
In 1975, Köhler and Milstein published their seminal 
manuscript on hybridoma technology enabling the 
production of mouse monoclonal antibodies (mAbs)1,2. 
Since then, technical advances have allowed the transi-
tion from mouse, via chimeric and humanized, to fully 
human mAbs3,4, with a reduction in potentially immu-
nogenic mouse components (FIG. 1a). This has led to 
mAbs having marked successes in the clinic5,6 (TABLE 1). 
Indeed, the US Food and Drug Administration has now 
approved more than 20 mAbs, and more than 150 other 
mAbs are currently in clinical trials7.

Among the advantages of protein therapeutics such as 
mAbs over conventional low-molecular-mass drugs are 
their high specificities, which facilitates precise action, 
and their long half-lives, which allows infrequent dos-
ing8. Furthermore, molecular engineering technologies 
have enabled the structure of mAbs to be fine-tuned for 
specific therapeutic actions and to minimize immuno-
genicity9–12, thus improving their risk–benefit ratio. This 
is reflected in mAbs having approval rates of around 20% 
compared with 5% for new chemical entities5,7. However, 
in addition to a range of adverse events that may be gen-
erally associated with therapeutic mAbs, there are also 
adverse effects that are related to the specific target or 
mechanism of action13.

A review of safety-related regulatory actions performed 
for biologics approved between January 1995 and June 
2007 (REF. 14) demonstrated that safety problems often 

relate to immunomodulation and infection. Moreover, 
those biologics that were first-in-class to obtain approval 
have greater regulatory actions. European registers of 
biologics have proved to be useful new tools for pharma-
covigilance15. In the case of mAbs directed against tumour 
necrosis factor (TNF), registers have been initiated by aca-
demics associated with national rheumatology societies 
and been sponsored by the pharmaceutical industry.

Antibodies operate through various mechanisms16 
(FIG. 1b). When the Fab part of an antibody binds to the 
antigen it blocks its interaction with a ligand. Signalling 
occurs when the binding of the antibody to a recep-
tor delivers an agonist signal. These functions can be 
independent of the Fc part of the molecule (although 
inter actions of the Fc portion with other molecules can 
enhance these mechanisms). In addition, the antibody 
can exert actions through its Fc region: these include 
antibody-dependent cell-mediated cytotoxicity, comple-
ment-dependent cytotoxicity and antibody-dependent 
cellular phagocytosis. Furthermore, the constant heavy-
chain domain regions (CH2 and CH3) of Fc on immuno-
globulin G (IgG) interact with the neonatal Fc receptor 
(FcR) to influence transport of IgG across cellular barriers 
and regulate the circulating levels of the antibody thus, 
extending its half-life17. Recruitment of these effectors is 
dependent on the isotype of the antibody, and its ability  
to recruit complement or effector cells. IgG1 is the most 
commonly used subclass of Ig to trigger cell death.  
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Abstract | Monoclonal antibodies (mAbs) are now established as targeted therapies for 
malignancies, transplant rejection, autoimmune and infectious diseases, as well as a range of 
new indications. However, administration of mAbs carries the risk of immune reactions such  
as acute anaphylaxis, serum sickness and the generation of antibodies. In addition, there are 
numerous adverse effects of mAbs that are related to their specific targets, including 
infections and cancer, autoimmune disease, and organ-specific adverse events such as 
cardiotoxicity. In March 2006, a life-threatening cytokine release syndrome occurred during a 
first-in-human study with TGN1412 (a CD28-specific superagonist mAb), resulting in a range 
of recommendations to improve the safety of initial human clinical studies with mAbs. Here, 
we review some of the adverse effects encountered with mAb therapies, and discuss advances 
in preclinical testing and antibody technology aimed at minimizing the risk of these events.
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In cases where cytotoxicity is not wanted, IgG4 is com-
monly used as its Fc region is relatively poor at inducing 
antibody-dependent cell-mediated cytotoxicity or com-
plement-dependent cytotoxicity. It is also possible to 
modify the Fc region (for example, by removing carbo-
hydrates) to further minimize recruitment of comple-
ment or effector cells. omalizumab (Xolair; Genentech, 
Novartis) is a humanized IgE-specific mAb for severe 
allergic asthma that has been developed to target free IgE 
and membrane-bound IgE, but designed not to target 
IgE that is bound to IgE FcRs on mast cells, and thus not 
to trigger mast-cell degranulation18.

When developing therapeutic mAbs, the choice of IgG 
subclass is important, especially in oncology. In this case, 
IgG1 has the maximum potential for antibody-dependent 
cell-mediated cytotoxicity and is therefore ideal for 
eliminating cancer cells. By contrast, IgG3 is seldom 
used for therapeutic mAbs as the long hinge region is 

prone to proteolysis and causes a decreased half-life19. 
Glycosylation of the Fc portion of IgG mAbs is essential 
to activate some effector functions, and cellular engi-
neering can be used to generate selected glycoforms of 
antibodies20. Interestingly, IgG4 may have the potential 
to activate inflammatory reactions through FcRs21, and 
IgG4 can exhibit dynamic dissociation and exchange of 
the Fab arm22.

This Review discusses a range of adverse effects 
encountered with mAb therapy, some of which have 
been fatal, together with strategies to minimize these 
events23. We consider adverse events that have been 
documented for licensed mAbs (TABLE 1), as well as 
examples of side effects found during exploratory clin-
ical studies with mAbs. of particular concern is that 
some of the severe adverse effects of biologics that were 
recently encountered were not anticipated from the 
currently available preclinical screening tools24,25 and 

Figure 1 | Development of monoclonal antibodies: structure and function. a | Schematic structure of an 
immunoglobulin G (IgG) monoclonal antibody (mAb). There has been progressive development from murine mAbs, to 
chimeric mAbs (with murine variable (V) regions grafted onto human constant (C) regions), to humanized (which consist 
of a human Ig scaffold with only the complementarity-determining regions (CDRs) being of murine origin), to the recently 
generated fully human mAbs. The CDRs within the Fab region of a mAb bind to specific targets and cause antagonism or 
signalling. The Fc region of a mAb is composed of the hinge and constant heavy-chain domains (C

H
2 and C

H
3) and has 

other functions, such as complement fixation or binding to Fc receptors. The nomenclature of mAbs reflects the type of 
mAb; for example, ‘xi’ in rituximab indicates that it is a chimeric mAb. b | Functions of mAbs, which include antagonism 
and signalling, are controlled by specific CDRs within the Fab region. Certain mAbs can specifically bind to either a ligand 
— for example, infliximab and omalizumab  — or to a receptor — for example, natalizumab and daclizumab — and 
thereby prevent stimulation. By contrast, other mAbs can specifically induce signal transduction by binding to a receptor. 
TGN1412 is a CD28 superagonist (CD28SA), which means that ligation of the T-cell receptor is not required for T-cell 
activation. Functions of mAbs controlled by the Fc region include complement-dependent cytotoxicity (CDC), 
antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (not shown). 
Certain mAbs can lyse cells (for example, T cells or B cells) through complement activation, whereas other mAbs can bind 
to Fc receptors and mediate cell lysis. Neonatal Fc receptor binding controls transport of IgG across cell barriers and 
influences the half-life of a mAb. C

L
, constant light region; V

H
, variable heavy region; V

L
, variable light region. Panel b is 

modified, with permission, from REF. 16 © (2008) Lancet Publishing Group. 
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Serum sickness
A delayed reaction (generally 
over 4–10 days) to serum 
proteins or monoclonal 
antibodies, consisting of a 
hypersensitivity reaction with 
immune-complex generation 
and vascular damage in the 
skin, joints and kidneys.

Tumour lysis syndrome
(TLS). A group of metabolic 
complications that can occur 
after treatment of cancer, 
usually lymphomas and 
leukaemias. It is generally 
caused by therapy that 
initiates the acute breakdown 
of cancer cells. The resultant 
biochemical abnormalities can 
cause kidney damage and 
acute renal failure.

Cytokine release syndrome
(CRS). Also known as cytokine 
storm. An uncontrolled 
hypercytokinaemia that results 
in multiple organ damage and 
can be associated with 
monoclonal antibody therapy, 
infections and cytokine 
therapy.

Anaphylaxis
A generally immediate and 
rapid loss of blood pressure 
(hypotension) due to a 
type 1 immunoglobulin 
E-mediated hypersensitivity 
reaction.

animal models26,27. With this in mind, we discuss adverse 
events, including exaggerated pharmacodynamic effects 
and mechanism-of-action-related effects, occurring 
with mAbs in clinical trials, and potential strategies to 
reduce the likelihood of such adverse events.

Immune reactions
mAbs are generally well tolerated in humans, despite 
containing elements that may be recognized by the 
recipient as foreign and can therefore cause activation of 
immune and innate reactions28. Acute reactions follow-
ing infusion of mAbs can be caused by various mecha-
nisms, including acute anaphylactic (IgE-mediated) 
and anaphyl actoid reactions against the mAb, serum 
sickness, tumour lysis syndrome (TlS) and cytokine release 
syndrome (CRS). The clinical manifestation can range 
from local skin reactions at the injection site, pyrexia 
and an influenza-like syndrome, to acute anaphylaxis and 
systemic inflammatory response syndrome, which could 
be fatal.

Infusion reactions commonly occur after initial dos-
ing29–31, but these can be managed by recognition of risk 
factors, appropriate monitoring and prompt intervention32. 
First-dose infusion reactions to some mAbs may combine 
TlS, CRS and systemic inflammatory response syn-
drome, as exemplified by rituximab (Rituxan/MabThera; 
Genentech, Biogen Idec) a chimeric CD20-specific mAb33. 
These initial reactions can be minimized by ensuring 
appropriate hydration and diuresis, premedication and 
cautious incremental increases in the rate of infusion.

Acute anaphylactic and anaphylactoid reactions are 
commonly described for certain mAbs such as the chi-
meric epidermal growth factor receptor (EGFR)-specific 
mAb cetuximab (Erbitux; Bristol–Myers Squibb, ImClone 
Systems, Merck Serono), which has been attributed to the 
development of IgE antibodies against galactose-α-1,3-
galactose34. omalizumab, as mentioned above, is directed 
against human IgE and is used in the treatment of severe 
allergic asthma35,36, but it has been found to cause  
anaphylaxis in approximately 0.1–0.2% of patients37–39 
— this includes cases with delayed onset of symptoms40. 
The mechanisms underlying these acute reactions with 
omalizumab are still poorly understood.

A major restriction with mouse mAb therapy is the 
immunogenicity of the foreign protein, resulting in 
adverse effects and loss of efficacy41. Muromonab-CD3 
(also known as orthoclone oKT3) is a mouse mAb 
against human CD3 that was used to suppress renal allo-
graft rejection42, but it can cause CRS43. It can also cause 
an acute and sometimes severe influenza-like syndrome, 
which may be due in part to an interaction with human 
anti-mouse antibodies44–46. In patients with relapsed B-cell 
malignancies human anti-mouse antibodies to therapeu-
tic mAbs can confer survival benefit47. With development 
of modern chimeric, humanized and fully human mAbs 
(FIG. 1a), it is still possible to generate human anti-human 
antibodies against the idiotype. Indeed, it has been noted 
that immunogenicity of a mAb is not simply a matter 
of the percentage homology with human antibody48, as 
alterations in particular amino acids at certain positions 
can also influence immunogenicity.

Natalizumab (Tysabri; Biogen Idec, Elan pharma-
ceuticals) is a humanized mAb against the adhesion 
molecule α4 integrin, which, when used as a T-cell-
directed therapy for multiple sclerosis, causes severe 
hypersensitivity reactions in up to 1% of subjects. It can 
also cause mild-to-moderate infusion reactions (such as 
urticaria or rash) in about 4% of patients49. These reac-
tions generally occur in the first 2 hours after infusion, 
and are more common after the second or third infusion 
but usually less severe. Immunogenicity to natalizumab, 
with persistent neutralizing antibodies, is associated with 
both reduced efficacy and infusion reactions in patients 
with multiple sclerosis50.

Serum sickness is well described for antisera51, and 
both anaphylaxis and serum sickness can also be caused 
by mAb therapy; this has been noted especially for 
chimeric mAbs52.

There are now methods to minimize the immuno-
genicity of mAbs53, as well as for the assessment of their 
immunogenicity54, with TNF-specific mAbs being an 
area of particular focus55. The European Medicines 
Agency (EMA) has issued guidelines for the assess-
ment of immuno genicity of biologics56, and recently 
issued a concept paper on immunogenicity assessment 
of mAbs57.

TlS is a potentially life-threatening complication 
that can occur early with mAb therapy for neoplastic 
conditions, although this lysis is related to the desired 
effect of the agent58,59. The condition has been noted 
with rituximab for chronic lymphocytic leukaemia 
and different lymphomas60. Although guidelines have 
been issued for the management of paediatric and adult 
TlS58, these have attracted criticism for not being suffi-
ciently evidence-based61. The initial focus should be on 
preventing TlS.

Infections
Infectious diseases are a well-described side effect of 
certain mAbs, and they are a reflection of an acquired 
immunodeficiency, generally due to removal of the 
target ligand for that mAb. Indeed, particular types of 
infections illustrate the protective function of the tar-
get ligand in the normal immune system, and provide 
insights into the function of this molecule to combat 
particular pathogens.

Reactivation of tuberculosis. Therapy directed against 
the pro-inflammatory cytokine TNFα has contributed 
greatly to the management of severe rheumatoid arthritis 
and other arthritides13,62–64. However, the tendency for 
reactivation of latent tuberculosis (presumably due to a 
key role for TNFα in immunity to Mycobacterium tuber-
culosis) is a serious and limiting side effect65,66. In a meta-
analysis, TNF-specific mAb therapy has been associated 
with an increased risk of serious infections and malig-
nancies67. However, in a large cohort of elderly patients 
with rheumatoid arthritis there was no increase in seri-
ous bacterial infections68.There is an increased risk of 
tuberculosis in patients with inflammatory bowel disease 
treated with TNF-specific mAbs69; although the chimeric 
mAb infliximab (Remicade; Centocor ortho Biotech) 
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Table 1 | Side effects of licensed monoclonal antibodies

Target mAb Type FDA approval indications* selected side effects

Platelet 
glycoprotein 
IIb/IIIa 

Abciximab 
(ReoPro; 
Centocor Ortho 
Biotech, Eli Lilly)

Chimeric 
antibody 
fragment: 
c7E3 Fab

1994 • Prevention of ischaemic 
cardiac complications  
of percutaneous 
coronary interventions 
and  unstable angina 

• Hypersensitivity and immunogenicity
• Increased risk of bleeding 
• Thrombocytopaenia

Tumour necrosis 
factor-α

Adalimumab 
(Humira; 
Abbott)

Fully human 2002 • Rheumatoid arthritis
• Ankylosing spondylitis
• Psoriasis
• Psoriatic arthritis
• Crohn’s disease  
• Ulcerative colitis

• Infusion reactions and immunogenicity
• Hypersensitivity reactions
• Immunosuppression and  infections 

(tuberculosis)
• Anaemia, leukopaenia and 

thrombocytopaenia
• Worsening heart failure
• Malignancy, lymphoma and  lympho-

proliferative disorders
• Elevated liver transaminases
• Increased nuclear-specific antibodies 

Certolizumab 
(Cimzia; UCB)

Humanized 
pegylated

2008

Infliximab 
(Remicade; 
Centocor Ortho 
Biotech)

Chimeric 1998

CD52 on mature 
B, T and natural 
killer cells

Alemtuzumab  
(Campath; 
Genzyme)

Humanized 2001 • B cell chronic 
lymphocytic leukaemia

• Graft-versus-host 
disease 

• Multiple myeloma 
• Multiple sclerosis 
• Vasculitis 
• Behçet’s disease 

• Infusion reactions
• Hypersensitivity and  immunogenicity
• CRS 
• Tumour lysis syndrome
• Immunosuppression and opportunistic 

infections
• Cytopaenias: pancytopaenia, lymphopaenia 

and thrombocytopaenia
• Autoimmune haemolytic anaemia
• Thyroid disorders
• Cardiotoxicity

Interleukin-2 
receptor-α 
on activated 
lymphocytes

Basiliximab 
(Simulect; 
Novartis)

Chimeric 1998 • Prophylaxis of renal 
transplant allograft 
rejection 

• Severe acute hypersensitivity reactions
• CRS and immunogenicity
• Immunosuppression and  infections
• Local skin reactions
• Warnings when combined with other 

immunosuppressives 

Daclizumab 
(Zenapax; 
Roche)

Humanized 1997 
Discontinued  
in Europe

Vascular 
endothelial 
growth factor 

Bevacizumab 
(Avastin; 
Genentech)

Humanized 2004 • Metastatic colorectal 
cancer 

• Non-small-cell lung 
carcinoma

• Metastatic breast 
carcinoma

• Metastatic renal 
carcinoma

• Infusion reactions and  immunogenicity
• Local complications at tumour site 
• Arterial and venous thromboembolic 

events 
• Haemorrhage 
• Severe hypertension
• Cardiac failure
• Reversible posterior leukoencephalopathy 

syndrome 
• Slower wound healing and GI perforation

Ranibizumab 
(Lucentis; 
Genentech, 
Novartis)

Humanized 
(Fab fragment 
from 
bevacizumab)

2006 • Injected intravitreally 
for neovascular (wet) 
age-related macular 
degeneration 

• Conjunctival haemorrhage
• Intraocular inflammation
• Increased intraocular pressure
• Retinal detachment
• Endophthalmitis

Complement C5 Eculizumab 
(Soliris; Alexion)

Humanized 2007 • Paroxysmal nocturnal 
haemoglobinuria 

• Meningococcal and Neisseria infection
• Intravascular haemolysis 

CD11a Efalizumab 
(Raptiva; 
Genentech)

Humanized 2003 
Recently 
discontinued

• No longer licensed for 
chronic plaque psoriasis

• First-dose reaction complex
• Immunosuppression 
• Serious opportunistic  infections
• PML 
• Guillain–Barré syndrome, encephalitis, 

meningitis
• Immune haemolytic anaemia 
• Immune thrombocytopaenia 

CD3 antigen on 
T cells 

Muromonab- 
CD3 
(Orthoclone 
OKT3; Ortho 
Biotech)

Mouse 1986 
(no European 
Medicines 
Authority 
authorization)

• Acute resistant allograft 
rejection in renal, 
cardiac and hepatic 
transplant patients

• Severe acute infusion reactions
• Immunosuppression and infections
• Immunogenicity 
• Cardiovascular side effects
• Hepatitis
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Thrombocytopaenia
A decrease in the number  
of circulatory platelets in  
the blood.

was generally well tolerated among patients with Crohn’s 
disease70. Several strategies can be used to minimize the 
risk of developing tuberculosis in patients receiving 
TNF-specific mAbs71, and screening can reduce, but not 
eliminate, the risk of reactivation69.

Progressive multifocal leukoencephalopathy. progressive 
multifocal leukoencephalopathy (pMl) is an often fatal, 
rapidly progressive demyelinating disease that is generally 
due to reactivation of latent infection in the central nervous 
system with the polyoma virus John Cunningham virus 
(JCv). Most healthy people are seropositive for JCv, and 
reactivation of JCv can occur after immunosuppression72,73. 
Reactivation has also been reported after using natalizu-
mab to combat T-cell trafficking and adhesion in multiple 
sclerosis16,49,74,75. pMl occurring in patients with multiple 
sclerosis is remarkable as they are both demyelinating 
diseases, but of highly different origins and pathological  
features76.

In November 2004, natalizumab was approved by the 
US Food and Drug Administration for the treatment of 
relapsing-remitting multiple sclerosis, but it was sus-
pended in February 2005 on the discovery of three cases 
of pMl: two cases in patients with multiple sclerosis77,78 
and one in a patient with Crohn’s disease79. Natalizumab 
was reintroduced in July 2006 as second-line mono-
therapy for multiple sclerosis with specific warnings 
and precautions49, including the ToUCH prescribing 
program to minimize risk of pMl. By mid-2009 there 
were a total of 14 cases of pMl in patients with multiple 
sclerosis treated with natalizumab76. Encouragingly, there 
are two reports suggesting that diagnosis and treatment 
by plasma exchange, with possible immuno-adsorption 
to remove natalizumab, is beneficial80,81. However, in 
both cases an immune–reconstitution inflammatory 
syndrome occurred.

Based on a detailed review of 3,147 patients taking 
part in clinical trials with natalizumab, it has been esti-
mated that the risk of pMl corresponds to about 1 in 
1,000 patients treated, occurring after a mean of about 
18 months of natalizumab treatment82. Guidelines for 
patient selection and monitoring have been proposed 
to minimize the risk of pMl83, including clinical assess-
ment, magnetic resonance imaging of the brain and 
cerebro spinal fluid analysis for JCv DNA84 (although 
this test can produce a negative result in early stages 
of the infection85). Asymptomatic reactivation of JCv 
has been described in 19 patients with multiple sclerosis 
treated with natalizumab, using quantitative pCR assays 
of JCv in blood and urine86,87. However, the predictive 
value of blood and urine markers of JCv infections 
needs to be further defined, as among healthy people 
up to 40% have JCv DNA in the urine and 1–3% have 
JCv viraemia at some point76. In pCR-negative patients 
with high clinical suspicion of pMl, a brain biopsy may 
be necessary to confirm the diagnosis88.

Interestingly, natalizumab mobilizes CD34+ haemato-
poietic progenitor cells89,90 and these cells may be 
infected with JCv, contributing to the tendency for pMl. 
Understanding the molecular basis of predisposition for 
JCv infection, might help design more selective very-late 

antigen-4 (vlA-4; also known as α4β1 integrin) inhibi-
tors or partial vlA-4 inhibitors that retain activity against 
multiple sclerosis.

Rituximab is directed against B cells and used to treat 
non-Hodgkin’s lymphoma, but in 2006 the labelling 
was changed to reflect the danger of serious infections, 
including with JCv91. Recently, 57 cases of pMl have 
been described after rituximab therapy92.

So far, the humanized CD11a-specific mAb efalizu-
mab (Raptiva; Genentech) has been associated with four 
confirmed cases of pMl when used to treat patients with 
chronic plaque psoriasis73,88. Suspension of marketing 
authorization has been recommended by the EMA, and 
there has been a phased voluntary withdrawal of efalizu-
mab in the United States of America.

Platelet and thrombotic disorders
Drug-induced immune thrombocytopaenia can be caused 
by many medications, including mAbs93. An acute, 
severe, self-limiting thrombocytopaenia can be caused 
by infliximab (TNFα-specific), efalizumab (CD11a-
specific) and rituximab (CD20-specific); however the 
mechanisms of action remain obscure.

Abciximab (Reopro; Centocor ortho Biotech, Eli 
lilly) is an antiplatelet glycoprotein IIb/IIIa, chimeric 
Fab antibody fragment that has been extensively used 
to treat percutaneous coronary interventions, as it 
blocks interactions between platelets and fibrinogen94. 
Acute thrombocytopaenia develops after first infusion 
of abciximab in about 1% of patients. Acute thrombo-
cytopaenia occurs in more than 10% of patients after 
a second infusion95–97. Thrombocytopaenia can also be 
delayed by 7 days, and be caused by antibodies against 
murine epitopes and abciximab-coated platelets98,99, and 
has caused fatalities100. Small-molecular-mass glycopro-
tein IIb/IIIa antagonists are now increasingly being used, 
but they have similar safety concerns97,101.

Alemtuzumab (Campath; Genzyme) is a humanized 
mAb against CD52 that causes sustained depletion of 
CD52-expressing cells for more than a year102,103. Depleted 
cells include CD4+ and CD8+ T cells, natural killer cells 
and monocytes; circulating B cells are only transiently 
depleted. Alemtuzumab was originally used for graft-
versus-host disease following bone-marrow transplanta-
tion104,105 has also been used in the treatment of chronic 
lymphocytic leukaemia106 and during renal transplanta-
tion107. More recently, alemtuzumab has been successfully 
used for autoimmune diseases, especially multiple sclero-
sis108, and can be given as an annual pulsed intravenous 
therapy. However, the dramatic results found with alemtu-
zumab in multiple sclerosis have occurred at the expense 
of serious side effects: thrombocytopaenia has occurred 
in around 3% of subjects receiving alemtuzumab for early 
multiple sclerosis108,109 and can be fatal110. The prolonged 
lymphopaenia frequently found with alemtuzumab might 
be mediated by its direct cytolytic effects, which are part 
of the mechanism of action of the mAb16,74. Alemtuzumab 
has also been shown to cause severe multi-lineage hae-
matopoietic toxicity (involving lymphopaenia, neutro-
paenia and thrombo cytopaenia) in 5 out of 11 patients 
with peripheral T-cell lymphoproliferative disorders111.

R E V I E W S

NATURE REvIEWS | Drug Discovery  volUME 9 | ApRIl 2010 | 329

© 20  Macmillan Publishers Limited. All rights reserved10

http://www.tysabri.com/tysbProject/tysb.portal/_baseurl/threeColLayout/SCSRepository/en_US/tysb/home/treatment-with-tysabri/touch-prescribing-program.xml
http://www.tysabri.com/tysbProject/tysb.portal/_baseurl/threeColLayout/SCSRepository/en_US/tysb/home/treatment-with-tysabri/touch-prescribing-program.xml
http://www.accessdata.fda.gov/drugsatfda_docs/label/1997/abcicen110597-lab.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/103948s5070lbl.pdf


CD40l-specific (CD154-specific) mAbs have been 
used to treat immune thrombocytopaenic purpura112 
and systemic lupus erythematosus, and some of these 
mAbs have been linked with thrombocythaemia and 
thromboembolic complications in monkeys113–115. 
Thromboembolic complications encountered in human 
studies with certain mAbs against CD40l has halted 
further clinical assessment116. The mechanism of these 

pro-aggregatory effects of CD40l-specific mAbs has 
been studied in porcine and human platelets116,117.

Bevacizumab (Avastin; Genentech) is a humanized 
mAb against vascular endothelial growth factor (vEGF) 
that has been associated with arterial (but not venous) 
thromboembolic events118. In addition, a meta-analysis 
study showed that it increased the incidence of venous 
thromboembolism119.

Table 1 (cont.) | Side effects of licensed monoclonal antibodies

Target mAb Type FDA approval indications* selected side effects

α4 integrin Natalizumab 
(Tysabri; 
Biogen-Idec, 
Elan 
Pharmaceuticals)

Humanized 2004 • Highly active relapsing-
remitting multiple 
sclerosis

• Infusion and  hypersensitivity reactions
• Immunogenicity 
• PML (0.1%) with immunosuppressives 
• Hepatotoxicity

Immunoglobulin E 
(IgE) 

Omalizumab 
(Xolair; 
Genentech, 
Novartis)

Humanized 2003 • Severe allergic asthma 
unresponsive to 
conventional therapy 
and with acute 
exacerbations

• Anaphylaxis (0.1%) 
• Injection site reactions 
• Immunogenicity
• URTI
• Churg–Strauss syndrome (rare)

Fusion protein 
on RSV

Palivizumab 
(Synagis; 
Medimmune)

Humanized 1998 • Prevention of RSV 
complications in 
high-risk infants

• Anaphylaxis and apnoea (rare)
• Fever, injection site reactions

CD20 on B cells Rituximab 
(Rituxan/
Mabthera; 
Genentech, 
Biogen Idec)

Chimeric 1997 • Follicular non-Hodgkin’s 
lymphoma 

• CD20+ diffuse large 
B cell non-Hodgkin’s 
lymphoma

• Autoimmune 
haematological 
disorders 

• Prominent acute infusion reactions 
• CRS
• Tumour lysis syndrome 
• Transient hypotension
• Immunogenicity
• Serum sickness 
• Severe mucocutaneous reactions
• Immunosuppression
• Hepatitis B reactivation with fulminant 

hepatitis
• PML
• Renal toxicity
• Cardiac arrhythmias

EGFR Panitumumab 
(Vectibix; 
Amgen) 

Fully human 2006 • Monotherapy for 
EGFR-positive 
metastatic colorectal 
carcinoma with 
non-mutated (wild-type) 
KRAS after failure 
of conventional 
chemotherapy

• Infusion reactions
• Skin rashes in most patients (90%)
• Diarrhoea (60%), nausea and vomiting 
• Hypomagnesaemia (2%)

Cetuximab 
(Erbitux; 
Bristol–Myers 
Squibb, ImClone 
Systems, Merck 
Serono)

Chimeric 2004 • EGFR-positive metastatic 
colorectal cancer 

• Squamous cell carcinoma 
of head and  neck 

• Severe infusion reactions
• IgE against oligosaccharide and HAMA
• Urticaria and dermatological toxicity
• Bronchospasm and  pulmonary toxicity
• Hypomagnesaemia

Trastuzumab 
(Herceptin; 
Genentech)

Humanized 1998 • ERBB2-positive breast 
carcinoma

• Hypersensitivity and  infusion reactions
• Cardiotoxicity with anthracyclines
• Skin reactions
• Pulmonary toxicity
• Hypomagnesaemia

Interleukin-6 
receptor

Tocilizumab 
(Actemra; 
Roche, Chugai)

Humanized 2009 • Unresponsive active 
rheumatoid arthritis  

• Castleman’s disease 

• Anaphylaxis and anaphylactoid reactions
• UTRI
• Headache
• Serious infections
• Abnormal liver function, neutropaenia and 

lipid deregulation 

CRS, cytokine release syndrome; EGFR, epidermal growth factor receptor; ERBB2, also known as HER2/neu; FDA, Food and Drug Administration;  
GI, gastrointestinal; HAMA, human anti-mouse antibodies; KRAS, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue; PML, progressive multifocal 
leukoencephalopathy; RSV, respiratory syncytial virus; URTI, upper respiratory tract infection. *Some of these indications are not currently licensed.
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Autoimmune diseases
mAbs have the capacity through their immunomodu-
latory actions, including immunosuppression, to cause 
various autoimmune conditions120, some of which are 
described below.

Lupus-like syndromes and drug-related lupus. Use of 
TNF-specific mAbs for rheumatic diseases has been asso-
ciated with the development of anti-nuclear antibodies 
and antibodies to double-stranded DNA, and also with 
lupus-like syndromes120,121. Although the development 
of autoantibodies is common, develop ment of musculo-
skeletal manifestations and lupus-like syndromes is rare 
and often subsides on stopping therapy122. other auto-
immune complications include cutaneous or systemic 
vasculitis, nephritis and demye linating syndromes.

Thyroid disease. As mentioned previously, alemtuzumab 
is a potent immunosuppressive mAb used in multiple 
sclerosis, but can also cause antibody-mediated thyroid 
autoimmunity108, which is probably mediated by lym-
phopaenia following alemtuzumab treatment. In an ini-
tial study of 27 patients with multiple sclerosis, 9 patients 
developed autoantibodies to the thyrotropin receptor 
and an autoimmune hyperthyroidism that responded  
to carbimazole123. This autoantibody-associated thy-
roid disease also occurred in almost 25% of subjects in 
a more recent study of 334 patients108, suggesting a dis-
position to this adverse effect in patients with multiple 
sclerosis109. prior treatment with interferon-β in many 
of those subjects may have contributed to autoimmune 
responses.

Autoimmune colitis. Cytotoxic T-lymphocyte-antigen 4  
(CTlA4) is a key regulator of adaptive immune 
responses, and CTlA4-specific mAbs (ipilimumab and 
tremelimumab) act as immunomodulatory agents124. 
Indeed, CTlA4 blockade has antitumour activity due to 
increased T-cell stimulation and possibly actions on regu-
latory T (TReg) cells125 (in this article TReg cells are defined 
as CD4+CD25+ T cells and others of less well-defined 
phenotype). Ipilimumab has been shown to cause T-cell 
and tumour-cell suppression, but also an autoimmune 
enterocolitis that sometimes requires colectomy126,127. In 
addition to colitis, inhibition of CTlA4 causes a range of 
other immune-related adverse events such as rash and 
hepatitis. These immune-related adverse events may be 
part of the action of the mAb in causing tumour regres-
sion as well as immunosuppression in patients with 
metastatic melanoma and renal cell cancer128. The chal-
lenge will be to minimize these adverse events through 
patient selection, concomitant therapy and development 
of improved mAbs.

Cancer
Instead of excessive acute removal of malignant cells, some 
mAbs can contribute to tumour progression in a similar 
manner to other immunosuppressive agents. Association 
of TNF-specific mAb (infliximab) therapy with increased 
risk of malignancy remains controversial129–131. A recent 
review of 3,493 patients who received TNF-specific mAbs 

noted a dose-dependent increased risk of malignancies 
in patients with rheumatoid arthritis67. However, the  
incidence of solid cancers in patients with rheumatoid 
arthritis treated with TNF-specific mAbs is similar to that 
of other cohorts132. Moreover, when comparing national 
registries of patients with rheumatoid arthritis who 
receive TNF-specific mAbs with those on methotrexate, 
there is not a greater risk of developing malignancies133. 
of note, methotrexate also causes immunosuppression 
(and thus has potential carcinogenicity) after chronic 
use. In patients with inflammatory bowel disease treated 
with infliximab there are reports of an increased risk of 
developing lymphomas, but a clear causal association has 
not been demonstrated134. Infliximab has been shown to 
cause a non-significant increased incidence of cancer 
in 79 patients with chronic obstructive pulmonary dis-
ease (in individuals who have been heavy smokers)135. 
In addition, hepatosplenic T-cell lymphoma has been 
associated with use of infliximab in young patients with 
inflammatory bowel disease136.

An interleukin-12/23 (Il-12/23)-specific mAb has 
been shown to be effective in moderate-to-severe plaque 
psoriasis137 and in Crohn’s disease138, and beneficial effects 
have been shown in multiple sclerosis139. However, there 
are theoretical concerns over potential tumorigenicity, as 
Il-12 has a role in tumour immunity by promoting infil-
tration with cytotoxic T cells140. This is complicated by 
Il-23, which is suspected to induce tumour-promoting 
pro-inflammatory processes141. Radioimmunotherapy 
with labelled tositumomab (Bexxar; GlaxoSmithKline) 
and ibritumomab (Zevalin; Biogen Idec) has also raised 
concerns about malignancies142, but these have not been 
substantiated in long-term studies143.

Dermatitis
A well-known example for target-related rather than 
mAb-mediated adverse events relates to the human 
epidermal growth factor receptor 1 (EGFR; also known 
as HER1, ERBB1). EGFR is a promising target on many 
solid tumours. The EGFR-specific mAbs cetuximab  
(a chimeric mAb) and panitumumab (vectibix; Amgen) 
(a fully humanized mAb) are effective therapies for 
refractory metastatic colorectal cancer144. These mAbs 
(together with small-molecule EGFR inhibitors) com-
monly cause a skin rash on the face and upper torso, 
although dermatitis can present as dry skin, pruritus 
and erythema145. The rash is generally mild to moder-
ate, and usually occurs in the first fortnight of therapy. 
Although often described as acne-like, the histology of 
the lesions is distinct from acne; for example, topical 
medications used for acne tend to make the rash worse. 
The dermatitis is thought to be part of the pharmaco-
dynamic action of this agent, as EGFR is a transmem-
brane glycoprotein that is widely expressed on epithelial 
cells, and there is a correlation between presence of the 
rash and a positive drug response146,147. Standards are 
recommended for the reporting of dermatological side 
effects after cetuximab and panitumumab148 treatment, 
and consensus guidelines have been issued for the 
grading and management of skin complications due to 
radiation and EGFR-specific mAbs149. prophylactic oral  
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minocycline has shown some efficacy in decreasing the 
severity of skin reactions in the first month of cetuximab 
therapy150.

Cardiotoxicity
Trastuzumab (Herceptin; Genentech) is a humanized 
mAb directed against human ERBB2 (also known as 
HER2/neu), and has been used successfully in women 
with ERBB2-positive metastatic breast cancer 151. 
However, an unexpected adverse event in women treated 
with trastuzumab in clinical trials was that of cardio-
toxicity152,153. The antitumour and cytotoxic effects are 
linked through trastuzumab effects on mitochondrial 
outer membrane permeabilization (MoMp). B cell 
lymphoma 2 (BCl-2) is the prototype for a family of 
proteins that govern MoMp, with pro-apoptotic BCl-2-
associated X protein (BAX) and BCl-2-associated ago-
nist of cell death (BAD), and anti-apoptotic BCl-2 and 
BCl-Xl (also known as BCl2l1) (FIG. 2).

Cardiac dysfunction caused by trastuzumab is most 
commonly an asymptomatic decrease in left ventricular 
ejection fraction that tends to be reversible. However, 
if cardiac failure develops, this responds well to stand-
ard medical management154. Cardiac dysfunction was 
observed in up to 4% of women treated with trastuzu-
mab, with higher incidence in females taking additional 
anthracyclines155. Indeed, trastuzumab causes sensitiza-
tion to anthracycline-induced cardiotoxic effects156: when 
trastuzumab was given alone for breast cancer, there were 
no cases of heart failure and no decreases in left ventricu-
lar ejection fraction157. Cardiac dysfunction caused by 
trastuzumab seems to be target-related unless additional 
toxicity is related to signalling by trastuzumab.

The target for trastuzumab, ERBB2, is a membrane 
receptor tyrosine kinase with an extracellular ligand-
binding domain and an intracellular kinase domain158,159. 
Mice with cardiac-specific deletion of ERBB2 develop 
age-related dilated cardiomyopathy, characterized by the 
presence of cardiac myocytes with increased numbers 
of mitochondria, vacuoles and sensitivity to anthra-
cyclines160. Trastuzumab cardiotoxicity is an on-target 
effect due to blocking all downstream signalling from 
ERBB2, and causing MoMp, cytochrome c release and 
caspase activation, resulting in apoptosis of cardiac 
muscle cells with impaired contractility and ventricular 
function161.

Trastuzumab inhibits the actions of neuregulin 1 
(NRG1) in cardiac myocytes by multiple mechanisms162, 
preventing NRG1’s potential role in the treatment of dis-
orders of cardiac function163. In order to elucidate the 
mechanism of trastuzumab cardiac dysfunction, rodent 
and primate models have been developed154, and these 
may help to define effects on ERBB2-positive cancer 
cells without causing cardiotoxicity.

The cytokine storm
various mAbs trigger the release of a range of cytokines, 
causing a cytokine storm or CRS164,165 (FIG. 3a). CRS is a 
prominent feature in the context of therapy with CD3-
specific (muromonab)166, CD52-specific (alemtuzu-
mab)167,168 and CD20-specific (rituximab) mAbs169. In 

Figure 2 | Action of trastuzumab on breast cancer cells and on cardiomyocytes.  
a | Oncogenic signalling in a breast cancer cell can be mediated by members of the 
epidermal growth factor receptor (EGFR) family. Amplification of the gene encoding 
ERBB2 (also known as HER2/neu) tyrosine kinase is crucial for the progression of 
some forms of human breast cancer. ERBB2–ERBB3 kinase then activates the 
Ras–extracellular signal-regulated kinase (ERK) pathway and the phosphatidylinositol 
3-kinase (PI3K)–AKT pathway. AKT has a central oncogenic role, partially through 
inhibiting B cell lymphoma 2 (BCL-2) and antagonist of cell death (BAD). Trastuzumab 
(Herceptin; Genentech) binds to the extracellular domain of ERBB2 and inhibits the 
proliferation and survival of ERBB2-dependent breast cancer cells. Trastuzumab  
also reverses inhibition of BAD, which leads to BCL-2-associated X protein (BAX) 
oligomerization at the mitochondrial membrane, release of cytochrome c (Cyt c), and 
caspase activation to cause apoptosis of tumour cells. In addition to inhibiting ERBB2 
signalling, trastuzumab might also exert effects through antibody-dependent 
cell-mediated cytotoxicity (not shown). b | Signalling in cardiomyocytes through 
ERBB2–ERBB4 heterodimers is essential for cardiomyocyte proliferation during cardiac 
growth and development, and for contractile function in the adult. Although several of 
the same signalling pathways (such as Ras–ERK and PI3K–AKT) are activated in 
cardiomyocytes and in breast cancer cells, an increase in the ratio of BCL-Xs to BCL-X

L
 

induced by ERBB2-specific antibodies might trigger BAX oligomerization, 
mitochondrial membrane depolarization, ATP depletion and contractile dysfunction.  
In addition, antibody-dependent cell-mediated cytotoxicity might contribute to 
trastuzumab cardiotoxicity. Trastuzumab also blocks neuregulin 1 (NRG1)-mediated 
activation of Src and focal adhesion kinase (FAK), and this appears to worsen left 
ventricular dysfunction. GRB2, growth factor receptor-bound protein 2;  
PIP

3
, phosphatidylinositol triphosphate. Adapted from REFS 152,159.
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Capillary leak syndrome
A leakage of fluid from 
capillaries into interstitial fluid 
that results in hypotension, 
oedema and multiple organ 
failure due to limited perfusion.

2006, when the fully humanized mAb TGN1412 — a 
CD28 superagonist (CD28SA) — was first given to six 
healthy male volunteers it triggered an immediate and 
severe cytokine storm49,170,171.

The clinical, laboratory and immunological events 
following rapid intravenous infusion of TGN1412 were 
dramatic, and have been divided into four phases170. First, 
a systemic inflammatory response consisting of high 
levels of cytokines in the blood, and accompanied by 
headache, myalgias, nausea, diarrhoea, erythema, vasodi-
lation and hypotension. Second, pulmonary infiltrates 
and lung injury, renal failure and disseminated intra-
vascular coagulation. Third, severe blood lymphopaenia 
and monocytopaenia. Fourth, prolonged cardiovascular 
shock and acute respiratory distress syndrome.

Expert groups have highlighted the importance of 
considering the minimal anticipated biological effect 
level (MABEl) in deciding the initial dose of a biologic to 
be used in humans172–174. This MABEl approach selects 
the starting dose for a first-in-human study on the basis 
of the lowest dose that is found to be active in any in vitro 
potency assays. Based on the MABEl, the starting dose 
for TGN1412 should have been 20-times lower than that 
used in the phase I study. The MABEl approach also 
suggested a much lower dose than that derived from 
consideration of animal toxicology studies.

CD28SA mAbs cause activation of TReg cells in 
rats49,175, and have been used to treat experimental 
autoimmune disease176. In rats, lower concentrations 
of a CD28SA mAb induced nonspecific expansion of 
TReg cells without causing lymphocytosis175,177. In addi-
tion, administration of a CD28SA mAb has recently 
been shown to cause a dramatic redistribution of T cells 
within 48 hours, with a later phase of TReg-cell activa-
tion178. Selective stimulation of TReg cells is the ration-
ale for use of CD28-specific mAbs for the treatment of 
human autoimmune diseases179.

From monkeys to humans
Following the serious adverse events encountered in 
the TGN1412 first-in-human study, there has been 
a detailed scrutiny of the potential causal mechanism 
in humans180–184. The molecular details of why toxicity 
studies with TGN1412 involving cynomolgus monkeys 
(Macaca fascicularis) were poorly predictive of the 
clinical adverse effects in humans are important49,180,185 
(FIG. 3b). one theory is that the three differences in the 
amino-acid sequence within the transmembrane portion 
of the monkey CD28 molecule could alter signalling fol-
lowing TGN1412 binding186,187. Indeed, this is borne out 
by CD28SA causing a delayed but sustained calcium 
response in human but not cynomolgus T cells187.

Direct actions of TGN1412 on cells that express 
CD28 have the potential to cause a range of effects. 
This is because CD28 is present on almost all human 
CD4+ T cells, and roughly half of CD8+ T cells, on sub-
sets of natural killer cells, on neutrophils, on apoptotic 
eosinophils, on mouse mast cells, and on certain B cells 
and plasma cells. Neutrophils may participate in the 
reaction to CD28SA mAbs and neutrophil activation 
may cause sialidase release188.

A new paradigm for T-cell activation involves con-
sideration of T-cell receptor–CD28 microclusters within 
the immunological synapse189 (FIG. 3c). Indeed, during 
T-cell activation scattered microclusters consisting 
of five components aggregate to form a large highly 
ordered complex, the central supramolecular activation 
cluster. In this context the transmembrane amino-acid 
differences between monkey and human CD28 could 
affect the aggregation properties of this receptor within 
the T-cell membrane.

When the T cell becomes activated it is probable that 
leukocyte adhesion molecules such as CD11a/18 and 
CD11b/18 are rapidly upregulated. This phenomenon 
has already been demonstrated on peripheral blood 
lymphocytes following administration of a human 
CD3-specific mAb (muromonab-CD3) to patients190. 
Hence, administration of TGN1412 in humans, might 
lead to T-cell activation through the immunological 
synapse, which is associated with increased expression 
of T-cell adhesion molecules. There is the possibility 
that activated T cells bind to endothelial cells, causing 
local endothelial damage and a capillary leak syndrome. 
Indeed a T cell–endothelial complex may have increased 
the propensity of cytokine release, and be central to the 
pathogenesis of clinical events following infusion of 
TGN1412 in humans.

In addition, following interaction with T cells, actions 
of TGN1412 in humans may be partly mediated by the 
interaction of the Fc region of the mAb with FcRs on 
other cells179, involving a cross-linking of TGN1412 
(REF. 187). Interestingly, humanized mAbs of the IgG4 
isotype, such as TGN1412, are inefficient at binding to 
monkey FcRs27,191–193. Therefore, Fc interactions on the 
surface of the human FcR-positive cell could lead to more 
efficient cross-linking of the target molecule on a T cell. 
CD3-specific mAbs, such as muromonab-CD3, which 
have been engineered to have decreased FcR binding, 
have a reduced capacity to induce cytokine release166. 
likewise, cytokine release by natural killer cells in the 
presence of alemtuzumab is mediated through involve-
ment of FcγRIII (CD16)165. In addition, in studies with 
an IgG4 version of the mAb alemtuzumab it was shown 
that IgG4 mAbs deplete target cells (T cells and B cells) 
in humans — albeit weaker than their IgG1 counter-
parts — through FcR-mediated antibody-dependent 
cell-mediated cytotoxicity194. It is worth noting that in 
humans, polymorphisms involved in the Fc–FcR interac-
tion may result in inter-individual variations in response 
to these antibodies.

Immunoregulation may be generally greater in ani-
mals with regard to CD28SA, causing a cytokine storm 
to be more likely in humans. Monkey and human lym-
phocytes have differences in the expression of sialic 
acid-binding Ig-like lectins (SIGlECs)193,195,196, which 
are known to be both positive and negative regulators 
of the immune system197. CD33-related SIGlECs, for 
example, show particular variation between different 
mammalian species. As a consequence, the threshold 
for cytokine release in human cells that lack SIGlECs 
may be significantly lower compared with cells from 
other species that express SIGlECs. In addition, a rapid 
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response by TReg cells may prevent the cytokine storm 
when mice are given CD28SA mAbs198, and animals may 
be more prone to produce anti-inflammatory cytokines. 
Transforming growth factor-β (TGFβ) may have a key 
role in protecting mice against a cytokine storm caused 
by CD3-specific mAbs199.

Regulations
There are a range of guidance documents that support  
first-in-human clinical trials with mAbs200. As an imme-
diate response to the TGN1412 disaster, the EMA issued 
a guideline to identify and decrease risk with new medici-
nal products being studied in first-in-human clinical 
trials201. In addition, detailed regulatory guidance is avail-
able on preclinical safety evaluation of pharmaceuticals202 
and biologics203.

Microdosing is a method of studying drug action in 
humans with doses so low that they do not cause whole 
body effects, but have cellular responses204. A micro-
dose study is performed early in drug development 
before the start of phase I clinical trials, and uses a dose 
at a small fraction of the predicted pharmacological 
dose. A position paper is available from the EMA on 
non-clinical safety studies to support clinical trials with 
a single microdose205.

Predicting the capacity to cause CRS. The development 
of preclinical tests to predict the capacity of biologics to 
cause CRS in humans is a major challenge26,27,182,206,207. 
We need to learn lessons from disasters such as the 
TGN1412 trial, and expand our thinking of current 
paradigms if we are to adequately test preclinical safety 
of biologics.

The cytokine storm was observed after intravenous 
administration of mAbs, and the serum cytokines 
found in vivo could be released and synthesized by cir-
culating leukocytes. Therefore, in vitro tests have been 
established that rely on TGN1412 being incubated with 
human whole blood or cell populations such as periph-
eral blood mononuclear cells208,209. Endothelial cells are 
another key source of pro-inflammatory cytokines, 
such as Il-6, and may be included as well. So far, a 
few protocols have been developed for presentation of 
TGN1412 to human peripheral blood mononuclear 
cells and whole blood before assessing cytokine release 
and lymphocyte activation97. When TGN1412 was air-
dried onto a tissue-culture plate it caused the release of 
TNFα, Il-6 and Il-8 when cultured with diluted human 
blood209. Interestingly, there was negligible release of 
cytokines with aqueous unbound TGN1412. other 
methods of immobilizing TGN1412 also caused striking 
release of cytokines and profound lymphocyte prolifera-
tion; most notably presentation of TGN1412 bound to 
endothelial cells. This suggests that under in vitro set-
tings, TGN1412 needs to be bound to a solid surface 
before it is able to activate lymphocytes, but dry-coating 
may yield too many false positives165.

By contrast, alemtuzumab and muromonab-CD3 
cause cytokine release in vitro and in vivo in aqueous 
solution without immobilization165,167, and it is note-
worthy that alemtuzumab may operate through FcγRIII 

Figure 3 | Monoclonal antibodies and the cytokine storm. a | Surface receptors on 
T cells can cause a cytokine storm when activated by therapeutic monoclonal antibodies 
(mAbs). Three mAbs that cause cytokine release on infusion in humans are alemtuzumab 
(Campath; Genzyme), muromonab-CD3 (Orthoclone OKT3) and TGN1412. 
Alemtuzumab recognizes the CD52 molecule on T cells and confers efficient  
complement-dependent lysis of lymphocytes. Muromonab targets CD3, a part of  
the T-cell receptor (TCR) complex. TGN1412 is an example of a CD28 superagonist 
(CD28SA); that is, a co-stimulator molecule contributing to activation of naive T cells.  
b | TGN1412 can directly cause some cytokine release, as CD28 is expressed on a variety 
of cells in the normal immune system. TGN1412 is more potent on human T cells  
than those from monkeys. This is possibly due to human CD28 having three different 
transmembrane amino acids, which could cause a sustained calcium response within 
human T cells. Cross-linking of human CD28 may contribute to the formation of an 
activated immunological synapse (IS) on the surface of T cells, and binding of CD28SA 
to Fcγ receptors (FcγRs) on endothelial cells and other leukocytes could cause further 
cytokine release. Activation of CD28 may also cause upregulation of adhesion 
molecules such as CD11b on the surface of T cells or other cells of the innate immune 
system, which can then bind to intracellular adhesion molecule 1 (ICAM1) on 
endothelial cells. T cell–endothelial complexes have the capacity to cause amplified 
cytokine production and local endothelial damage. Hence, the cytokine storm and 
neutrophil infiltration could mediate the capillary leak syndrome with resultant multiple 
organ failure. c | The IS forms in a dynamic process on the T-cell plasma membrane, in 
which the five components of the TCR–CD28 microcluster aggregate to form a central 
supramolecular activation cluster (c-SMAC). The latter consists of a core of TCR and 
CD3 molecules, surrounded by a ring of CD28 molecules with associated protein 
kinase Cθ, which causes sustained T-cell activation. Adapted from REF. 189.

R E V I E W S

334 | ApRIl 2010 | volUME 9  www.nature.com/reviews/drugdisc

© 20  Macmillan Publishers Limited. All rights reserved10



on natural killer cells168. So, there are multiple mecha-
nisms to cause CRS, and each mAb will require individual 
assessment in a range of assays for the capacity to cause 
this cytokine release165.

To identify and validate relevant preclinical screens 
for CRS it would be useful if the scientific community 
had access to TGN1412 and related CD28-specific mAbs 
and immunostimulatory antibodies and cytokines. 
However, technical difficulties are being encountered 
because TGN1412-like mAbs of IgG4 isotype tend 
to dissociate into two halves following conventional 
purification steps.

predictive preclinical screening assays should fulfil 
four key remits for CRS. First, they should be performed 
on a range of human cell types (preferentially derived 
from the target population) that encompass potential 
mechanisms for CRS, including blood and tissue cells, 
but especially endothelial cells. Second, they should 
have relevant, validated and technically feasible read-
outs. Third, to determine their predictive power and 
limitations, they should take into consideration a range 
of biologics and controls — TGN1412 is a necessary 
test reagent. Finally, they should have predictive capac-
ity not only for CRS, but also for immune and tissue 
cell activation, Toll-like receptor activation, capillary 
leak, disseminated intravascular coagulation, cardio-
vascular shock and systemic inflammatory response 
syndrome.

In addition to improved in vitro tissue-based screens, 
other essential approaches to consider when assessing 
the safety of biologics include testing the molecules 
in local circulation (for example, the nose or skin) in 
humans and in combinations of human and animal 
in vivo and in vitro models.

one approach that needs greater consideration is the 
use of microdosing studies204, with careful pharmaco-
kinetic and pharmacodynamic evaluation in prelimi-
nary human studies. provided that prior animal data are 
available with regard to target distribution and efficacy, 
this approach might include whole body as well as micro-
scopic imaging to allow evaluation of the distribution of 
the molecule210,211, and tailored assays to determine any 
biological or clinical effects of the molecule. If the ini-
tial doses chosen are very low, then such studies could 
be done relatively safely and might be more informative 
than primate or other animal investigations. They should 
also allow more rapid evaluation of molecules in humans, 
allowing efficient selection or rejection of candidate  
molecules to take forward for further evaluation.

Future directions and conclusions
From the outset, we need to recognize which types of risks 
apply to a particular mAb, and take steps to identify and 
minimize potential adverse effects. Infusion reactions can 
be minimized by sound preclinical and clinical practice, 
whereas predisposition to infection can be minimized 
by appropriate monitoring and selection of therapies. 
preclinically, the major need is for development and vali-
dation of appropriate in vitro safety tests with biologics on 
human blood and tissues, and to have predictive tests for 
CRS on administration to humans. To ensure the safety of 
volunteers in clinical trials there is the need for communi-
cation to be maintained between scientists and clinicians, 
pharmaceutical and biotechnology companies, and  
individuals involved in carrying out and regulating clini-
cal studies. Together, these measures will help increase 
the safety of mAbs, which is vital for a greater use of  
mAb-based therapy in the treatment of human disease.
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	Abstract | Monoclonal antibodies (mAbs) are now established as targeted therapies for malignancies, transplant rejection, autoimmune and infectious diseases, as well as a range of new indications. However, administration of mAbs carries the risk of immune reactions such as acute anaphylaxis, serum sickness and the generation of antibodies. In addition, there are numerous adverse effects of mAbs that are related to their specific targets, including infections and cancer, autoimmune disease, and organ-specific adverse events such as cardiotoxicity. In March 2006, a life-threatening cytokine release syndrome occurred during a first-in-human study with TGN1412 (a CD28-specific superagonist mAb), resulting in a range of recommendations to improve the safety of initial human clinical studies with mAbs. Here, we review some of the adverse effects encountered with mAb therapies, and discuss advances in preclinical testing and antibody technology aimed at minimizing the risk of these events.
	Figure 1 | Development of monoclonal antibodies: structure and function. a | Schematic structure of an immunoglobulin G (IgG) monoclonal antibody (mAb). There has been progressive development from murine mAbs, to chimeric mAbs (with murine variable (V) regions grafted onto human constant (C) regions), to humanized (which consist of a human Ig scaffold with only the complementarity-determining regions (CDRs) being of murine origin), to the recently generated fully human mAbs. The CDRs within the Fab region of a mAb bind to specific targets and cause antagonism or signalling. The Fc region of a mAb is composed of the hinge and constant heavy-chain domains (CH2 and CH3) and has other functions, such as complement fixation or binding to Fc receptors. The nomenclature of mAbs reflects the type of mAb; for example, ‘xi’ in rituximab indicates that it is a chimeric mAb. b | Functions of mAbs, which include antagonism and signalling, are controlled by specific CDRs within the Fab region. Certain mAbs can specifically bind to either a ligand — for example, infliximab and omalizumab  — or to a receptor — for example, natalizumab and daclizumab — and thereby prevent stimulation. By contrast, other mAbs can specifically induce signal transduction by binding to a receptor. TGN1412 is a CD28 superagonist (CD28SA), which means that ligation of the T-cell receptor is not required for T-cell activation. Functions of mAbs controlled by the Fc region include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (not shown). Certain mAbs can lyse cells (for example, T cells or B cells) through complement activation, whereas other mAbs can bind to Fc receptors and mediate cell lysis. Neonatal Fc receptor binding controls transport of IgG across cell barriers and influences the half-life of a mAb. CL, constant light region; VH, variable heavy region; VL, variable light region. Panel b is modified, with permission, from REF. 16 © (2008) Lancet Publishing Group. 
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	Figure 2 | Action of trastuzumab on breast cancer cells and on cardiomyocytes. a | Oncogenic signalling in a breast cancer cell can be mediated by members of the epidermal growth factor receptor (EGFR) family. Amplification of the gene encoding ERBB2 (also known as HER2/neu) tyrosine kinase is crucial for the progression of some forms of human breast cancer. ERBB2–ERBB3 kinase then activates the Ras–extracellular signal-regulated kinase (ERK) pathway and the phosphatidylinositol 3‑kinase (PI3K)–AKT pathway. AKT has a central oncogenic role, partially through inhibiting B cell lymphoma 2 (BCL-2) and antagonist of cell death (BAD). Trastuzumab (Herceptin; Genentech) binds to the extracellular domain of ERBB2 and inhibits the proliferation and survival of ERBB2-dependent breast cancer cells. Trastuzumab also reverses inhibition of BAD, which leads to BCL-2-associated X protein (BAX) oligomerization at the mitochondrial membrane, release of cytochrome c (Cyt c), and caspase activation to cause apoptosis of tumour cells. In addition to inhibiting ERBB2 signalling, trastuzumab might also exert effects through antibody-dependent cell-mediated cytotoxicity (not shown). b | Signalling in cardiomyocytes through ERBB2–ERBB4 heterodimers is essential for cardiomyocyte proliferation during cardiac growth and development, and for contractile function in the adult. Although several of the same signalling pathways (such as Ras–ERK and PI3K–AKT) are activated in cardiomyocytes and in breast cancer cells, an increase in the ratio of BCL-Xs to BCL-XL induced by ERBB2-specific antibodies might trigger BAX oligomerization, mitochondrial membrane depolarization, ATP depletion and contractile dysfunction. In addition, antibody-dependent cell-mediated cytotoxicity might contribute to trastuzumab cardiotoxicity. Trastuzumab also blocks neuregulin 1 (NRG1)-mediated activation of Src and focal adhesion kinase (FAK), and this appears to worsen left ventricular dysfunction. GRB2, growth factor receptor-bound protein 2; PIP3, phosphatidylinositol triphosphate. Adapted from REFS 152,159.
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	Figure 3 | Monoclonal antibodies and the cytokine storm. a | Surface receptors on T cells can cause a cytokine storm when activated by therapeutic monoclonal antibodies (mAbs). Three mAbs that cause cytokine release on infusion in humans are alemtuzumab (Campath; Genzyme), muromonab-CD3 (Orthoclone OKT3) and TGN1412. Alemtuzumab recognizes the CD52 molecule on T cells and confers efficient complement-dependent lysis of lymphocytes. Muromonab targets CD3, a part of the T‑cell receptor (TCR) complex. TGN1412 is an example of a CD28 superagonist (CD28SA); that is, a co-stimulator molecule contributing to activation of naive T cells. b | TGN1412 can directly cause some cytokine release, as CD28 is expressed on a variety of cells in the normal immune system. TGN1412 is more potent on human T cells than those from monkeys. This is possibly due to human CD28 having three different transmembrane amino acids, which could cause a sustained calcium response within human T cells. Cross-linking of human CD28 may contribute to the formation of an activated immunological synapse (IS) on the surface of T cells, and binding of CD28SA to Fcγ receptors (FcγRs) on endothelial cells and other leukocytes could cause further cytokine release. Activation of CD28 may also cause upregulation of adhesion molecules such as CD11b on the surface of T cells or other cells of the innate immune system, which can then bind to intracellular adhesion molecule 1 (ICAM1) on endothelial cells. T cell–endothelial complexes have the capacity to cause amplified cytokine production and local endothelial damage. Hence, the cytokine storm and neutrophil infiltration could mediate the capillary leak syndrome with resultant multiple organ failure. c | The IS forms in a dynamic process on the T-cell plasma membrane, in which the five components of the TCR–CD28 microcluster aggregate to form a central supramolecular activation cluster (c-SMAC). The latter consists of a core of TCR and CD3 molecules, surrounded by a ring of CD28 molecules with associated protein kinase Cθ, which causes sustained T-cell activation. Adapted from REF. 189.
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