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SUMMARY

Using a simple predator—prey model we studied the consequences of interlocking processes that occur on
ecological and evolutionary timescales. Various evolutionary attractors are shown, one of which is a
system of two prey and two predator quasi-species packed in an alternating pattern. This pattern. which
proves to be very robust, is studied in more detail to investigate the interaction between evolutionary and
population dynamics. The evolutionary and the population dynamics both show complex periodic
behaviour, with the same two dominant periods. The two prey quasi-species as well as the two predator
‘quasi-species’ oscillate synchronously, albeit out of phase. It is this temporal pattern in the population
dynamics which drives the evolutionary dynamics and evolutionary dynamics which force the population
dynamics to periodic behaviour with much shorter periods than if there were no evolution. This mutual
influencing of the periodic behaviour is an interesting consequence of the interaction across different
timescales. It is further shown that the evolutionary dynamics are essential for the maintenance of

different species in the system.

1. INTRODUCTION

In ecology we usually assume that evolution is a slow
process so in ecological models parameters are kept
constant. In evolutionary studies we usually assume
that population dynamics is a relatively fast process,
which can be represented by a quasi steady state, or at
least a ‘quasi attractor’. These assumptions are even
incorporated in the relatively recent models of coevo-
lutionary dynamics which aim at combining popu-
lation dynamics and (co)evolutionary dynamics (see,
for example, Marrow et al. 1992; Marrow & Cannings
1993; Dieckmann & Law 1994; Rand ef al. 1994) as
well as in models that study the evolutionary conse-
quences of (ecological) spatial self-structuring (Boerlijst
& Hogeweg 19914, b; Boerlijst et al. 1993; Van der
Laan et al. 1994).

In this paper we study the consequences of inter-
locking timescales of population and evolutionary
dynamics. To this end we use a standard Lotka—
Volterra type ecological model in which distinct
phenotypes are represented as different state variables.

We assume a simple linear relation between geno-
type and phenotype. Thus, we represent the phenotype
landscape as a simple one-dimensional axis and
mutation can then be modelled as diffusion along this
axis. The phenotype affects only the interaction
between predator and prey. Moreover, it is not the
absolute value of the phenotype that is important here
but the difference in the phenotype of the prey and the
predator. The interaction is strongest if the difference
is zero and falls off with a gaussian function if the
difference increases. We deliberately exclude the effect
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of the phenotype on other parameters of the predator
and prey equations to concentrate on the interaction
only, which is obviously the essential factor in
coevolutionary dynamics.

In the studies presented here we assume a circular
phenotype space, i.e. a phenotype axis with periodic
boundaries. Such a phenotype space can represent for
instance the 24 h of the day or the 12 months of a year.
The phenotype can then be interpreted as a property
such as the timing of feeding activity (on a 24 h axis)
or the timing of budbreak or flowering of plants and
the hatching of herbivorous insects (on a 12 month
axis).

2. THE ECO-EVOLUTIONARY MODEL

A simple discrete Lotka-Volterra type model has
been used with equations

AX,JAl = aX,—bX, S X,—cX, S a, ¥,

i=1 i=1

+[0.5(X; + X)) — X

i

AY /At = —dY,+ecY, T a; X
i=1

+u[05(Y, + %)~ ¥

1

X, = population of prey with genotype ¢ and ¥, =
population of predator with genotype i, the prey
populations of different phenotypes are assumed to

share a common resource. The phenotype-dependent
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Table 1. Parameters of the eco-evolutionary model

internal

symbol range parameter denoted

a 1.0 natural rate of increase for prey

b 0.005 prey competition parameter

¢ 0.0055 interaction parameter (fixed part)

a variable interaction parameter (evolvable
part)

d 0.5 mortality of predator

e 0.73 efficiency of predator

0 0.00001 threshold density

n 60 total number of phenotypes (length
of axis)

2 0.001 mutation rate

o 0.4 t0 0.6 standard deviation of Gaussian

interaction curve

interaction parameter a; is a function of the differences
between the phenotypes of prey and predator and the
phenotype axis for both prey and predator consists of n
discrete phenotypes. Because we assume our phenotype
axis to be wrapped around as a circle, there are two
ways (directions) to determine the difference between
the phenotypes. The shortest distance along the
phenotype axis is used to determine the interaction
parameter «, and this distance is scaled to the
maximum distance, which is n/2:

dist(i.])min = minfli—jl, (n—li—j1)]/3n.

The gaussian function for the interaction parameter
then becomes:

;= (1/0) (DSt Dmin) /20 .
and o ranges from:
1/o to (l/r)’)e(’l/szﬁ).

Note that the surface under the gaussion interaction
curve is not equal for different values of o because the
tails of the distribution are not used for determining
the interaction strength a (see also figure 2). Thus
generalist predators (high o) have lower total inter-
action strength. In the model mutation occurs by the
discrete ‘diffusion” of a proportion (x) of every
population with phenotype ¢ to populations with
phenotype (:—1) and (14 1).

To prevent diffusion of extremely low concentrations
over phenotype space, we define a threshold (6) for
population density. If the population density of a
phenotype is below this threshold, the phenotype has a
probability of becoming extinct that is inversely
proportional to its density. A system with § = 0 appears
to have qualitatively the same properties as the system
presented in this paper. The default parameter setting
of the eco-evolutionary model is shown in table 1.

3. PATTERN FORMATION IN PHENOTYPE
SPACE

The standard deviation of the gaussian interaction
curve (o), which determines whether a predator is a
specialist (small o) or a generalist (large o), is the key
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parameter of our model. In figure 1 we present the
results of simulations with three different degrees of
specialization of the predator. For each value of o the
behaviour of the system is shown with two different
initial configurations. In the top three figures the
simulation starts with one prey and one predator
species of the same phenotype (a; = 1/0), whereas in
the bottom three figures the results are shown with a
random initial configuration (i.e. four prey and four
predator species of randomly chosen phenotypes).
Several interesting phenomena can be observed in
figure 1.

(a) Formation of quasi-species, speciation and extinction

All simulations show the formation of one or more
‘quasi-species’ in both prey and predator. A quasi-
species is a small ensemble of species with related
genotypes. The emergence of quasi-species introduces
an extra level into the model; in addition to the local
population (one lattice point) and global population
(the entire lattice) an intermediate or meso-scale entity
can be distinguished. This meso-scale population
consists of all members of a quasi-species which may
wander over the lattice. Models of molecular evolution
have shown that the evolutionary dynamics of quasi-
species is quite different from that of ‘pure’ (i.e. one
lattice point) species (Huynen et al. 1993: Huynen &
Hogeweg 1994). In our model the quasi-species appears
to be important in the process of speciation (speciation
here means the branching of one quasi-species into two
distinct quasi-species). The actual speciation event is
preceded by an increase in the size of the quasi-species
(i.e. an increase in the number of different phenotypes
that form the quasi-species). In the top three figures,
for example, which start with one prey and one
predator species, speciation events can be observed
during the initial period for all three levels of
specialization. If the predator is a specialist (o = 0.4),
several successive speciation and extinction events can
be seen.

As the meso-scale population and quasi-species are
the main objects of interest in the remainder of this
paper, we will refer to them by simply using the words
population and species, whereas the entities at other
levels will be denoted by the use of the adjectives local
and global.

(b) Multiple versus single attractors

Multiple attractors are present in this system for all
degrees of specialization. However, the system with
intermediately specialized predators (o = 0.5) attains
in most cases the same attractor. This evolutionary
attractor consists of a system with two prey and two
predator species, which are distributed in turn along
the phenotype axis. This pattern, which we will call the
‘alternating pattern’, is an evolutionary attractor with
interesting properties, each predator species being
positioned on the phenotype axis in such a way that it
interacts with both prey species. Thus neither predator
specializes entirely on one prey. Oscillations can be
observed in both the evolutionary and the ecological
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Figure 1. Time series of evolutionary and population dynamics, with (a) symmetric and () random initial
configurations and with (i) o = 0.4, (ii) o = 0.5 and (iii) 0 = 0.6. In the three columns of each time series, time ranges
from ¢ = 0 to 12000 with a display-interval of 15 time steps. The first column of each time series shows the phenotype
axis of both prey (grey) and predator (black). Only the phenotypes with a local population density higher than 0.01
are indicated. The other two columns show the total population density of prey and predator on a horizontal axis

which ranges from 0 to 200.

population dynamics. On this evolutionary limit cycle
the alternating pattern is maintained indefinitely.

(c) Predator chases prey, prey chases predator

Predator—prey coevolution is often described as an
‘arms race’ (Dawkins & Krebs 1979) or ‘Red Queen
dynamics’ (see for example, Van Valen 1973 ; Stenseth
& Maynard Smith 1984): predators chasing prey in
phenotype space continuously but without making any
real ‘progress’. This chasing behaviour can be observed
in the transients and in some attractors. Figure 1 shows
that after the branching of prey and predator, each
prey species is being chased by one of the predator
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species. Because the phenotype axis is circular, this
behaviour results in surrounding of the prey. At this
stage the interaction between prey and predator is
high, resulting in complex oscillations and an increase
in the size of the quasi-species, this enables the prey to
escape in the other direction and the process of
surrounding starts again. This surrounding and es-
caping behaviour appears to be an evolutionary
attractor if the predator is a generalist (¢ = 0.6). If the
predator is a specialist (o = 0.4) the evolutionary
attractor is an example of the more classical case of
‘Red Queen dynamics’. Because the phenotype axis is
assumed to be cyclic, this Red Queen behaviour is also
a cycle but on another spatial scale.
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Figure 2. Interaction strength as a function of phenotype. (a) o = 0.4, (b) ¢ = 0.5 and (¢) o = 0.6 show the interaction
strength with one partner, either at phenotype 10 or 40 (dotted lines), and the total interaction strength with both
partners, 10440 (solid lines). Figure d (interaction with prey) and ¢ (interaction with predator) show the total
interaction strength, recorded from a simulation with alternating pattern (o = 0.5), at five arbitrarily chosen time
steps ranging from ¢ 100 to ¢ 500 and averaged over 5000 time steps (bold line).

More interesting is the presence of chasing behaviour
in the attractors, where the predator is either specialist
or generalist and the simulation starts with a random
configuration. The system as a whole seems to switch
between two different attractors: the alternating
pattern and a pattern with the two predator species
each completely specialized on one prey species (a
‘matching pattern’). The chasing behaviour, which
can be seen during the switching between these two
patterns, is qualitatively different for the specialist and
generalist. In the case of a specialized predator (o =
0.4) the predators are chasing the prey: they extract
themselves from the alternating pattern by each
branching into two species. The resulting four predator
species move two by two to the closest prey species.
During this process the oscillations of the population
dynamics become larger and one of each converging
pair of predator species becomes extinct. This results in
the matching pattern of completely specialized pre-
dators. However, prey successfully escape this pattern
and the alternating pattern is restored again. The
above mentioned behaviour repeats itself on a time-
scale of approximately 6000 time steps. If the predator
is a generalist, the story is completely reversed (o =
0.6). The two prey species appear to chase the
predators by branching behaviour, thus evolving
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towards the matching pattern whereas the predators
extract themselves from this pattern in order to restore
the alternating pattern. This difference in behaviour
between the system with specialists and the system with
generalists is easy to understand from figure 2a—c. In
these graphs the solid line indicates the total interaction
strength, given two interaction partners at positions 10
and 40 on the phenotype axis. Predators are expected
to maximize this total interaction strength, whereas
prey is expected to move to the minimum of the curve.
Therefore, if predators are specialists (see figure 2a)
their preferred position will be the same position as
that of the prey. Prey, however, will prefer the position
between two predator species. This curve is quali-
tatively different for the generalist predator (see figure
2¢): here prey has minimum interaction if positioned at
predator phenotype whereas predator has maximum
interaction strength in between the two prey species.
One should realize that these curves change con-
tinuously during the eco-evolutionary simulation due
to the (periodic) movement of all species along the
phenotype axis. Figure 24 (interaction with prey), 2e
(interaction with predator) shows interaction curves
which have been recorded at different moments during
a simulation with ¢ = 0.5. The average curve (bold
line) is shown in each graph.
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Figure 3. Time series of evolutionary and population
dynamics with evolution of specialization (o). In columns 1,
2, 3,5 and 6 the time ranges from (=0 to 8000 with a
display-interval of 10 time steps. Column 4 shows the 2D-
phenotype space of the predator at £ = 0. 1000, 2000, ..., 8000
(from top to bottom). The vertical axis of this 2D-plane
defines the interaction as in the default models (phenotype
p), whereas the horizontal axis defines the degree of
specialisation (o) of the predator and ranges from the o =
0.15to o = 0.75. Column 1 shows the phenotype axis of prey.
Column 2 shows the projection of the 2D-phenotype space on
axis p (all local predator populations with same phenotype o
are added). Column 3 shows the projection of the 2D-
phenotype space on axis o (all local predator populations
with same phenotype p are added). The local population
density of each phenotype is indicated using three colour
codes: white for 0, grey for < 10, and black for > 10.
Columns 5 and 6 show the total population density of prey
and predator, respectively. The horizontal axis in these two
columns ranges from 0 to 200.

(d) Specialist or generalist?

Given the above results and the dependence of
behaviour on the degree of predator specialization (o)
it would be interesting to study the evolution of o
rather than use fixed values for o. To this end we
extended our model by adding a second predator-
phenotype axis. The position along this second axis
defines the standard deviation of the interaction curve
(o) and the phenotype space of the predator thus
becomes a two-dimensional plane. The interval of o
ranges from 0.15 to 0.75 and the mutation rate used
was g = 107 (for mutation in both dimensions). It is
obvious that the evolution of the degree of specializ-
ation critically depends on the way the penalty for
being a generalist is implemented in the model. In
our model we find that for most initial configurations,
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Figure 4. Lyapunov exponent (open circles) as a function of
. First Lyapunov exponent averaged over 50000 time steps
(from ¢ = 100000 to 150000) and the difference between
maximum and minimum prey population size (¥, — X’
filled circles) during the same time-interval, in a simulation
starting with a random initial configuration. Parameters as in
table 1.

the system eventually moves towards the alternating
pattern with o = 0.486 (see figure 3). This attractor
has a low Lyapunov exponent and relatively small
fluctuations in total population density as shown in
figure 4. If the total interaction strength is kept
constant for all values of o (i.e. without the penalty for
generality), evolution towards maximum ¢ occurs In
most cases. The predator in our eco-evolutionary
system evolves to an intermediate degree of specializ-
ation. In this pattern both the ecological and the
evolutionary attractor consists of a limit-cycle with
complicated periodic behaviour, in which the time-
scales of ecological and evolutionary dynamics are
interlocked. The total population density. therefore,
remains relatively constant when compared to the
other attractors (see figures 1, 3 and 4).

4. INTERLOCKING TIMESCALES
(a) Dynamics of the eco-evolutionary attractor

The alternating pattern (using the evolved value
o = 0.486) has been analysed further to study the effect
of interlocking timescales. To this end we analysed
both the time series of the population dynamics (prey
and predator density in each of the four species) and
the time series of the evolutionary dynamics (in-
teraction parameters for the resulting four predator—
prey relations) for different mutation frequencies (u)
using spectrum analysis (FFT'). The results, which are
summarized in figure 5, show that both the evol-
utionary dynamics and the population dynamics
consist of a complex periodic behaviour with two
dominant periods. Furthermore, both periods depend
on the mutation rate: high mutation rate gives short
periods, low mutation rate gives long periods (see
figure 5a). The two prey species as well as the two
predator species oscillate synchronously, albeit out of
phase, and this results in an almost stable population
density for total prey and predator (see figure 1: o =
0.5). The alternating pattern and concurrent evol-
utionary and population dynamics cause both predator
species to switch between the two prey species instead
of specializing on one of them. However, when
interaction parameters are averaged over time it
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Figure 5. The effect of mutation rate on the evolutionary and
population dynamics. (a) The two dominant periods in the
dynamics of the four quasi-species: evo/eco (small) (open
circles), evo/eco (large) (filled circles). (b)) The mean
interaction parameters for the four quasi-species: y,, and
V4o (Open circles), y,, and vy,, (filled circles). (¢) The period
of population dynamics in the ecological model that has fixed
interaction parameters (from figure 54): evo/eco (small)
(open circles), evo/eco (large) (filled circles), eco (mean
interactions) (open triangles).

appears that each of the predators does partly specialize
on one of the prey species (see figure 554). This implies
that two predator—prey pairs can be distinguished,
with high average interaction strength within a pair
(open circles) and low average interaction strength
between a prey and predator of different pairs (filled
circles). This difference in average interaction strength
is largest if the mutation rate is high.

(b) Dynamics of non-evolving populations

The population dynamics of this system was studied
in more detail by using an ecological model without
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evolutionary dynamics. The model, which is a deri-
vation of the eco-evolutionary model (1) as presented
above, consists of two prey and two predator species:

AX /At = aX, —bX, (X, + X,) — X, (v, T+ 7. 1) ;
AX, /At = aX,— b Xy (X, 4+ X,) — Xy (Vo1 i+ 750 1) ;
AY /At = —dY +ecY, (v Xy + 70, Xy)
AY, /At = —dY,+ecYy (Y15 X, + 755 X))

This model was studied with parameter setting as in
table 1, and with the mean interaction parameters y as
observed in the eco-evolutionary model for the four
different values of mutation rate u (see figure 5b). The
population dynamics of this ecological model show the
same trend as observed in the eco-evolutionary model:
a large difference between the mean interaction
parameters y (as observed for high mutation rate)
gives a short period, small differences give long periods
(figure 5¢). However, the absolute value of the periods
is much higher in this two-prey—two-predator eco-
logical model than in the eco-evolutionary model.
Therefore, in this case the addition of evolutionary
dynamics to an ecological model does result in
population dynamics with shorter periods.

(¢) Stability of ecosystems

The use of the observed interaction parameters
rather than their averages in this ecological model
results in the extinction of one of the predator—prey
pairs. At any time, therefore, the interaction para-
meters are such that some of the species would
become extinct if the interaction parameters were
invariant over time. Thus, in this stable interlocked
eco-evolutionary attractor ‘ecological’ persistence does
not occur.

5. DISCUSSION

Here, we demonstrated the existence of several
different evolutionary attractors in the eco-evolution-
ary model. Because the alternating pattern has a large
domain of attraction at intermediate degrees of
specialization, it would be interesting to investigate
whether there are any examples in nature that show
such alternating niche-packing along a circular pheno-
type axis (time axis). For instance, it is well known
that in coral reef ecosystems fish species that graze on
coral or algae will actively feed either during the day or
during the night and that predator fish species around
coral reefs forage mainly during the dawn and dusk
(Hobson 1973; Ehrlich 1975). It is possible that this
observed alternating niche-packing could be the result
of elementary self-structuring properties of a system of
coevolving fish species. Once organized in this pattern,
subsequent adaptations to the timing of feeding could
have generated specialized phenotypic properties like
those observed in these fish species.

In our model we observe complex periodic behaviour
during the transient period, before the system organizes
itself into the alternating pattern. Pattern formation in
phenotype space has also been observed in a model
which combines competition and evolutionary dy-
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namics (Maxwell & Costanza 1993). In a model which
studies the influence of predation on aspect diversity in
prey populations, Levin & Segel (1982) estimate the
intrinsic ‘diversity’ wavelength of their system. The
wavelength in our system depends critically on the
degree of specialization (o) and stable solutions with
more than two prey and predator quasi-species exist
when ¢ is sufficiently small. However, preliminary
results indicate that the basin of attraction of these
alternative stable solutions is much smaller than that of
the alternating pattern with two prey and two predator
species. Therefore, the pattern we studied in our system
consists of two coexisting predator species interacting
with the same two prey species.

In a comparable model of predator—prey co-
evolution, Rand et al. (1994) show the existence of one
or more fixed-point equilibria (ESAs) in phenotype
space. The occurrence of simple evolutionary point-
attractors in their model is probably due to the fact
that in their model only the prey species can evolve
whereas the predator species has fixed parameters. Our
study shows the presence of complex (periodic)
evolutionary attractors, if both prey and predators can
evolve.

Comparing the robust attractor of our eco-evol-
utionary model to ecological models of two-prey—
two-predator systems we note that models of two-
prey—two-predator systems can show very complicated
behaviour; a system with two loosely coupled predator—
prey pairs exhibits a wide range of different types of
behaviour: entrainment, period-doublings of cycles,
chaos and intermittency (Vandermeer 1993). Similar
results have been reported for predator—prey systems in
two patches. Here the level of diffusion between the
two patches determines the degree of coupling between
the two predator—prey pairs (Nisbet ef al. 1992;
V. Jansen, unpublished results) and it is interesting
to observe that the pattern formation in our model
together with the evolutionary dynamics prevent the
occurrence of these potentially present types of be-
haviour. A comparable result has been reported by
Kaneko (19894, b)) who used coupled map lattices
(cML) for the study of spatio-temporal chaos and
demonstrated that chaotic behaviour can be suppressed
by spatial pattern selection. The ‘stabilizing’ effect of
evolutionary dynamics has also been reported in a
host—parasite coevolution model with evolvable muta-
tion rates (Kaneko & Ikegami 1992). If here is a
strong interaction between parasites and hosts a high
mutation rate is sustained and the combination of
evolutionary dynamics and chaotic population dyna-
mics results in a system with weak high-dimensional
chaos (‘homeochaos’). Their system shows ‘dynamic
stability” (low-amplitude fluctuations) due to high
mutation rates. Preliminary results of our eco-evolu-
tionary model that incorporates evolvable instead of
fixed mutation rates also show evolution towards high
mutation rates. In the long term, however, branching
of one (ecological) species into two species with
different mutation rates can be observed. Interestingly,
the evolution of low mutation rates only occurs if
o = 0.486, which is the evolved degree of specialization,
whereas the mutation rates remain high if o = 0.5.
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In addition to the above-mentioned spatial organ-
ization, our system also contains temporal organ-
ization. Both prey species as well as both predator
species oscillate with the same period but in opposite
phase, and in our model this drives the evolutionary
dynamics. Pahl-Wostl (1993) shows that temporal self-
organization also occurs in a model of various non-
evolvable predator-prey pairs distributed along a
body-mass axis and that this results in more efficient
utilization of a common resource.

Summarizing our results on the interlocking of
processes that occur on different timescales, we
conclude that it is the evolutionary dynamics which
drive the system into an attractor characterized by two
coupled predator-prey pairs. In this attractor the
oscillatory population dynamics force the evolutionary
dynamics and vice versa. Our model demonstrates that
the traditional separation of ecological and evolution-
ary processes obscures essential properties of the system.
Evolutionary dynamics is essential in order to maintain
the different species in the system.

The authors thank T. Ikegami and Ingrid Seinen for helpful
discussions and Sheila McNab for linguistic advice.
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