., bc 6= 0.

Equations involving fractions are treated with the same rules as used above, i.e., treat both sides
equally and bring one of the variables to one side, with one very natural addition, namely that (3)
one can multiply (or divide) the numerator and denominator with the same factor. For example

ax

b + x
=

cax

c(b + x)
or

ax

b + x
=

a

b/x + 1
,
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where we have multiplied numerator and denominator with c, or divided numerator and denominator
by x. This can easily be checked, because the ratio of the numerator and denominator does not change
when both are multiplied (or divided) by the same factor. (This is actually the same as multiplying
both sides of an expression with the same factor). There is an obvious, but important, difference
with expressions because one cannot add the same factor to the numerator and denominator, e.g.,

ax

b + x
6= ax + c

b + c + x
and

ax

b + x
6= ax− x

b
,

where we add c or −x to the numerator and denominator. Thus to solve an expression like, a
x−1 = b,

one cannot add one to the denominator, but one can eliminate the fraction by multiplying left and
right with (x− 1),

a

x− 1
= b ↔ a = b(x− 1) ↔ a

b
= x− 1 ↔ 1 +

a

b
= x ,

and then divide left and right by b, and finally add one to both sides.

Solving equations with fractions just adds this one new rule to our procedure of treating left- and
right-hand sides equally. For instance,

ax2

bx + cx3
= d ↔ ax

b + cx2
= d ↔ ax = d(b + cx2) ↔ 0 = cdx2 − ax + bd ,

where we first divide numerator and denominator by x, multiply left and right side by (b+ cx2), and
subtract ax from both sides. The latter we can solve with the quadratic equation, i.e.,

x1,2 =
a±
√
a2 − 4bcd2

2cd
.

For a more complicated example consider solving

ax

b + x
=

dy

e
,

for x or for y. Solving for y gives

ax

b + x
=

dy

e
↔ y =

aex

d(b + x)
,

when we divide left and right by d, and multiply left and right by e.

Solving for x is more cumbersome. First simplify, by multiplying left and right with e, then multiply
left and right with (b + x), i.e.,

ax

b + x
=

dy

e
↔ aex

b + x
= dy ↔ aex = bdy + dxy ,

Next, bring all terms containing x to the left-hand side by subtracting dxy, and factor out x,

aex = bdy + dxy ↔ aex− dxy = bdy ↔ x(ae− dy) = bdy ,

to obtain that x = bdy
ae−dy by dividing left and right with (ae− dy). Because solving for x is so much

more inconvenient that solving for y, this again illustrates that one has to think beforehand which
variable is most easily solved from an expression.

Exercises

3.1. Working with fractions:
a. Expand into several terms x+a

x−a
b. Write as one term a

x−b −
a

x+b
c. Write as one term a

x−b
a

x+b

3.2. Mixed exercises:
a. Solve for x: x+a

x−a = 0
b. Simplify: a

x−b −
a

x+b

c. Simplify: a2−b2
a+b
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4 Equations involving powers, radicals, and logarithms

You will probably remember the following rules for raising a constant or variable to some number

xaxb = xa+b ,
xa

xb
= xa−b , (xa)b = xab , (xy)a = xaya ,

(x/y)a =
xa

ya
and hence

√
x/y =

√
x
√
y
.

Radicals can also be written in a power notation, e.g.,
√
a = a1/2 and 3

√
a = a1/3, which can be

convenient because the same rules as above can again be applied, e.g., x
√
x = x3/2. Note that square

roots of fractions can be simplified by using the third rule of multiplying numerator and denominator
with the same factor, e.g., √

a

b
=

√
ab

b2
=

1

b

√
ab

and that similarly square roots can be eliminated from simple denominators,

a
√
b√
c

=
a
√
b
√
c√

c
√
c

=
a
√
bc

c
.

The inverse of raising something to a power is taking the logarithm, e.g., if xa = b we define logx[b] =
a, where x is the ‘base’ of the logarithm. You are probably familiar with log10[1000] = 3 because
103 = 1000. Similarly, log2[8] = 3 because 23 = 8. A very elegant property of logarithms is that
multiplications turn into additions (and hence divisions into subtractions). To perform complicated
calculations before we had computers or pocket calculators, people used slide rules (‘rekenlinealen’
in Dutch) that where based upon this property (see Wikipedia). Indeed observe that if x = 10a

and y = 10b that xy = 10a+b. Taking the logarithm we see that log10[x] = a, log10[y] = b and that
log10[xy] = a + b, leading to the general formula

log[xy] = log[x] + log[y] and log[x/y] = log[x]− log[y] .

From the formula on the left one can also see that log[xa] = a log[x]

Because x0 = 1 we observe that log[1] = 0, which means that

log[1/a] = log[1]− log[a] = − log[a] .

One can change base of a logarithm because logb[x] = logk[x]/logk[b], where k is an arbitrary base.
For example, to go from base 10 to base 2, one writes log2[1000] = log10[1000]/log10[2] = 3

0.301 ' 10,
which is correct because 210 = 1024 ' 103.

There is an important base defining the natural logarithm, loge[x] = ln[x], which is the inverse of the
exponential function ea, i.e., ln[ea] = a. Exponential functions are ubiquitous in mathematics and
biology (because the derivative of ex is ex; see below), and hence we frequently work with natural
logarithms. Because ln[x] is even more natural than log10[x] most programming languages (including
R) use log(x) for ln[x], and log10(x) for log10[x]. The correction factor to go from log10 to ln is
1/ log10[e] ' 2.3, i.e., ln[x] = 2.3 log10[x] (which is be important when exponential growth or decay
is plotted on a log10 scale). Finally, note that eln[a] = a, and check that 10log10[1000] = 1000.

Exercises

4.1. Mixed exercises:
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a. Solve for x: a = becx

b. Solve for x: 1− e−ax = 1/2 for x > 0 and a > 0.
c. Simplify axb × (xc)d.

The second exercise can be checked with WolframAlpha by typing solve 1-exp(-a x)=1/2 with

x>0 and a>0
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