Chapter 5:

Antigen Recognition by T Lymphocytes

© Garland Science 2009

Recap of chapter 3

- What's the difference between the innate and adaptive immune system?
- In which way are the epitopes of B and T cells different?
- What does that imply for their role in the immune response?

2

Antigen recognition by B cells

And by T cells...

Antibodies and T-cell receptors have a similar structure

The T-cell receptor resembles a membrane-associated Fab fragment of immunoglobulin.

T-cell receptor diversity is generated by gene rearrangement

Germline organization of TCR α and β

Rearrangement of the segments necessary to produce a functional receptor.

 α -chain consists of **V** and **J**, β of **V**, **D**, and **J**

6

Gene rearrangement similar for generation of T cell receptors and immunoglobulins

Main difference:

T cell receptor C region simpler: only one $C\alpha$ gene

Rearrangement of immunoglobulin genes occurs in the bone marrow, rearrangement of T cell receptor genes in the thymus.

U

The RAG genes were key elements in the origin of adaptive immunity

Figure 5.5 The Immune System, 3ed. (© Garland Science 2009)

RAG genes lack introns and resemble the transposase gene of transposons. Important for function: Recombination process results in an excision circle rather than a linear (and potentially harmful) element.

9

The magnitude of potential B and T cell receptor diversity

Element	Immunoglobulin		α:β T-cell receptors	
	Н	к+λ	β	α
Variable segments (V)	40	70	52	~70
Diversity segments (D)	25	0	2	0
D segments read in three frames	rarely	-	often	-
Joining segments (J)	6	5(κ) 4(λ)	13	61
Joints with N- and P-nucleotides	2	50% of joints	2	1
Number of V gene pairs	1.9 x 10 ⁶		5.8 x 10 ⁶	
Junctional diversity	~3 x 10 ⁷		~2 x 10 ¹¹	
Total diversity	~5 x 10 ¹³		~10 ¹⁸	

Evolution of RAG reflects the evolution of adaptive immunity

Thompson et al. (1995), Immunity 3:531-539

10

The magnitude of potential B and T cell receptor diversity

Element	Immunoglobulin		α:β T-cell receptors				
Element	н	к+λ	β	α			
Variable segments (V)	40	70	52	~70			
Diversity segments (D)	25	0	2	0			
Somatic recombination results in combinatorial & junctional diversity							
Joints with N- and P-nucleotides	2	50% of joints	2	1			
Number of V gene pairs	1.9 x 10 ⁶		5.8 x 10 ⁶				
Junctional diversity	~3 x 10 ⁷		~2 x 10 ¹¹				
Total diversity	~5 x 10 ¹³ ~10 ¹⁸		0 ¹⁸				

CDR3 analysis of specific T-cells

Vβ	CDR3 (AA)	Јβ	%
7.2	CASSLVLSSPTYYEQYF	2.7	51.8
3.1	CASSQTTSVNTEAFF	1.1	15.3
27	CASSSLNTEAFF	1.1	5.9
11.2	CASSHVINQFF	2.1	4.7
7.9	CASSLPRGRDNEQFF	2.1	4.7
11.2	CASSLGTGHNEQFF	2.1	3.5
5.6	CASSSNRDRNTIYF	1.3	2.4
7.9	CASSLGLGVNNEQFF	2.1	2.4
7.9	CASSSTGPGNSPLHF	1.6	2.4
29.1	CSVSAGEEDTQYF	2.3	1.2
4.2	CASSQVQGTSGGEQYF	2.7	1.2
12.3	CASSSMVAGEYEQFF	2.1	1.2
7.2	CASSLVVIQETQYF	2.5	1.2
7.9	CASSPSKPGDNEQFF	2.1	1.2
7.2	CASSPSKPGDNEQFF	2.1	1.2

13

What do you think happens to an individual who lacks RAG?

T cell responses against different viruses

14

A defect in V(D)J recombination results in severe immunodefiency

SCID = Severe combined immunodeficiency syndrome

- absence of adaptive immunity
- May be caused by mutations in at least 13 different genes, e.g. the RAG genes.
- fatal in the first 2 years of life because of opportunistic infections
- Therapy only possible if diagnosis is made at birth or shortly thereafter.
- Therapy in the form of bone marrow stem-cell transplantation

Buckley (2010) Immunol Res. 49(1-3):25-43

The composition of the T cell receptor complex

Expression of the T cell receptor on the cell surface requires association with additional proteins

17

T cells function by interacting with other cells

A distinct population of T cells expresses a second class of T-cell receptor with γ and δ chains

T cells either express $\alpha\beta$ receptors or $\gamma\delta$ receptors! Never both!

18

MHC class I presents peptide antigens to CD8 T cells MHC class II presents peptide antigens to CD4 T cells

MHC = major histocompatibility complex

The two classes of MHC molecules have very similar structures

21

MHC molecules bind a variety of peptides

22

Processing of antigens which bind to MHC class I or II occurs in different cellular compartments

Processing of antigens which bind to MHC class I or II occurs in different cellular compartments

In infected tissue, cells switch to immunoproteasome for protein degradation

Klein et al. (2009), Nat Rev Immunol 9(12):833-44

25

MHC class I binds peptides as part of a peptide-loading complex

26

In the ER, peptides may be further trimmed from the N-terminal end by an amino peptidase

The MHC class II antigen processing pathway

MHC class II molecules are prevented from binding peptides in the endoplasmic reticulum by the invariant chain

CLIP = class II-associated invariant-chain peptide

Cross-presentation by dendritic cells

Differential expression of MHC class I and II molecules

The major histocompatibility complex

- · Cluster of closely linked genes on chromosome 6
- Numerous genetic variants of MHC class I and II present in the human population
 - => diversity due to multigene families and genetic polymorphism

The human MHC: human leukocyte antigen (HLA) complex

31

Most of the genes in the HLA class II region are involved in the processing and presentation of antigens to T cells

Human MHC regions differ in their number of DR genes

33

copy number variation in concert with polymorphism **Human MHC class I isotypes**

Diversity of HLA molecules in human population is caused by

HLA polymorphism Number of allotypes **HLA locus** MHC class 872 MHC c 274 class I 4 10 G DMA DMB 7 DOA 3 DOB 4 DPA1 15 DPB1 114 MHC class II DQA1 25 DQB1 66 DRA 2 DRB1 466 DRB3 37 DRB4 7 DRB5 15

Genetic mechanisms that generate new MHC polymorphisms

Figure 5.34 The Immune System, 3ed. (© Garland Science 2009)

MHC polymorphism affects the binding and presentation of peptide antigens to T cells

Peptide binding motifs of some HLA class I and II allotypes

A great variety of binding motifs...

Seemingly small differences may have a big impact on the peptide binding motif!

T cell recognition of antigens is MHC restricted

But: Some T cells are alloreactive => problem for organ and bone marrow transplantations!

41

Nobel Prize Medicine 1996

Peter Doherty (1940 -) and Rolf Zinkernagel (1944 -)

42

Peptide determines TCR diversity

MHC molecules are expressed in a codominant fashion.

Which consequences does that have for an individual?

Heterozygous individuals are able to present a more diverse set of peptides to their T cells

45

47

HLA heterozygosity delays the progression to AIDS

Carrington et al. Science 1999;283:1748-1752

46

Exposure to pathogens shapes MHC gene frequencies

=> Balancing selection maintains diversity of HLA allotypes in populations

Worldwide HLA class I diversity

Nature Reviews | Immunology

Goulder & Watkins (2008) Nat Rev Imm. 8:619-630

HLA-association with HIV-1 disease outcome

- · HIV-1 viral load roughly predicts speed of disease progression
- Specific HLA class I molecules have been associated with either slow or fast progression to AIDS

51

Another important role of MHC class I molecules?

Some of them serve as ligands for NK cell receptors.

Another important role of MHC class I molecules?

50

NK cell receptor genes cluster in two different regions of the human genome

A variety of inhibitory and activating receptors allows NK cells to identify infected cells.

CD94:NKG2A recognizes HLA-E in complex with a peptide derived from the leader sequence of HLA-A, -B or -C molecules.

HLA-E is non-polymorphic and has a restricted specificity for peptides

HLA-E exclusively binds a peptide derived from the leader sequence of HLA-A, -B, and -C molecules.

The amount of HLA-E on the cell-surface is a measure of the amount of HLA-A, -B, and -C produced by the cell.

54

Clever viral evasion of NK cell response

Special function of NK cells: detect missing self

KIR bind to the same face of the MHC class I molecules as the T cell receptor

