
The Carbon cycle

The human CO2 production (9 giga ton/y) is small compared to the 
natural emissions (60+60+90), and the natural buffers.  Why then do we 

observe such a large increase in atmospheric CO2 levels?

1

earthobservatory.nasa.gov/features/CarbonCycle

skepticalscience.com/co2-residence-time.htm



COVID-19

You fitted the first wave to a SIR model.
Data of the first and second ware are publicly available

Can both waves also be explained by this model?
 If not,  what can we learn from this about long-term immunity?
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Lecture Jan Paul
Question 6.4



Co-existence by trade-offs? Q9.9

Motivated by recent studies of phytoplankton, we introduce trade-offs into a resource- 
competition model and find that an unlimited number of species can coexist. Our model 

spontaneously reproduces several notable features of natural ecosystems, including keystone 
species and population dynamics and abundances characteristic of neutral theory, despite an 

underlying non-neutral competition for resources. 

follows that nutrient concentrations satisfy the flux-balance
equations dci=dt ¼ 0, and the quasi-steady-state nutrient
concentrations ciðtÞ are functions of the population
sizes nσðtÞ.
We assume that cell growth is resource limited, and that

in principle, different nutrients have different “values” vi;
i.e., they make different contributions to biomass produc-
tion. The overall growth-rate function of a cell type σ is
therefore given by

gσðc1;…; cpÞ ¼
Xp

i¼1

viασiriðciÞ: ð2Þ

Finally, the population dynamics is given by a set of
ordinary differential equations describing each species’
growth:

dnσ
dt

¼ ½gσðc1;…; cpÞ − δ%nσ; ð3Þ

where δ denotes a constant death rate. We see that the
dynamics of different species are coupled through the
nutrient concentrations ciðtÞ.
For clarity in what follows, we simplify some of the

parameters, but our basic results hold for the general case
presented above (see Supplemental Material [24]). First,
since in physically relevant cases, the nutrient degradation
or loss rate μi is several orders smaller than the influx rates
at which nutrients are supplied, we set μi ¼ 0. Using this
and the separation of time scales, the quasi-steady-state per-
enzyme uptake rates ri are fixed by (1) to be independent
of the ci, and hence, equation (2) does not depend on the
specific form of ri. Second, unless otherwise specified, we
consider the symmetric case where all nutrients are equally
costly to import and process (wi ¼ 1), equally accessible
(Ki ¼ 1), and equally valuable (vi ¼ 1). With these sim-
plifications, the growth equation (2) becomes

dnσ
dt

¼
!Xp

i¼1

ασi
siP

σ0nσ0ασ0i
− δ

"
nσ: ð4Þ

If we add equations (4) together for all species σ, we find
that the total population ntot¼

P
σnσ obeys _ntot ¼ S−δntot,

where S ¼
Pp

i¼1 si is the total nutrient supply. Therefore,
at a steady state, the total population is always n&tot ¼ S=δ.
Within the framework of our model, we ask the follow-

ing questions: starting from an initial mixed population of
species, how diverse will the community be at long times?
How does the outcome depend on the species present
and the supply of nutrients? Finally, how stable will the
outcome be if the populations are disturbed or the supply of
nutrients is changed?
We tackle these questions using both analytics and

numerical simulations, obtained by numerically solving
the system of ordinary differential equations in (4). While
the analytics pertain to an arbitrary number p of resources,
the population dynamics simulations were performed for

just three resources for clarity. As shown in Fig. 1, the latter
allows for “simplex plots” that specify both the species σ
(colored dots) and the nutrient supply conditions (black
diamonds). This can be done because, due to the budget
constraint

Pp
i¼1 ασi ¼ E, the species occupy a p − 1

dimensional simplex in the space of uptake rates
ðα1;…; αpÞ. To indicate the nutrient supply in this same
simplex, we show ~sα ¼ ðE=SÞ~s with a black diamond.
First, we consider starting with as many species as

resources. From simulations, we find that any collection
of the initial species may survive, depending on the nutrient
supply, and that final populations are independent of initial
populations. This is illustrated with examples in Fig. 2. To
show final outcomes, the left panel of Fig. 2(d) was created
by locating the population fixed points of (4). Since for each
nutrient supply ~sα, there is exactly one stable fixed point, a
color was assigned to ~sα based on which species comprise
this stable steady state. Looking at the corresponding
dynamics of nutrient concentrations, we observed that
extinctions happen when particular nutrient concentrations
become too low for particular species to survive, and their
populations decay toward zero. For example, in Fig. 2(a), the
system tends to uneven nutrient concentrations for which
the growth rate (2) of both green and blue species is smaller
than the death rate δ; hence, they die out. Alternatively, for
supply conditions under which no extinctions occur, the
system is driven to a state of balanced nutrient concentra-
tions, c&1 ¼ c&2 ¼ c&3, where all species are equally fit by (2).
The steady-state nutrient concentrations are displayed in the
right panel of Fig. 2(d), where each ~sα is assigned an RGB
color by adding together red, green, and blue, with intensities
proportional to c&1, c

&
2, and c&3, respectively.

What happens when the number of initial species is
greater than the number of resources? As before, we
observe two very different behaviors of the system: nutrient
concentrations are either driven to unequal values, in which

FIG. 1. Schematic of model with two species competing for
three resources. Resources are steadily and homogeneously
supplied to the environment with rates ~s ¼ ðs1; s2; s3Þ. Different
“species,” i.e., different metabolic strategies, are defined by their
specific distributions of enzymes for resource utilization. Since
the total number of enzymes a species produces is subject to the
budget constraint

Pp
i¼1 ασi ¼ E, each species can be represented

by a point on the triangle in the space of resource utilization rates
ðα1; α2; α3Þ. To indicate the nutrient supply in the triangle, we
show ~sα ¼ ðE=SÞ~s with a black diamond.
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number of resources. Motivated by recent studies of phytoplankton, we introduce trade-offs into a resource-
competition model and find that an unlimited number of species can coexist. Our model spontaneously
reproduces several notable features of natural ecosystems, including keystone species and population
dynamics and abundances characteristic of neutral theory, despite an underlying non-neutral competition
for resources.
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An astonishing characteristic of life on Earth is its great
variety. In tropical rainforests, more than 300 tree species
may be found on a single hectare [1], while in one gram of
soil, the number of distinct microbial genomes has been
estimated at ∼2000–18; 000 [2]. Explaining this great bio-
diversity has been a main focus of research in ecology. One
major conceptual challenge is embodied by the so-called
“paradox of the plankton” [3]: in the framework of simple
resource-competition models, it has been argued that the
number of species indefinitely coexisting cannot exceed the
number of resources [4–7]. Yet, in apparent contradiction to
this theory, which is known as the competitive exclusion
principle [8], some marine ecosystems host a hundred or
more coexisting species of phytoplankton [9], competing
for only a handful of abiotic nutrients [10].
The limit on diversity set by the competitive exclusion

principle could be overcome in many possible ways.
Even within simple resource-competition models, diverse
populations may emerge from intrinsically oscillatory or
chaotic dynamics [11,12], though the stability of such
solutions in the face of long-term evolution has been
challenged [13]. Looking beyond resource competition,
there are many proposed mechanisms for diversity,
generally falling into three (nonexclusive) categories:
(1) systems never approach steady state due to temporal
variation of the environment, e.g., weather changes [3,14]
or seasonal cycles [15]; (2) real environments are hetero-
geneous in space, e.g., due to environmental gradients such
as temperature, salinity, or exposure to light [16]; (3) eco-
systems are limited by factors other than resources, e.g.,
predation [17,18] or self-limiting toxin production [19].
(For reviews see [20,21].)
While the above mechanisms are likely all broadly

relevant, in the context of phytoplankton, it was recently
suggested that diversity may also persist due to trade-offs
between different traits or abilities [22]. With this in mind,

we present a simple resource-competition model in which
species are constrained by a trade-off between their differ-
ent resource utilization abilities. In this model, organisms
collectively shape the resource concentrations around them
to produce a state equally favorable for all, and hence,
an unlimited number of species can coexist. While the
model is highly simplified, it highlights how both trade-offs
and environmental shaping can contribute to ecological
diversity.
We employ a classical resource-competition model [23]

to investigate the population dynamics of m species
competing for p types of nutrients. A “species” σ is
specified by its metabolic strategy, namely the coefficients
of its rate of utilization of each nutrient: ~ασ¼ðασ1;…;ασpÞ.
Conceptually, ασi is proportional to the number of
enzyme molecules allocated by the organism to importing
and processing nutrient i. We assume that enzymes for
different nutrients may have different costs wi, but to reflect
“trade-offs,” all organisms have the same fixed enzyme
budget:

Pp
i¼1 wiασi ¼ E.

We further assume a well-mixed system such that the
concentration of nutrients is homogeneous and is determined
by the nutrient supply rates ~s ¼ ðs1;…; spÞ, by the uptake of
nutrients by organisms, and by a degradation or loss rate μi.
We denote the per-enzyme rate of consumption of nutrient i
by ri. A relevant choice for ri is the Monod function
ci=ðKi þ ciÞ, but it can be any monotone increasing,
continuously differentiable function of ci with rið0Þ ¼ 0.
The kinetics of nutrient concentration ci is therefore given by

dci
dt

¼ si −
!X

σ

nσðtÞασi
"
riðciÞ − μiciðtÞ; ð1Þ

where nσ is the population of species σ. Since metabolic
reactions typically occur on a faster time scale than cell
division, we assume a separation of these time scales. It
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Temperate phages
(see Figure 1). This difference in virulence and transmission mode
is the result of a point mutation in the l virulence repressor protein
cI which actively controls the decision to ‘kill or not to kill’ the host
cell [21–23]. This active control of the fate of the infected cell has
been shown to respond rapidly to different selection regimes [24].
Studying the competition between such cI variants is particularly
relevant to study phage evolution during and epidemic.

In order to predict the competition between the temperate l
and the virulent lcI857 we first measured the effect of the cI857

mutation on several aspects of the viral life-cycle. In particular we
focused on the effects of the cI857 mutation on the life-history
traits known to be under the direct control of protein cI. We thus
measured w the ability to integrate into the genome of its host after
infection, and a the spontaneous lysis rate of the lysogenic bacteria
for both the l wildtype and the mutant lcI857 (Figure S3). We
used these life-history estimates and other estimates from the
literature to parameterize an evolutionary epidemiology model
which generated three clear-cut predictions. Our evolutionary
experiments confirmed all three predictions and thus demonstrate
the predictive power of evolutionary epidemiology theory.

Results

Evolutionary epidemiology theory
We modeled the competition of the temperate bacteriophage l

with its virulent mutant lcI857 throughout the course of an
epidemic in chemostat cultures of its bacterial host E. coli. To
understand and predict the competition dynamics of these two
viruses throughout an epidemic we first developed a mathematical
model. The epidemiology of phage l can be described by the
following set of ordinary differential equations for the densities of
susceptible hosts, S, infected hosts, I , and free viral particles, V :

_SS~rS 1{ SzIð Þ=Kð Þ{abSV{mS

_II~rI 1{ SzIð Þ=Kð ÞzabQ.VS{ a0zmð ÞI

_VV~ab 1{Q.ð ÞVSBza0BI{mV{a SzIð ÞV

ð1Þ

where susceptible hosts and infected hosts grow at rate r and r,
respectively, to a carrying capacity K and die at a background
mortality rate m. Infected hosts spontaneously switch to lysis at

Figure 1. Schematic representation of the bacteriophage l life cycle. Free viral particles of the wild type virus VW (green) and the virulent
mutant VM (red) infect susceptible cells S. A proportion of successful infections leads to genome integration at rate wW and wM to produce infected
cells IW and IM or results in cell lysis at rate 1{wW and 1{wM . Infected cells lyse through spontaneous reactivation of the provirus at rate aW and
aM for IW and IM , respectively. (See Table S1 in Text S1 for the definition and the values of all the parameters of this model).
doi:10.1371/journal.ppat.1003209.g001

Author Summary

Why are some pathogens more virulent than others?
Theory predicts that pathogens that ‘keep their host alive’
can sometimes outcompete virulent pathogens in times
when transmission to new susceptible hosts is unlikely.
Yet, this prospect of finding a new susceptible host
changes itself throughout an epidemic. In the early stage
of an epidemic susceptible hosts are abundant and
virulent pathogens that invest more into horizontal
transmission should win the competition. Later on, the
spread of the infection reduces the pool of susceptible
hosts and may reverse the selection on virulence. This may
favor benign pathogens after the acute phase of the
epidemic. We model this transient benefit for virulence
and predict both the epidemiology and the evolution of
pathogens during an epidemic. To put these predictions to
the test we monitor the competition of the temperate
bacterial virus l and its virulent mutant lcI857 in
experimental epidemics. Our experimental results agree
remarkably well with all our theoretical predictions. This
demonstrates the ability of evolutionary epidemiology to
predict selection for virulence in an ongoing epidemic.

Evolution of Virulence in Emerging Epidemics
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Theory predicts that selection for pathogen virulence and horizontal transmission is highest at the onset of an epidemic but
decreases thereafter, as the epidemic depletes the pool of susceptible hosts. We tested this prediction by tracking the
competition between the latent bacteriophage l and its virulent mutant lcI857 throughout experimental epidemics taking
place in continuous cultures of Escherichia coli. As expected, the virulent lcI857 is strongly favored in the early stage of the
epidemic, but loses competition with the latent virus as prevalence increases. We show that the observed transient
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epidemiology theory. This experimental validation of our predictions is a key step towards a predictive theory for the
evolution of virulence in emerging infectious diseases.
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Introduction

Understanding and predicting the conditions under which
pathogens evolve towards higher levels of virulence (pathogen
induced host mortality) is a major challenge in the control of
infectious diseases [1,2]. Nevertheless, the theoretical understand-
ing of virulence evolution is often based on several major
simplifying assumptions. In particular, the classical adaptive
dynamics framework assumes that mutations are rare and thus
that evolution occurs on a much slower time scale than
epidemiological dynamics [2]. In other words, adaptive dynamics
theory relies on the assumption that there is very little amount of
genetic variation in the pathogen population and that a single
pathogen strain reaches an equilibrium before a new strain arises
by mutation. However, ecological and evolutionary time scales
may overlap when the amount of genetic variation is high [3–5].
This is the case for many pathogens, and in particular for viruses
with large mutation rates. The recurrent introduction of new
mutants violates a major assumption of adaptive dynamics since
many different strains may compete with each other before the
system reaches a new endemic equilibrium [6–10]. Previous
theoretical analyses suggest that the outcome of this competition
changes strikingly throughout an epidemic; even though selection
can act against virulent mutants at the endemic equilibrium, there
is a transitory phase during the early stage of the epidemic where
the abundance of susceptible hosts can favor the more transmis-
sible and aggressive strains [11–18].

Studying selection on virulence in the field is notoriously
difficult because the characterization of the pathogen phenotypes
can be obscured by host heterogeneity and healthcare measures.
The unambiguous demonstration of the evolution of virulence
evolution during an epidemic requires an experimental approach.

Two different types of experimental setups can be used [19]. First,
in a top-down approach, the evolution of the pathogen population
is monitored in different environments (e.g. before and after an
epidemic). In this case, making quantitative predictions on the
epidemiology and evolution of the pathogen remains out of reach
because evolutionary trajectories rely on random mutations
occurring during the experiment. In contrast, the bottom-up
approach attempts to measure and/or manipulate the initial
amount of genetic variation in the pathogen population and try to
predict the evolution from this standing genetic variation.
Although many stochastic factors like new mutations may alter
the quality of the predictions in the long term, this approach may
provide good quantitative predictions in the short term. For this
reason, we follow the bottom-up approach to analyze the interplay
between the epidemiology and the evolution of the bacteriophage
l. To study the dynamics of selection on virulence we monitor the
competition of the bacteriophage l and its virulent mutant lcI857
throughout the development of an epidemic in continuous cultures
of E. coli. Bacteriophage l is a typical temperate virus which
integrates into the host genome and transmits vertically to
daughter cells at cell division. Integration of phage l into the
genome protects the host cell against superinfection of other l
phage particles and this way provides lifelong immunity to
superinfection by other l phage particles [20]. Nevertheless
stochastic reactivation of the integrated phage results in lysis and
destruction of the host cell, causing pathogen induced host
mortality. Lysis of its host prevents vertical transmission but allows
the phage to be transmitted horizontally to uninfected susceptible
cells. Whereas the non-virulent l wildtype transmits mostly
vertically by dormant integration into the host genome, the
virulent mutant lcI857 transmits mostly horizontally by host lysis
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(see Figure 1). This difference in virulence and transmission mode
is the result of a point mutation in the l virulence repressor protein
cI which actively controls the decision to ‘kill or not to kill’ the host
cell [21–23]. This active control of the fate of the infected cell has
been shown to respond rapidly to different selection regimes [24].
Studying the competition between such cI variants is particularly
relevant to study phage evolution during and epidemic.

In order to predict the competition between the temperate l
and the virulent lcI857 we first measured the effect of the cI857

mutation on several aspects of the viral life-cycle. In particular we
focused on the effects of the cI857 mutation on the life-history
traits known to be under the direct control of protein cI. We thus
measured w the ability to integrate into the genome of its host after
infection, and a the spontaneous lysis rate of the lysogenic bacteria
for both the l wildtype and the mutant lcI857 (Figure S3). We
used these life-history estimates and other estimates from the
literature to parameterize an evolutionary epidemiology model
which generated three clear-cut predictions. Our evolutionary
experiments confirmed all three predictions and thus demonstrate
the predictive power of evolutionary epidemiology theory.

Results

Evolutionary epidemiology theory
We modeled the competition of the temperate bacteriophage l

with its virulent mutant lcI857 throughout the course of an
epidemic in chemostat cultures of its bacterial host E. coli. To
understand and predict the competition dynamics of these two
viruses throughout an epidemic we first developed a mathematical
model. The epidemiology of phage l can be described by the
following set of ordinary differential equations for the densities of
susceptible hosts, S, infected hosts, I , and free viral particles, V :

_SS~rS 1{ SzIð Þ=Kð Þ{abSV{mS

_II~rI 1{ SzIð Þ=Kð ÞzabQ.VS{ a0zmð ÞI

_VV~ab 1{Q.ð ÞVSBza0BI{mV{a SzIð ÞV

ð1Þ

where susceptible hosts and infected hosts grow at rate r and r,
respectively, to a carrying capacity K and die at a background
mortality rate m. Infected hosts spontaneously switch to lysis at

Figure 1. Schematic representation of the bacteriophage l life cycle. Free viral particles of the wild type virus VW (green) and the virulent
mutant VM (red) infect susceptible cells S. A proportion of successful infections leads to genome integration at rate wW and wM to produce infected
cells IW and IM or results in cell lysis at rate 1{wW and 1{wM . Infected cells lyse through spontaneous reactivation of the provirus at rate aW and
aM for IW and IM , respectively. (See Table S1 in Text S1 for the definition and the values of all the parameters of this model).
doi:10.1371/journal.ppat.1003209.g001

Author Summary

Why are some pathogens more virulent than others?
Theory predicts that pathogens that ‘keep their host alive’
can sometimes outcompete virulent pathogens in times
when transmission to new susceptible hosts is unlikely.
Yet, this prospect of finding a new susceptible host
changes itself throughout an epidemic. In the early stage
of an epidemic susceptible hosts are abundant and
virulent pathogens that invest more into horizontal
transmission should win the competition. Later on, the
spread of the infection reduces the pool of susceptible
hosts and may reverse the selection on virulence. This may
favor benign pathogens after the acute phase of the
epidemic. We model this transient benefit for virulence
and predict both the epidemiology and the evolution of
pathogens during an epidemic. To put these predictions to
the test we monitor the competition of the temperate
bacterial virus l and its virulent mutant lcI857 in
experimental epidemics. Our experimental results agree
remarkably well with all our theoretical predictions. This
demonstrates the ability of evolutionary epidemiology to
predict selection for virulence in an ongoing epidemic.

Evolution of Virulence in Emerging Epidemics
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Why are some pathogens more virulent than others? Theory predicts that pathogens that ‘keep their host alive’ can 
sometimes outcompete virulent pathogens in times when transmission to new susceptible hosts is unlikely. Yet, this 
prospect of finding a new susceptible host changes itself throughout an epidemic. In the early stage of an epidemic 

susceptible hosts are abundant and virulent pathogens that invest more into horizontal transmission should win the 
competition. Later on, the spread of the infection reduces the pool of susceptible hosts and may reverse the selection on 
virulence. This may favor benign pathogens after the acute phase of the epidemic. To put these predictions to the test we 

monitor the competition of the temperate bacterial virus λ and its virulent mutant λcI857 in experimental epidemics. 
Our experimental results agree remarkably well with all our theoretical predictions. 4



Competitive exclusion and parasitism (Q10.6)
We studied the effect of a pathogen on winning species:

What is the effect of pathogens on co-existence?

How does this depend on their virulence?

Janzen-Connell hypothesis: parasites evolve towards most 
dominant species (negative density dependence)

[Bagchi et al., Nature, 2014]

5

Nj = Sj + Ij



Ontogenetic development for dummies, try to repeat these results with:

ters q and p, respectively, as it makes the mathematics
simpler and more intuitive. For a more mechanistic
handling of size-dependent competitive ability, see
Persson et al. (1998). For q ¼ 1 and p ¼ 1, the model is
identical to the Yodzis and Innes (1992) biomass model
and ontogenetic symmetry occurs, whereas ontogenetic
asymmetry is present when q 6¼ 1 and/or p 6¼ 1. As it
turns out, asymmetry in mortality has significantly less
effect than asymmetry in net biomass production
(Appendix: Fig. A1); see de Roos et al. (2013). We
therefore will focus on the case that juveniles and adults
only differ in net biomass production rate.

OVERCOMPENSATION IN BIOMASS AS A RESULT

OF ONTOGENETIC ASYMMETRY

Under ontogenetic symmetry, an increase in consumer
mortality in a consumer–resource system leads to a
monotonic decrease in biomass of both juveniles and
adults, whereas the juvenile/adult biomass ratio remains
constant (Fig. 1b). In other words, the population
structure is irrelevant for the system response. Con-
sumption by both juveniles and adults increases with
increased mortality as a result of increased resource
availability, leading to larger mass-specific growth rates
of juveniles and reproduction rates of adults. Still, these

FIG. 1. (a–c) Modeled biomass responses of juveniles (solid line) and adults (dashed line) to increased random mortality
(increasing mortality rate l) (a) when juveniles have a superior energy balance (ontogenetic asymmetry in net biomass production,
q¼ 0.65, p¼ 1.0, where q is a factor scaling juvenile and adult ingestion, and p is a factor scaling juvenile and adult mortality); (b)
when juveniles and adults have identical energetics (ontogenetic symmetry, q¼ 1.0, p¼ 1.0); and (c) when adults have a superior
energy balance (ontogenetic asymmetry in net biomass production, q ¼ 1.35, p ¼ 1.0). Feeding modules at the top of each panel
reflect approximate biomass densities of juveniles (J), adults (A), and resource (R), and development (dark gray solid arrows),
reproduction (black dashed arrows), and maintenance rates (open arrows) for conditions of low mortalities (left modules) and
intermediate mortalities (right modules). Light gray arrows represent food intakes. Other model parameter values are: Hc¼ 3.0, Mc

¼ 1.0, Tc¼ 0.1, rc¼ 0.5, z¼ 0.1, q¼ 0.1, and Rmax¼ 100, where Hc is ingestion half-saturation resource density, Mc is mass-specific
maximum ingestion rate, Tc is mass-specific maintenance rate, rc is conversion efficiency, z is newborn–adult consumer size ratio, q
is resource turnover rate, and Rmax is resource maximum biomass density. See the Appendix for model formulation. (d, e)
Experimental examples of stage-specific overcompensation are shown in either (d) juvenile biomass (reproduction control, Eurasian
perch) or (e) adult biomass (development control, soil mites). Note that adult biomass decreases with harvesting (no
overcompensation) in panel (d) and increases with harvesting (overcompensation) in panel (e). Data were generously provided by
T. Cameron and J. Ohlberger (Cameron and Benton 2004, Ohlberger et al. 2011).
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Symmetry breaking in ecological systems through 
different energy efficiencies of juveniles and adults
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 Early-warning signals for critical transitions (Q11.2)

Test whether or not this works in a “real-world” example of models for 
grazing in the Sahel zone.

the unstable point relatively longer than it would on the opposite side
of the stable equilibrium. The skewness of the distribution of states is
expected to increase not only if the system approaches a catastrophic
bifurcation, but also if the system is driven closer to the basin bound-
ary by an increasing amplitude of perturbation28.

Another phenomenon that can be seen in the vicinity of a cata-
strophic bifurcation point is flickering. This happens if stochastic
forcing is strong enough to move the system back and forth between
the basins of attraction of two alternative attractors as the system
enters the bistable region before the bifurcation26,29. Such behaviour
is also considered an early warning, because the system may shift
permanently to the alternative state if the underlying slow change
in conditions persists, moving it eventually to a situation with only
one stable state. Flickering has been shown in models of lake eutro-
phication24 and trophic cascades30, for instance. Also, as discussed
below, data suggest that certain climatic shifts and epileptic seizures
may be presaged by flickering. Statistically, flickering can be observed
in the frequency distribution of states as increased variance and
skewness as well as bimodality (reflecting the two alternative
regimes)24.
Indicators in cyclic and chaotic systems. The principles discussed so
far apply to systems that may be stochastically forced but have an
underlying attractor that corresponds to a stable point (for example
the classic fold catastrophe illustrated in Box 1). Critical transitions in
cyclic and chaotic systems are less well studied from the point of view

Box 3 jThe relation between critical slowing down, increased
autocorrelation and increased variance

Critical slowing down will tend to lead to an increase in the
autocorrelation and variance of the fluctuations in a stochastically
forced system approaching a bifurcation at a threshold value of a
control parameter. The example described here illustrates why this is
so. We assume that there is a repeated disturbance of the state
variable after each period Dt (that is, additive noise). Between
disturbances, the return to equilibrium is approximately exponential
with a certain recovery speed, l. In a simple autoregressive model this
can be described as follows:

xnz1{!xx~elDt(xn {!xx)z sen

ynz1~elDtynz sen

Here yn is the deviation of the state variable x from the equilibrium, en is
a random number from a standard normal distribution and s is the
standard deviation.
If l and Dt are independent of yn, this model can also be written as a
first-order autoregressive (AR(1)) process:

ynz1~aynzsen

The autocorrelation a ; elDt is zero for white noise and close to one for
red (autocorrelated) noise. The expectation of an AR(1) process
ynz1~czaynzsen is18

E(ynz1)~E(c)zaE(yn)zE(sen)[m~czamz0[m~
c

1{a

For c 5 0, the mean equals zero and the variance is found to be

Var(ynz1)~E(y2
n){m2~

s2

1{a2

Close to the critical point, the return speed to equilibrium decreases,
implying that l approaches zero and the autocorrelation a tends to one.
Thus, the variance tends to infinity. These early-warning signals are the
result of critical slowing down near the threshold value of the control
parameter.

Box 2 jCritical slowing down: an example

To see why the rate of recovery rate after a small perturbation will be
reduced, and will approach zero when a system moves towards a
catastrophic bifurcation point, consider the following simple dynamical
system, where c is a positive scaling factor and a and b are parameters:

dx

dt
~c(x{a)(x{b) ð1Þ

It can easily be seen that this model has two equilibria, !xx1 5 a and
!xx2 5 b, of which one is stable and the other is unstable. If the value of
parameter a equals that of b, the equilibria collide and exchange
stability (in a transcritical bifurcation). Assuming that !xx1 is the stable
equilibrium, we can now study what happens if the state of the
equilibrium is perturbed slightly (x 5 !xx1 1 e):

d(!xx1ze)

dt
~f(!xx1ze)

Here f(x) is the right hand side of equation (1). Linearizing this equation
using a first-order Taylor expansion yields

d(!xx1ze)

dt
~f(!xx1ze)<f(!xx1)z

Lf

Lx

!!!!
!xx1

e

which simplifies to

f(!xx1)z
de

dt
~f(!xx1)z

Lf

Lx

!!!!
!xx1

e[ de

dt
~l1e ð2Þ

With eigenvalues l1 and l2 in this case, we have

l1~
Lf

Lx

!!!!
a

~{c(b{a) ð3Þ

and, for the other equilibrium

l2~
Lf

Lx

!!!!
b

~c(b{a) ð4Þ

If b . a then the first equilibrium has a negative eigenvalue, l1, and is
thus stable (as the perturbation goes exponentially to zero; see
equation (2)). It is easy to see from equations (3) and (4) that at the
bifurcation (b 5 a) the recovery rates l1 and l2 are both zero and
perturbations will not recover. Farther away from the bifurcation, the
recovery rate in this model is linearly dependent on the size of the basin
of attraction (b 2 a). For more realistic models, this is not necessarily
true but the relation is still monotonic and is often nearly linear16.
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Figure 2 | Early warning signals for a critical transition in a time series
generated by a model of a harvested population77 driven slowly across a
bifurcation. a, Biomass time series. b, c, d, Analysis of the filtered time series
(b) shows that the catastrophic transition is preceded by an increase both in
the amplitude of fluctuation, expressed as s.d. (c), and in slowness, estimated
as the lag-1 autoregression (AR(1)) coefficient (d), as predicted from theory.
The grey band in a identifies the transition phase. The horizontal dashed
arrow shows the width of the moving window used to compute the indicators
shown in c and d, and the red line is the trend used for filtering (see ref. 22 for
the methods used). The dashed curve and the points F1 and F2 represent the
equilibrium curve and bifurcation points as in Box 1 Figure c, d.
a.u., arbitrary units.
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Influenza strain replacement

The total number of seasonal influenza infections is minimized at an 
intermediate (rather than maximal) level of vaccination.

Increasing the level of the vaccination coverage may be detrimental.
Recent bioRxiv paper: why is immunity to respiratory viruses short-lived?

https://www.biorxiv.org/content/10.1101/2024.07.23.604867v2

Intermediate levels of vaccination coverage may minimize seasonal influenza 
outbreaks 
Veronika I. Zarnitsyna1*, Irina Bulusheva2, Andreas Handel3, Ira M. Longini4, M. Elizabeth Halloran5,6, Rustom Antia7* 

evaluated when considering the optimal vaccine coverage that minimizes the attack rate from
influenza.

Model

The model incorporates the following biological features: (i) two co-circulating antigenically
distinct influenza strains; (ii) natural infection with either strain induces long-term immunity
specific for that strain and short-term strain-transcending immunity (i.e. cross-immunity) to
the other strain; (iii) vaccination induces protection only against the strain included in the
vaccine.

Our model is based on the widely used Susceptible-Infectious-Recovered (SIR) frame-
work for disease transmission, which puts individuals in the population into compartments
based on their immune and infection status [32–34]. The SIR framework has been extended
to model strain variation in influenza in a number of different ways [20, 22, 26, 35–37]. We
incorporate two co-circulating influenza strains using a status-based approach (Fig 2) [22,
35]. A two-letter code is used to describe the ten possible states for each individual in the
population, where the first and second letters reflect the status with respect to the first and
second influenza virus strains. For example, SS denotes individuals susceptible to the infec-
tion with both strains and SR represents an individual susceptible to the first strain but
recovered from the second strain and immune to it. Infection of susceptible individuals (SS)
with the first strain moves them to the IS state at a rate that depends on the infectiousness of
the first strain and the prevalence of infection caused by it. Infectious individuals recover
and move to RC state, which indicates that they have long-term immunity to the first strain
(R) and short-term cross-immunity (C) to the second strain. These individuals lose immu-
nity to the second strain at rate σ and move to the RS state. Individuals in the RS state can be
infected only by the second strain, and this would result in movement to the RI state and,
subsequently, after recovery, to the RR state. We note that the state space variables are the
fractions of the total population in each state and, consequently, we are not modeling a pop-
ulation of any particular size. The model variables and parameters are summarized in
Table 1. We chose the basic reproductive number of seasonal influenza to be 1.6 [38, 39].
The average duration of infection (reciprocal of γ) was defined as the viral shedding period
of an infected adult and was set to 5 days [40]. The duration of cross-immunity was varied
from 60 days to 1 year [20].

Fig 2. Scheme for SIR-based model with two strains. Ten different states corresponding to model variables in eqs
(1)–(10) characterize the status of individuals with respect to the first and second strains of the virus. The first and
second letters in the two-letter code show the individual’s status of infection with respect to the first and second strain.
We use the conventional notation “S” for susceptible, “I” for infected, and “R” for recovered with long-term immunity
and “C” for recovered with short-term cross-immunity.

https://doi.org/10.1371/journal.pone.0199674.g002

Intermediate levels of vaccination coverage may minimize seasonal influenza outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0199674 June 26, 2018 4 / 17

both randomized and observational studies). Early studies of influenza vaccine efficacy in the
military [3], as well as Tecumseh and Hutterite communities studies [4, 5] and studies in Japan
[6] showed that the inactivated influenza vaccine provides reasonable levels of protection
against the current circulating strain of influenza and may interrupt virus transmission. Meta-
analyses in ten randomized controlled trials revealed pooled efficacy of trivalent inactivated
vaccine (TIV) as 59% (95% CI 51-67) [7], while for one of the component of TIV vaccine,
influenza A subtype H3N2, a meta-analysis of 56 test-negative design studies reported a much
lower pooled vaccine efficacy of 33% (95% CI 26-39) [8]. The main challenge in vaccination
against influenza is that antigenic drift of the virus in response to population level immunity
generates virus strains that are not covered by the vaccine, and this requires frequent reformu-
lation of the vaccine to include the drifted strains.

Vaccination against H3N2 subtype typically shows lower vaccine efficacy in comparison to
H1N1, so we will focus on H3N2. If during a given season only one strain, drifted from a previ-
ous season strain of a given subtype, would be in circulation, the situation would be relatively
simple. In reality, phylogenetic analysis of HA genes from circulating H3N2 strains revealed
extensive genetic diversity with multiple clades and subclades co-circulating (see CDC report
for the current 2017-2018 season [9]). Multiple co-circulating strains generate potentially com-
plex dynamics with ongoing replacement of older strains by newer ones. Consider, for exam-
ple, the spread of influenza A (H3N2) in the US during the 2014-2015 season, where the H3N2
subtype dominated. Cases analyzed just prior to the onset of that influenza season showed that
42% were caused by strains antigenically similar to the strain included in that season’s influ-
enza vaccine [10]. Characterization of the limited number of confirmed H3N2 cases during
the seasonal outbreak is shown in Fig 1. We see that the fraction of H3N2 cases caused by the

Fig 1. Influenza A (H3N2) strain replacement during season 2014-2015 in the US. The number of influenza A
(H3N2) viruses tested that are similar to the H3N2 vaccine strain (A/Texas/50/2012) are shown in grey, and the
number of cases caused by viruses with reduced titers to antiserum raised against the vaccine strain is shown in red.
The weekly counts began October 26, 2014 [10].

https://doi.org/10.1371/journal.pone.0199674.g001

Intermediate levels of vaccination coverage may minimize seasonal influenza outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0199674 June 26, 2018 2 / 17
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How can large systems be stable?

In chapter 10 we provide several exercises, each with R-scripts, to 
repeat and extend this classic work.  Central questions are the 

structure of the interaction matrix,  and the “scaling” by setting all 
diagonal elements to Aii=-1.

9

This book is a classic studying the relationship 
between the complexity of a system (number of 
species and their number of interactions), and 
the likelihood that the system would be stable.

σ nP < 1



Long term effects of vaccination

The effect of elephants is through regular browsing and coppicing of trees, fire 
through episodic burns linked to fuel load, wildebeest after being released from 
the suppressing effects of endemic rinderpest (a morbillivirus of artiodactyls), 

and rain through its connections to all system components. 
Holdo et al. [2009] demonstrate that eradication of rinderpest is responsible for 

the Serengeti switch from a net source to net accumulator of carbon.

Getz, PLoS Biol 2009

Wolves and bears in Yellowstone10



Stem cell renewal (Q12.5).

Introduce a novel feedback mechanism where stem cells 
tune the fraction of asymmetric divisions that they make. 

Does this lead to faster recovery after tissue damage?

Cell Lineages and the Logic of
Proliferative Control
Arthur D. Lander1,2,3[*, Kimberly K. Gokoffski1,4,5[, Frederic Y. M. Wan3,5, Qing Nie2,3,5, Anne L. Calof1,3,4*

1 Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America, 2 Biomedical Engineering, University of

California, Irvine, Irvine, California, United States of America, 3 Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of

America, 4 Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America, 5 Mathematics, University of California, Irvine, Irvine,

California, United States of America

It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although
experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little
known about the control strategies themselves. Here, we consider how secreted negative feedback factors
(‘‘chalones’’) may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11
and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying
performance objectives—what, precisely, is being controlled, and to what degree—and go on to calculate how well
different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately,
we show that many features of the OE—the number of feedback loops, the cellular processes targeted by feedback,
even the location of progenitor cells within the tissue—fit with expectations for the best possible control. In so doing,
we also show that certain distinctions that are commonly drawn among cells and molecules—such as whether a cell is a
stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator—may be the
consequences of control, and not a reflection of intrinsic differences in cellular or molecular character.

Citation: Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL (2009) Cell lineages and the logic of proliferative control. PLoS Biol 7(1): e1000015. doi:10.1371/journal.pbio.
1000015

Introduction

In recent decades, biologists have come to view cell lineages
as fundamental units of tissue and organ development,
maintenance, and regeneration. The highly differentiated,
often nondividing cells that characterize the mature func-
tions of tissues are seen as end products of orderly, tissue-
specific sequences of cell divisions, during which progenitor
cells pass through distinct stages, marked by expression of
stage-specific genes (e.g., [1–4]). At the starting points of
lineages—particularly those in self-renewing tissues such as
blood, epidermis, and the intestinal lining—one finds stem
cells, characterized both by multipotency (ability to produce
many cell types) and their ability to maintain their own
numbers through self-replication [5–8]. As scientists and
clinicians have become increasingly interested in harnessing
these features of stem cells to repair injury and cure disease,
there has been a resurgence of interest in the mechanisms
underlying the execution and regulation of cell lineages (e.g.,
[9–12]).

The functions of lineages are often presented in terms of
progressive allocation of developmental potential: Thus,
pluripotent stem cells often give rise to oligopotent progen-
itors, which in turn give rise to unipotent (committed)
progenitors. The sequential expression of marker genes at
different lineage stages may be related to transcriptional
‘‘priming’’ events needed to lock cells into specific patterns of
gene expression [13,14].

Not all lineage stages correlate with restriction of cell fate,
however, raising the question of what else lineages do. The
fact that lineage intermediates often display ‘‘transit-amplify-
ing’’ behavior, i.e., are capable of at least some degree of self-
replication, has led to the suggestion that lineage stages play

essential roles in the control of tissue and organ growth (with
growth referring in this case to increase in cell number).
Here, we seek to discover what those roles are. We approach
this question from the perspective of lineages in general, and
within the context of the mammalian olfactory epithelium
(OE), the neural tissue that senses odor and transmits
olfactory information to the brain. The OE is a continually
self-renewing tissue, even in man, and is capable of rapid
regeneration [15]. As discussed below, a wealth of exper-
imental data on the OE lineage and the molecules that
regulate it makes the OE an attractive system in which to
investigate the relationship between lineages and growth
control.

Performance Objectives of Growing Tissues
In biology, ‘‘control’’ is often used interchangeably with

‘‘regulation,’’ but in engineering, control has a precise
meaning: It refers to the strategies that enable a system to
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Protocols S1–S3). In fact, experimental data indicate that the
progenitor load in the OE is below 10% [46–48].

There is another cost of achieving fast regeneration
through feedback on v1: the lower the progenitor load, the
more necessary it becomes to use values of p1 that are
perilously close to 0.5 (i.e., nearly half the output of INPs
needs to be more INPs; Figures S16 and S17 in Protocols S1–
S3). As discussed earlier, when p-parameters are close to 0.5,
system output becomes extremely sensitive to small variations
in those parameters (and thus very fragile).

All told, feeding back onto the rate at which INPs divide
does not seem to be a particularly good control strategy. We
wondered whether GDF11 might do a better job if it fed back
onto a different parameter of INP growth: p1, the replication,
or amplification, probability. Analysis of a model of this sort
of feedback (Figure 3D) reveals several remarkable things:
First, with feedback on p1, the constraint p1 ! 0.5 goes

away: Any INP replication probability allows for establish-
ment of a steady state. Second, the fragility of the steady state
output can be substantially reduced. In particular, sensitivity

Figure 3. Strategies for Feedback Regulation of Transit-Amplifying Cells

(A) The neuronal lineage of the OE, in which terminally differentiated ORNs are produced by committed transit-amplifying cells (INPs).
(B) Negative feedback regulation of the INP cell cycle length (shown diagrammatically in red) can be modeled by making v1 a function of ORN numbers
(v2).
(C) Simulated return to steady state of the system in (B) after removal of all ORNs. The parameters chosen provide the greatest improvement in
regeneration speed (over what would occur in the absence of feedback; dashed line), consistent with progenitor cells comprising no more than 50% of
the tissue mass (note that INP numbers [red curve] are virtually the same as those of ORNs [blue curve] at steady state). Cell numbers are expressed
relative to the starting number of stem cells.
(D) Negative feedback regulation of the INP replication probability (shown diagrammatically in red) can be modeled by making p1 a function of ORN
levels (v2).
(E) Simulated return to steady state of the system in (D) after removal of ORNs. An inset shows the response at early times in greater detail. Note that
progenitor load is now quite low, and regeneration is characterized by a burst of INP proliferation (red curve), followed by a wave of ORN production
(blue curve).
In (C and E), time is expressed in units of ln2/v1. Parameter values for (C) are p1¼ 0.495, d/v1¼ 0.0372, v0/v1¼ 0.128, and h¼ 0.0734, and for (E) are p1¼
0.942, d/v1¼ 0.0138, v0/v1 ¼ 0.506, and g¼ 0.0449.
doi:10.1371/journal.pbio.1000015.g003
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All of these improvements in steady state control come
solely from the single feedback loop of system output onto p0.
When such a loop is in place, however, feedback onto other p-
and v-parameters can have additional useful effects:

Consider, for example, the matter of regeneration speed,
which we previously found could be increased through
feedback onto p1 or v1, but only by sacrificing robustness,
low progenitor loads, or the ability to regenerate quickly
from a variety of initial conditions (Figures 3C and 5A–5D).
When feedback is directed solely at stem cells, we also fail to
achieve good performance: Feedback onto p0 hardly improves
regeneration speed at all (Figure S19 in Protocols S1–S3), and
although feedback onto p0 and v0 together can produce fast

rates of regeneration (Figure S21 in Protocols S1–S3), those
rates still show a very sensitive dependence on initial
conditions (Figure S22 in Protocols S1–S3).
In contrast, when feedback is directed at both stem and

transit-amplifying cell stages—i.e., the arrangement that
actually occurs in the OE—it becomes possible to achieve
very rapid regeneration, with low progenitor loads, from
almost any starting conditions. This includes conditions in
which variable numbers of stem, transit-amplifying, or
terminal-stage cells are depleted. Figure 5F shows an example
of such a case.
Not only is such performance possible, it occurs over a

substantial fraction of the parameter space (that is, a

Figure 5. Performance Tradeoffs Associated with Feedback Strategies

(A) Simulations of the model in Figure 3D were carried out for 20,000 randomly chosen sets of parameters (Protocols S1–S3, section 8). To simulate
regeneration following a loss of terminal-stage cells, numbers of ORNs were set to zero, whereas numbers of stem cells and transit-amplifying cells
(INPs) were set to their steady state values. For each parameter set, the time it took for ORN numbers to return to and remain within 20% of their steady
state values was taken as an objective measure of regeneration time, and cases with very long regeneration times (.29 transit-amplifying cell cycle
lengths) are not shown (see Protocols S1–S3). Next, the time that would have been required to generate the same number of ORNs, from the same
initial conditions but in the absence of feedback, was calculated. Finally, the ratio of the two regeneration times (with and without feedback) was
considered to be the fold improvement in regeneration speed due to feedback. For each parameter set, this was plotted against the sensitivity of the
steady state solution to variation in either the initial number of stem cells, the stem cell cycle time, or the normal lifetime of ORNs (all three sensitivities
are equal). The data show that only those parameter sets that do not support a robust ORN steady state (abscissa values .0.4) show substantial
improvement in regeneration speed (ordinate values .2).
(B) Simulated regeneration for the set of parameters in (A) that showed the greatest improvement in regeneration consistent with sensitivity to
parameters remaining below 0.4 (this corresponds to a 32% change in steady state values for a 2-fold change in parameters). As in Figure 3, the blue
curve denotes ORN numbers, the red curve shows INPs, and the dashed line shows the time course over which regeneration would proceed in the
absence of feedback. The light-blue zone denotes the range of cell numbers within 20% of the steady state value for ORNs.
(C) Simulated regeneration for the parameters used in Figure 3C, but starting from two different initial conditions. The solid blue curve shows the
dynamics of ORN recovery after complete removal of existing ORNs; the solid gray curve illustrates the predicted rate of recovery in the absence of
feedback. The dashed blue and gray curves present corresponding simulations where ORN numbers were initially depleted only 75%, rather than
completely. Under these conditions, nearly all improvement in regeneration is lost.
(D) To quantify the effect of initial conditions on regeneration speed, a ratio was defined (‘‘speed ratio’’) that indicates how much faster (or slower)
regeneration from 75% ORN depletion is than regeneration from 100% depletion. In the absence of feedback, this ratio should have a value of
approximately 1.22 (regeneration from partial depletion should take slightly less time than regeneration from total depletion). This ratio was calculated
for each of the random cases shown in (A), and the results were plotted against the fold improvement in regeneration speed (from [A]). The abscissa is
drawn at an ordinate value of 1.22. The plot shows that the more one gains in regeneration speed from 100% depletion, the more one sacrifices in
regeneration speed from 75% depletion.
(E) Negative feedback effects of activin and GDF11 (shown diagrammatically in red) can be modeled by multiplying the replication probabilities and cell
division rates of stem cells and INPs, respectively, by decreasing functions of ORN numbers (v2). In this case, Hill functions are used, with parameters g,
h, j, and k representing the feedback gains, and n the Hill coefficient.
(F) Example of a case with both activin and GDF11 feedback. Notice that now, regeneration from initial conditions of 75% ORN depletion is nearly as fast
as regeneration from 100% ORN depletion (compare with [C]). Parameters for this case are: p0¼ 0.507, p1¼ 0.546, d/v1¼ 0.0116, v0/v1¼ 0.965, g¼ 1.258,
h¼ 1.03, j ¼ 0.0394, and k ¼ 1.683 (and the ordinate axis has been scaled for easier comparison with [C]).
In (B), (C), and (F), time is expressed in units of ln2/v1.
doi:10.1371/journal.pbio.1000015.g005
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