FRONTIERS IN SYSTEM MODELLING

Series introduction

The computer simulation enterprise has undergone suc-
cessive waves of transformation (one might even say
revolution) in its short existence. From the analog
modelling of aircraft control systems and the Monte
Carlo simulation of neutron beam trajectories to the
comprehensive ambitions of "world simulationists'
stretches a tremendous span of quantitative and qual-
itative technological developments. Indeed, rapid
expansion of the domain of application of simulation
has been accompanied by steady progress in the
general methodology of simulation.

Flowing somewhat separately from all this is the
systems modelling stream, with all its tributaries,
e.g., general systems theory, systems science, sys-
tems approach. The time has arrived for a dialogue
between the systems scientist and the simulationist.
The concepts, models, and methods of systems theory
are awaiting concrete exploitation. Conversely, the
sheer magnitude of simulation modelling projects
currently being contemplated calls for an organised
attack on the complexity that systems modellers have
been heralding for some time.

Papers in this series aim to bring the reader of
Stmulation in contact with developments in systems
modelling which are particularly relevant to the use

Edited by Bernard P. Zeigler » Wejzmann Institute of Science

of simulation. The concepts and the models of sys-

" tems theory attain their power and generality from

their abstract mathematical cloak. While we cannot
do full justice to these ideas in this series, we do
hope to convey the essentials through illustrative
examples with as little specialised terminology as
possible. The style and length of articles in the
series will parallel those of the Simulation Today
series, emphasizing survey and exposition rather than
first presentation of original research.

I wish to thank the editors of Simulation for opening
up this forum, and I hereby turn to you, the readers,
for submission of articles, comments, and suggestions.

The first article in the series, which begins on this
page, deals with the interface between abstract for-
mal models and high-level simulation languages. The
formal models encourage a structured approach to
simulation modelling. Conversely, the expressive
power of high-level simulation languages reveals

some of the limitations of formal models and stimu-
lates the development of more appropriate concepts
for structuring models. Besides, watching the com-
puter generate lifelike forms is fun!

Bernard P. Zeigler, Editor

Simulating the growth

of cellular forms

PAULINE HOGEWEG received her university education at
the University of Amsterdam (doctoral degree in 1969,
major in biology). In 1976 she received her doctorate
degree from the University of Utrecht (thesis: Topics
in Biological Pattern Analysis). Since 1370 she has
been a staff member at the Subfaculty of Biology of
tne University of Utrecht, with her main field of
research in bioinformatics. Her major interests
inelude pattern generation and pattern recognition.

INTRODUCTION

Organisms grow and develop their characteristic form
by repeated cell divisions. It may be assumed that

this process is regulated by the state of the indivi-
dual cells and their interactions with cells adjacent

.1
LQOJ SEPTEMBER 1978

by

Pauline Hogeweg
Bioinformatica
Subfaculty of Biology
University of Utrecht
Padualaan 8

Utrecht, the Netherlands

to them, that is, in wall-to-wall or wall-fluid con-
tact with them. The myriad patterns of intricate
delicacy apparent in the development of plants and
animals may seem to us marvelously complex; yet it is
conceivable that such growth patterns may be generated
by relatively simple rules which in the case of
organisms we assume to be encoded in each cell's DNA.
Current views attribute a small number of possible
states to a cell and specify its transitions to other
allowed states as a function of the state of the
individual cell and the states of its <nformationally
adjacent neighbours (i.e., those that affect it).°

The study of cellular growth models is an emerging

field called cellular auxology,? and its principal
investigative tool is observing the behaviour of the

Copyright ¢ 1978 by Simulation Councils, Inc.

i

model by interactive computer simulation. Well-known
examples of cellular growth models used in cellular
auxology are based on cellular spaces (cellular
arrays). By studying such systems we hope to gain
insight into the process of cellular growth and pat-
tern generation in simple biological systems.

Today we are still in the stage of formulating and
investigating hypotheses that hinge on simple formal
properties of cellular structures. We therefore
ignore all properties other than those postulated,
including many known to be relevant for the develop-
ment of form in organisms (for example, mass-energy
relations).

Sohnle, Tartar, and Sampson have reviewed cellular
space models, their use in biology, and simulation
systems generally available to study them.8 This
paper reviews some recent work on more general models
of cellular growth. In all earlier work, cellular
models were formulated in such a way that the transi-
tions of all cells were forced to take place simulta-
neously. In this way global control of cellular
events was implicitly introduced, thus restricting
studies to a very limited class of models. In con-
trast we emphasise systems in which cells are granted
various degrees of autonomy. Cell transformations
are therefore not forced to be synchronous, but may
be entirely asynchronous or locally synchronised to
various degrees. These generalisations allow us to
study a larger class of formal properties of cellular
structures. These more general models can be conve-
niently formulated in advanced discrete-event simula-
tion languages such as SIMULA/67.

CELLULAR SPACE SYSTEMS

The first computer experiments to study the growth
of cellular forms were done by Ulam,? using the
cellular space systems of von Neumann!® in which the
cells are finite automata (i.e., their next state is
entirely determined by the current state and the
total input, and there is a finite number of differ-
ent states and transformation functions). Each cell
receives inputs from a small number of other cells.
There is a uniform rule to determine which cells con-
stitute the <nput neighbourhood, i.e., do the sending,
usually the cells immediately adjacent on a two-
dimensional lattice. The next state of the cell is

a function of its state and its inputs, the total
input to any one cell being a function of the states
of the neighbouring cells.

The spatial layout of the cells renders cellular
space systems very convenient for experiments in
pattern generation. Fascinating experiments in such
systems include Conway's Game of Life! and the per-
plexingly simple ''modulo prime' rule for self-repli-
cation (see Figure 1).!1

When one simulates a cellular space system on a
sequential computer, the following problem arises:

As formulated mathematically, the cellular space is
composed of an infinite number of cells (so as not to
preclude unbounded growth). All cells operate in
parallel so that an infinite amount of time is theo-
retically needed to complete the simulation of a
single time step. The obvious way out of this dilem-
ma is to use a finite lattice of cells. But a finite
lattice does not allow simulation of patterns which
expand beyond its original confines.

In 1976 Zeigler suggested a better way; it employs a
next-event simulation strategy.!? His algorithms

(a) (b)

Figure 1 - Self-replication in cellular space systems.
If the state of the cells in the next generation
equals the sum of the states of its adjacent cells
modulo the number of states (which is prime), any
initial configuration will be replicated in a number
of copies equal to the number of adjacent cells
(Winograd)?!!.

(a) Initial configuration
(b) léth generation (4 elephants) and the previous
generation in dots

take into consideration at each time step only those
cells which can possibly change state; these are the
cells which have changed state at the last time step
and the cells they influence. All other cells can-
not possibly change state, since neither they nor
their neighbours have changed at the last time step.
An arbitrary finite configuration of cells (limited
only by the size and speed of the computer) may be
processed in reasonable time, because only "active"
cells (those changing state) are processed at each
time step.

A sketch of a restricted version of such a simulation
algorithm is given in Table 1 using SIMULA/67 as the
language for discrete-event simulation.* In the exam-
ple, CELLS being processed are stored in an array
CELLSTORE. Procedures HASHIN and HASHOUT do the
storing and the retrieval. The arrays XN and YN hold
the coordinates of the neighbours of CELL at the
origin of the lattice. If the currently processed
CELL has spatial coordinates X and Y, then the Ith
neighbour has coordinates X+XNCI) and Y+YNCI) (i.e.,
the arrays XN and YN used in this way contain the
uniform rule for obtaining the input nieghbourhood
mentioned above) and the retrieved STATE is stored in
INPUTCI). After applying the transformation rule
(procedure TRANSFORM), CELLS in STATE 9 are dropped
for further active processing and storage. Such
deleted CELLS are regenerated by any neighbours enter-
ing a nonzero STATE. The simulation will be valid
under the assumption that 9 is a quiescent state,
i.e., if a CELL and all its neighbours are in STATE 9
then it will remain in STATE §. This strategy will
be most efficient when the number of quiescent CELLS

*SIMULA is employed here because of its ability to
capture in high-level statements the very features
characteristic of discrete-event cellular space
models. Detailed comments are provided for those
unfamiliar with SIMULA/67; some familiarity with the
underlying language ALGOL-60 is assumed, but most of
these statements should be self-explanatory.

=1

SIMULATION I-91
| N |

(CELLS in STATE @) is relatively large at each time
step (as compared to the total of ever-active CELLS).

L-SYSTEMS

L-systems are cellular growth systems which were
formulated to model pattern development in organisms.2,¢
There are two main differences between L-systems and
In L-systems new cells are
generated by divieiorn of old celle, and there is no
uniform rule to determine the imput neighbourkood cf

a cell from its spatial coordinates as the imput
ne’lghbourhood is determined by a combination of
Cellular space systems do not

cellular space systems.

position and ancestry.

REF (HEAD) ARRAY CELLSTORE[1:N];

REF (CELL) PROCEDURE HASHOUT(X,Y);

PROCEDURE HASHIN(C); REF (CELL)'C;
BEGIN...END;

INTEGER ARRAY XN, YN[1:NNJ;

INTEGER PROCEDURE TRANSFORM(INPUT, STATED ;
INTEGER ARRAY INPUT; INTEGER STATE;

BEGIN. . .END

PROCESS CLASS CELL(X,Y); INTEGER X,Y;

BEGIN INTEGER STATE,NEWSTATE;

HASHIN (THIS CELL);

NEXT: FOR I:=1 STEP 1 UNTIL NN DO

INSPECT HASHOUTCX+XN[I, Y+YN[1]

WHEN CELL DO INPUT[1]:-STATE

OTHERWISE
BEGIN INPUT[1]:=§

IF STATE#$ THEN

ACTIVATE NEW CELL (X+XN[1],Y+YN[I])

AFTER CURRENT
END;
NEWSTATE : =TRANSFORMCINPUT, STATE);

HOLD(#) ;

STATE: -NEWSTATE; IF STATE#§ THEN BEGIN
HOLD(1); GOTO NEXT; END;

ouT;

rgzﬁ SEPTEMBER 1978
L

involve the creation of new cells but only changes in
the states of the cellular spaces.

The simplest rule of the ancestry/position type

/declares CELLSTORE as a pointer
(called HEAD in SIMULA) to a list
for storing the active CELL

/procedure to retrieve a pointer to
the CELL with coordinates X and Y
from the CELLSTORE

/procedure to store the CELL with
pointer C in CELLSTORE

/arravs to hold the X and Y coordi-
nate of the neighbors of the CELL
at the origin (there are NN of
them)

/procedure which contains trans-
formation rules

/the following code defines CELL as
a SIMULA CLASS, and as subclass of
the building CLASS PROCESS; an un-
limited number of objects of a
CLASS can be generated and can
exist simultaneously in the sys-
tem; each possesses the local
variables of the CLASS definition
(with its own values) and process-
es its code when activated

/the parameter C of HASHIN points
to the present CELL

/the Ith neighbor of the present
CELL is INSPECTed, i.e., variables
refer to the values of that CELL;
in particular STATE is that of
CELL neighbor

/if nc neighboring CELL is found

/STATE refers here to the STATE of
the present CELL

/a new copy of CELL is generated and
will start execution just after
this one is suspended

/apply the transformation rule

/HOLD is a procedure of the CLASS
PROCESS which suspends the current
process for a duration given by
its argument. To simulate simul-
taneous processing, we specify a
zero duration-

/suspend processing for 1 time unit
/inactive CELLs are removed from
CELLSTORE with the procedure OUT
of PROCESS

/when passing the final END, the
CELL is deleted from the system

applies to one-dimensional cell arrays.
if the parent cell divides into two cells, the
daughter cells become neighbours of each other and
each inherits one neighbour of the parent cell.
Branching structures can be created by adding the
possiblity of branching from the main stem; in that
case one of the daughter cells inherits both neigh-
bours of the parent cell, while the other has just
the other daughter cell as neighbour and sticks out

In this rule,

Table 1-

Sketch of a discrete-event simulation
of cellular space systems
(coded in SIMULA/67 with extended comments)

in the environment (see Figure 2). Table 2 shows how
such branching structure-generating L-systems can be
expressed in SIMULA/67.

Comparing the formulation of the cellular space sys-
tem (Table 1) and the L-system (Table 2) we note that
in both cases the system is characterised by the
definition of the behaviour of one of its cells,
given its preceding state and the then-current states
of its informationalneighbours. The entire system is
completely defined by an initial configuration of
cells and the definition of each cell's behaviour.

As major differences between the two definitions (for
cellular space models and L-systems, respectively),
we note the absence in the latter case of a globally
accessible datastructure to store the CELLS (CELLSTORE
of Table 1). Instead, the CELLS in L-systems possess
pointers which identify their neighbours (LN and RN,
for left neighbour and right neighbour in Table 2),
and these pointers are established when a cell
divides. (Cell death is not considered in the exam-
ple, but could be incorporated in a straightforward
way.) Upon cell division a new cell is generated
(C:NEW CELL(CLN,THIS CELL, 1), see Table 2).

]L:lmlnzl

{a) Cell division
lmlpl

Dl

| w [o |

(b) Cell branching

RN l

Ry l

Figure 2 - Cell division and cell branching. The
parent cell P divides into two daughter cells Dl
and D2, inserted in the cellular structure as shown,
by setting the pointer LN and RI of each of the
cells involved to the appropriate cells. Dl is
generated as a new datastructure (C); D2 is gener-
ated by modification of the datastructure of the
parent cell.

INTEGER PROCEDURE TRANSFORM(LS,S,RS);

REF (CELL)C; REAL DT;

PROCESS CLASS CELL(LN,RN,STATE);

REF (CELL) LN,RN; INTEGER STATE;
BEGIN INTEGER NEWSTATE;
NEXT: HOLD(DT);
NEWSTATE : =TRANSFORM(LN.STATE, STATE,
HOLD(#) ;

IF NEWSTATE<2 THEN

INTEGER LS, S,RS;

BEGIN...END; /procedure which contains transforma-

tion rules (dependent on state of
left neighbor, own state, and state
of right neighbor)

/DT=1 for globally synchronized
L-system

/CLASS declaration for CELL

/with parameter pointers LN and RN to
left and right neighbors and a STATE

/each CELL has a local variable
NEWSTATE

/the present CELL is suspended for a
duration DT

/LN.STATE accesses the variable STATE

RN.STATE); of the CELL with pointer LN

/enables correct simulation of
simultaneity

/if no division occurs then

STATE:=NEWSTATE ELSE
BEGIN STATE:=1;

IF NEWSTATE=2 THEN

IF LN.RN=THIS CELL THEN
LN.RN:=C;
ACTIVATE C;
END ELSE;

ACTIVATE NEW CELL(THIS CELL,ENV,1);

Table 2- £
Sketch of discrete-event simulation GOTO NEXT;
of a branching pattern-generating END;

L-system (coded in SIMULA/67)

BEGIN C:-NEW CELLCLN,THIS CELL,1);

/2=code for division to lengthen branch

/C points to a newly generated cell
with the LN of the present CELL as its
left neighbor, and this CELL as its
right neighbor, and STATE=1l (i.e.,
division to lengthen the branch)

/the right neighbor of the left neigh-
bor is set to the new cell C (if it
was the current cell)

/C starts execution now

/a new cell is generated as sidebranch
(i.e., with this CELL as its LN and
the environment as RN, and in
STATE=1), and starts execution now

SIMULATION r931
L d

In the case of lengthening a branch (Figure 2a) this
new cell has the left neighbour of the parent cell as
its left neighbour and has the other daughter cell
(formed by state change out of the parent cell) as
its right neighbour. Moreover, the right neigbour of
the left neighbour of the parent cell is set to the

new cell, and the left neighbour of the other daughter

cell is also set to the new cell. 1In case of branch-
ing (Figure 2b) the new cell has the other daughter
cell as its left neighbour and has the enviromnment as
its right neighbour (compare Figure 2). The absence
of a globally accessible datastructure implies that
L-systems are not explicitly spatially embedded;
therefore additional conventions are needed for
spatial representation,3

Figure 3 - Three forms generated by the same set of
transformation rules but different timing regimes:
(a) Globally synchronous timing regime (L-system)
(b) Locally synchronised timing regime
(c) Partially asynchronous timing regime

Hogeweg and Hesper3 reported on form-generation
experiments with L-systems, employing the basic
scheme sketched in Table 2. The forms generated by
a class of very simple transformation rules are
strikingly complex. As illustrated in Figure 3a,
the branching structures are remarkable in their
lifelike appearance. Very distinct types of forms
are generated by different classes of transformation
rules, and there is a marked appearance of distinct
substructures (e.g., 'flowers' -of Figure 2a).

Vie stress that we regard these models as being of

heuristic interest for the study of plant development.

By studying them we try to perceive relationships
between characteristics of the forms and the proper-
ties of the transformation rules.3,% Since these
models ignore all physiological particularities of
organisms, they must be viewed as models for develop-
ing cellular forms, not for developing organisms.
Nevertheless, to study biological development, we
shall need a well-understood theory of form develop-
ment for systems which share some of the properties
of biological systems (e.g., cellularity). As such,
the above systems are of heuristic interest for
studying the development of biological forms.

Comparing the properties of L-systems with those of
cellular space systems with respect to their useful-
ness in heuristic biological modelling, we note:

=
L4

SEPTEMBER 1978

-

(1) Cell 'birth' and cell 'death' are directly rep-
resentable in L-systems, but can be simulated
only awkwardly in cell space systems when biolo-
gical constraints for descendence and connectiv-
ity are imposed (see Ransom’ for one approach).

(2) The dependence of the input neighbourhood on
ancestry is an attractive feature for modelling
plant development because cell-fluid contact is
indeed maintained between neighbouring cells
which replace a parent cell, but neighbouring
cells which 'meet' later in their lifetime are
not in effective contact because they will have
developed too thick a cellulose wall by that
time. It has not been properly recognised,
however, that this property applies exclusively
to plant development and not to animal develop-
ment. In animals cell-to-cell communication may
be established between cells not related by com-
mon ancestry, and conversely, since cells move
relative to one another, common ancestry does
not necessarily imply common communication links.

(3) Both L-systems and cellular space systems enforce
a global simultaneity of (active) cell transfor-
mations. Such a rigic synchronous operation of
cells is not a feature of biological systems.
Models of biological systems which try to estab-
lish relatively simple growth rules operating on
cells with very few states and very few neigh-
bours are severely hampered by this imposed syn-
chronicity. Asynchronous cell systems may be
simulated by synchronous ones only by greatly
increasing the number of states and neighbours.

ASYNCHRONOUS AND LOCALLY SYNCHRONISED CELLULAR SYSTEMS

In all cellular growth models, cells are assumed to

be autonomous units and the transformation of the
entire array of cells is defined by the transforma-
tions of the individual cells. However, the synchron-
icity of cell transformations assumed in the foregoing
growth models introduces an implicit global control,
which contradicts the autonomy of cells. Moreover,
such global control is assumed to be absent in, e.g.,
biological systems, and as mentioned above, asynch-
ronous systems can be simulated by synchronous ones
only at the cost of a large increase in the number

of states. Therefore it is important to investigate
the effect on generated forms of relaxing the con-
straint of global synchronicity. For this purpose we
defined asynchronous and locally synchronised ver-
sions of L-systems in such a way that the globally
synchronous systems were retained as a limiting case.®

In asynchronous systems the time delays between
transformations (DT in Table 2) are subject to varia-
tion from cell to cell and from one transformation to
the next, as opposed to the globally synchronous case
in which it was fixed and equal for all cells. A
finite retention time between the determination and
the execution of the transformation is maintained.
Various amounts of synchronisation are obtained by
varying these two time delays relative to one another.
The effect of moderate asynchronisation is shown in
Figure 3c. Asynchronisation leads in this case to
deterioration of the distinct substructures in the
branching pattern.

Asynchronous systems are the extreme opposite of the

globally synchronous systems we started with. We can
back up from this extreme by introducing the possibil-
ity of local synchronisation. In locally synchronised
systems, a cell which is about to change state immedi-

44/

)

2]

ately notifies its neighbours before actually carry-
ing out its change. Each neighbour checks to see if
under the current circumstances it would also change
state and, if so, immediately passes this information
on to its neighbours, and so on. After such signaling
is completed, all the cells involved change state
simultaneously. Table 3 shows how this is expressed
in SIMULA/67.

Such locally synchronised systems do not simulate
globally synchronous systems faithfully; in the next
time step the cell which caused the signal to stop
has a neighbour on one side which has undergone one
or more transformation than the neighbour on the
other side. The amount of synchronisation achieved
by such a regime is strongly dependent on the particu-
lar transformation rules of the system and may vary
greatly from one time step to the next.>

A "Watch out! I am going to change my state" syn-
chronisation signal contrasts with a second possible
modification of the asynchronous systems in which a
"Watch out! I have changed my state' is passed on to
the neighbours after completion of the state transfor-
mation. Such systems are called locally activated
systems. In these, a change in the cell's state causes
immediate notification of the neighbouring cells,
which employ the new state of the cell which notifies
them in determining their next state transformation.
Such locally activated systems are attractive for
biological modelling in which changes in cell states,
particularly if the change is cell division, may
necessitate neighbouring cells' doing the same to

-the development of specific forms.

avoid ripping of the cellular structure (Korn,
personal communication).

As illustrated in Figure 3b, we found that both local
regimes (synchronised and activated) tend to restore
the generation of distinct substructures in the
branching structures as compared to the asynchronous
case.

To sum up our experiments, we foind that a change in
the timing regime greatly influences the shape of the
individual branching patterns generated by a specific
set of transformation rules. Therefore, consideration
of the timing regime is obligatory when modelling
However, the
general properties found in previous experiments on
globally synchronous systems (i.e., the striking
complexity and lifelike appearance of the patterns
generated by very simple rules, and the distinctness
of the different forms and of the substructures) are
retained in the asynchronous variants. This is true
to a greater extent for locally synchronised and
locally activated systems than for the partially
asynchronous systems. This was to be expected
because the transformations of the cells are locally
determined and therefore more influenced by local
synchronisation than by partial synchronisation of
remote cells.

DISCUSSION

The morphology of organisms may seem to us marvel-
lously complex. One of the central questions of
biology (and for that matter, of science in general)

PROCESS CLASS CELL (LN,RN,STATE);
REF (CELL) L.,RN; INTEGER STATE;

BEGIN INTEGER NEWSTATE;

REF (HEAD) BRANCHES;
REF (LINKAGE) BR;
BRANCHES : -NEW. HEAD

NEXT: DT:=NORMAL(MEAN VARIANCE,U);

/identical to CELL of Table 2
/pointer to list of sidebranches
/pointer to sidebranch

/list for sidebranches is initiated

/DT is computed

IF DT>@ THEN HOLD(DT);

NEWSTATE: =TRANSFORM(LN.STATE, STATE, /as in Table 2

RN.STATE);

IF NEWSTATE=STATE THEN GOTO NOINT;

IF STATE=1 AND NEWSTATE>1 THEN GOTO /synchronization signal is not passed

NOINT;

on if the STATE does not change

@ 1F RN=/=ENV AND RN.EVTIME>TIME THEN /check against cyclic reactivation;

REACTIVATE RN DELAY # PRIOR;

no reactivation if the cell is
already scheduled for this exact time

/the right neighbor is reactivated

with priority

IF LN=/=ENV AND LN.EVTIME TIME THEN

REACTIVATE LN DELAY # PRIOR;

/same for left neighbor

BR:BRANCHES;

/BR points to beginning of list

FOR BR:-BR.PRED WHILE BR=/=NONE DO
INSPECT BR WHEN CELL DO
1F EVTIME>TIME THEN

REACTIVATE THIS CELL DELAY # PRIOR /all sidebranch CELL in contact are

Table 3-

Cell definition for branching patterns
generated by locally synchronized
systems (coded in SIMULA/67)

NOINT: HOLD(@);

reactivated

/delay to enable parallel processing

<continued like CELL in Table 2>

TION r-95-'
SIMULA L35

is how to decompose such complexity into simple
interacting components such that these components
generate the perceived complexity. The models dis-
cussed in this paper address this general question
‘by studyving the forms generated by certain simple
interacting components which satisfy some of the con-
siraints that seem reasonable for organisms. That

is not to say that any of these forms exist in nature.
However, the successive generalisations starting with
the classical cellular space systems and going from
them to L-systems and then to locally synchronised
cell-development systems incorporate progressively
fewer properties which are unreasonable for biologi-
cal systems. The cell structures obtained using
these generalisations have progressively increasing
heuristic value for understanding biological struc-
tures, even though the models contain little or no
biclogical information about particular mechanisms or
particular organisms. That was not their purpose.

The generalisation of L-systems to partially asyn-
chronous, locally synchronised, and locally activated
systems was caused by the implementation of a simula-
tion system for L-systems in the heterarchical (as
opposed to hierarchical) discrete-event simulation
medium provided by SIMULA/67. This simulation system
was initially meant to be merely a programming exer-
cise, but it showed us that cells could be explicitly
programmed as autonomous units in this medium, and it
made apparent the artificiality of globally synchron-
ised cell transformations. In contrast, cellular
spaces, L-svstems, and discrete time-step systems
generally force the cells to be conceived of as
'slaved' parts of the whole and are therefore implic-
itly holistic. Uncovering this implicit holistic
coricept in models employing synchronous operation is
an important finding because cellular models are
often used as examples to show that simple Zocal con-
trol may result in a seemingly complex global pheno-
menon.

In my view a primary function of simulation modelling
is to help the modeller convert his vague ideas of
what the model should look like into an explicit
unambiguous form: a model expressed as a computer
program. The medium in which the model is expressed
is of crucial importance because it guides the initial
formulation of the model and determines which exten-
sions are conceptually 'easy.' The medium to express
simulation models is commonly called language, but

its essential features are not so much those which
computer languages share with natural languages, but
rather the control and datastructures the computer
language provides. With respect to control and data-
structures, natural languages do not differ very much,
but computer languages do. Therefore different simu-
lation languages provide different thinking media,
which profoundly influence our ways of thinking and
our choice of models.

r95-|
L J SEPTEMBER 1978

ACKNOWLEDGEMENTS

My ideas about auxology and about simulation have
taken form in discussions with Dr. B. Hesper.

Dr. B.P. Zeigler encouraged me to proceed along the
line of asynchronisation of cellular systems and
suggested local synchronisation as a mechanism to
investigate.

REFERENCES

1 GARDNER, K.
The Fantastic Combination of John Coway's New
Solitary Game "Life"
Sctentific American October 1670 pp. 120-123

2 HERMAN, G.T. LIU, W.H.
The Daughter of CELIA, the French Flag, and the
Firing Squad
Sim:lation vol. 21 mo. 2 August 1973
pp. 33-41

3 HOGEWEG, P. HESPER, B.
A Model Study on Biomorphological Descripiion
Pattern Recognitior vol. 6 1974 pp. 165-179

4 HOGEWEG, P.
Topies in Biological Pattern Analysis
PhD dissertation Bioinformatica University of
Utrecht the Netherlands 1976

5 HOGEWEG, P.
Locally Synchronized Developmental Systems:
Coneeptual Advantages of Discrete-Event Formalism
In B.P. Zeigler, editor, Froniiers in Systems
Modelling (in press)

6 LINDENMAYER, A.
Mathematical Models for Cellular Interactions in
Development., I: Filaments with One-Sided Imput.
IT: Simple and Branching Filaments with Two-Sided
Inputs
Journai of Theoretical Biology vol. 18 1968
pp. 280-312

7 RANSOM, R.
A Computer Model of Cell CGrowth

Simulation vol. 28 no. 2 February 1977
center insert

8 SOHNLE, R.C. TARTAR, J. SAMPSON, J.R.
Requirements for Interactive Simulation Systems
Simulation vol. 20 no. 5 May 1973
pp. 145-151

9 ULAM, S.M.
On Some Mathematical Problems Connected with
Patterns of Growtn of Figures
Reprinted in Burks, editor, Essays in Cellular
Automata (University of Illinois Press, Urbana,
1970)

10 von NEUMANN, J.
Theory of Self-Reproducing Automata
University of Illinois Press Urbana 1960

11 WINOGRAD, T.
A Simple Algorithm for Self-Replication
MIT MAC Memo 198 1970

12 ZEIGLER, B.P.
Theory of Modelling and Simulation
Wiley New York 1976

1?7

