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Abstract

Previous work on coevolutionary search has demonstrated both successful and
unsuccessful applications. As a step in explaining what factors lead to success or
failure, we present a comparative study of an evolutionary and a coevolutionary
search model. In the latter model, strategies for solving a problem coevolve with
training cases. We find that the coevolutionary model has a relatively large effi-
cacy: 86 out of 100 (86%) of the simulations produce high quality strategies. In
contrast, the evolutionary model has a very low efficacy: a high quality strategy is
found in only two out of 100 runs (2%). We show that the increased efficacy in the
coevolutionary model results from the direct exploitation of low quality strategies
by the population of training cases. We also present evidence that the generality of
the high-quality strategies can suffer as a result of this same exploitation.

1 Introduction

Coevolutionary search is an extension of standard evolutionary search in which the fit-
ness of evolving solutions depends on the state of other, coevolving individuals rather
than a fixed evaluation function. Coevolutionary search involves either one or two pop-
ulations. In the first case individual fitness is based on competitions among individuals
in the population (Rosin & Belew, 1997; Angeline & Pollack, 1993; Sims, 1994). In
the second case the fitness of individuals is based on their behavior in the context of the
individuals of the other population (Hillis, 1990; Juillé & Pollack, 1996; Paredis, 1997;
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Pagie & Hogeweg, 1997). This latter type of coevolutionary search is often described
as “host-parasite”, or “predator-prey” coevolution.

The reasons typically cited for the expected increased success and efficiency of
coevolutionary search algorithms are the gain in efficiency of the evaluation of evolving
solutions (Hillis, 1990), the possible automatic adjustment of the selection gradient
which is imposed on the evolving solutions (Juillé & Pollack, 2000), and the potential
open-ended nature of coevolutionary systems (Rosin & Belew, 1997; Ficici & Pollack,
1998).

Some successful applications of coevolutionary search have used spatially embed-
ded systems (Hillis, 1990; Husbands, 1994; Pagie & Hogeweg, 1997). In such systems
the individuals are distributed on a regular grid and the evolutionary processes (i.e.,
fitness evaluation, selection, and, if applicable, crossover) take place locally among
neighboring individuals. Hillis (1990) and Pagie & Hogeweg (1997) gave examples
of spatially embedded coevolutionary models that were more successful than spatially
embedded, but otherwise standard, evolutionary models for the same search problem.
Other successful applications of coevolution have used techniques such as fitness shar-
ing to produce and maintain diverse populations (Rosin & Belew, 1997) or techniques
such as lifetime fitness evaluation to retain good solutions in the populations (Paredis,
1997).

In contrast to the successful applications of coevolutionary search there are a num-
ber of studies showing that coevolutionary dynamics can lead to non-successful search
as well. Such cases are often characterized by the occurrence of Red Queen dynamics
(Paredis, 1997; Shapiro, 1998; Pagie & Hogeweg, 2000; Juillé & Pollack, 2000), spe-
ciation (Pagie, 1999), or mediocre stable states (Pollack et al., 1997; Juillé & Pollack,
2000).

In earlier work it was shown how Red Queen dynamics can occur in a spatially
embedded coevolutionary model under continuous mixing

�

, while high quality solu-
tions evolve in the same model if mixing is omitted so that spatial patterns can form
(Pagie & Hogeweg, 2000). In the latter case speciation events can result in persisting
sub-species, whereas in the former case global competitive exclusion occurs on a much
shorter time-scale and tends to converge the population to one species. Heterogeneity
in the populations prevents Red Queen dynamics from persisting. Instead, evolution
proceeds to produce general, high quality solutions (Pagie & Hogeweg, 2000), or re-
sults in very diverse populations in which the individuals exhibit sub-optimal behavior
(Pagie, 1999).

Here we report results from a follow-up comparative study of a coevolutionary and
a standard evolutionary search process, both of which are embedded in space. The most
significant result of the study is the difference in efficacy of the two models on a given
task. Whereas the coevolutionary model finds solutions that use high quality strategies
in 86 out of 100 runs (86%), the evolutionary model finds such a solution only twice in
100 runs (2%). By comparing the evolutionary dynamics in the two models we try to
characterize the processes that lead to this large difference in search efficacy, thereby
pinpointing important aspects of coevolutionary search.

�

Continuous mixing in a spatial model approximates a non-spatial model in which selection and recom-
bination take place without regard for spatial location of individuals.
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2 CA density classification task

The task given to both models is the density classification task for cellular automata
(CAs) (Packard, 1988; Mitchell et al., 1994). The density classification task is defined
for one-dimensional, binary state CAs with a neighborhood size of 7; that is, at each
time step a cell’s new state (0 or 1) is determined by its current state and the states of its
three neighbors on each side. The CAs employ periodic (circular) boundary conditions.

The task for a CA is to classify bit strings on the basis of density, defined as the
fraction of 1s in the string. If the bit string has a majority of 0s it belongs to density
class 0; otherwise it belongs to density class 1. Here we restrict our study to bit strings
of length 149, which means that the majority is always defined. The CAs in our study
operate on a lattice of size 149 whose initial configuration of states is the given bit
string. (Note that the performance of a CA on this task generally degrades with in-
creasing length of the bit string.) A CA makes 320 iterations (slightly more than twice
the lattice size). If the CA settles into a homogeneous state of all 0s it classifies the bit
string as density class 0. If the CA settles into a homogeneous state of all 1s it classifies
the bit string as density class 1. If the CA does not settle into a homogeneous state it
makes by definition a mis-classification. Land & Belew (1995) showed that no two-
state CA exists that can correctly classify all possible bit strings of arbitrary lengths,
but did not give an upper bound on possible classification accuracy.

0

Time

148

148Site0 148Site0

Figure 1: Space-time diagrams illustrating the behavior of a typical block-expanding
strategy. The 149-cell one-dimensional CA lattice is displayed on the horizontal axis,
with time increasing down the page. Cells in state 0 are colored white; cells in state 1
are colored black. The initial configuration in the diagram on the left has low density
and is correctly classified as class 0. The initial configuration in the diagram on the
right has high density. It contains a sufficiently large block of 1s, which expands to fill
up the lattice, resulting in a correct classification as class 1. (Adapted from Mitchell
et al., 1996.)

An objective measure of the classification accuracy of a CA is its performance value
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Figure 2: (a) Space-time diagram illustrating the behavior of a typical particle strategy.
The initial configuration in the diagram on the left has low density and the correct clas-
sification of all 0s. The high-density initial configuration on the right is also correctly
classified. (Adapted from Mitchell et al., 1996.)

�
, defined as the fraction of correct classifications of ����� strings, each selected from an

“unbiased” distribution—a binomial density distribution centered around density 0.5.
(This distribution results in strings with density very close to 0.5—the most difficulty
cases to correctly classify.) An important characteristic of a CA is the type of strategy
that it uses in order to classify a string. The three main strategies discussed by Mitchell
et al. (1994)—all discovered by their genetic algorithm— are default, block-expanding,
and particle. The default strategy classifies all bit strings to a single density class (class
0 or class 1) by always iterating to a homogeneous state of all 0s or all 1s. Thus there
are two types of default strategies; default-0 and default-1. Default strategies have
performance values of approximately 0.5, since approximately half of a random sample
of ��� � strings will be classified correctly. Block-expanding strategies, illustrated in fig.
1, are refinements of the default strategy. In a block-expanding strategy bit strings
are classified to one density class, for instance density class 0 (left-hand side of fig.
1), unless the bit string contains a sufficiently large block of, in this case, 1s, which
results in the block expanding to cover the whole lattice, yielding a classification of
density class 1 (right-hand side of fig. 1). The definition of “sufficiently large” block
depends on the particular CA, but typically means blocks equal to or larger than the
CA neighborhood size of 7 cells. This “strategy” reflects the fact that the presence
of a block of 1s (0s) in a 149-bit string roughly correlates with overall high (low)
density, and the string is classified accordingly. Block-expanding strategies typically
have performance values between 0.55 and 0.72 on bit strings of length 149. Finally,
particle strategies, illustrated in fig. 2, use interactions between meso-scale patterns
in order to classify bit strings (Crutchfield & Mitchell, 1995; Das et al., 1994). They
typically have performance values of 0.72 and higher on bit strings of length 149.

The three classification strategies, default, block-expanding, and particle, exhibit
increasing computational complexity (Crutchfield & Mitchell, 1995). In evolutionary
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search runs one typically sees a series of epochs in which default strategies are evolved
first, then block-expanding strategies, and finally (on some runs) particle strategies
(Crutchfield & Mitchell, 1995). The highest observed performance to date of a particle
CA on the density-classification task is 0.86 on bit strings of length 149 (Juillé &
Pollack, 2000).

A number of research groups have used evolutionary search to find strategies for
the CA density classification task as a paradigm for the evolution of collective com-
putation in locally interacting dynamical systems (e.g., Mitchell et al., 1996; Juillé &
Pollack, 2000). In a standard evolutionary setup, the fitness of a CA is the fraction of
correct classifications it makes on a small random sample of bit strings interpreted as
initial configurations (ICs) for the CA. In a coevolutionary setup the bit strings, or ICs,
make up the second population and the fitness evaluation of the CAs is based on the
evolving ICs. Coevolutionary models which focus on this task were previously studied
by Paredis (1997), Juillé & Pollack (2000), and Pagie & Hogeweg (2000).

Previous studies indicate that, under a standard evolutionary model as well as pre-
vious coevolutionary models, it is difficult to evolve high-performance CAs; only a
small number of runs produce CAs that use particle strategies. If we define the effi-
cacy of an evolutionary search model as the percent of runs of that model that produce
particle strategies, then the efficacy of standard evolutionary and previous coevolution-
ary search models has been found to fall somewhere between 0% and 40% (Mitchell
et al., 1996; Werfel et al., 2000; Juillé & Pollack, 2000; Oliveira et al., 2000), with
the remaining runs producing block-expanding CAs (see Mitchell et al., 1994 for some
comments on this issue). Two studies report very high efficacy (Andre et al., 1996;
Juillé & Pollack, 2000) but in these cases the computational resources used per simu-
lation were orders of magnitude higher than used here or in the other studies.

Coevolutionary models applied to the CA density classification task generally show
Red Queen dynamics of the CAs and ICs (Paredis, 1997; Pagie & Hogeweg, 2000;
Juillé & Pollack, 2000). For the density classification task this type of evolutionary
dynamics is characterized by oscillations in the types of ICs and CAs that are present in
the population. The IC population oscillates, with a fairly constant frequency, between
bit strings with density less than 0.5 and bit strings with density greater than 0.5. The
CA population oscillates at a similar frequency between default-0 strategies, which
correctly classify the former, and default-1 strategies, which correctly classify the latter.
Paredis (1997) circumvented Red Queen dynamics by replacing the coevolution of the
ICs by randomly generated ICs. Juillé & Pollack (2000) changed the coevolutionary
setup by introducing a limit on the selection of ICs such that it was constrained by
the ability of the CAs. Pagie & Hogeweg (2000) embedded the coevolutionary model
in a 2D grid and introduced an extension on the fitness function used to evaluate the
ICs which imposes stabilizing selection on the ICs toward strings that can be classified
more easily by CAs. Here we use the same IC fitness function ���������
	 :

������� � 	��



� if classified correctly� ���������
��� ����� � 	����� � otherwise.
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3 The model

The populations in both the evolutionary and coevolutionary models are embedded in
a two-dimensional regular grid of 30 by 30 sites with periodic boundary conditions.
At each location in this grid one CA and one IC are present, giving 900 individuals
in each population. In the coevolutionary model both CAs and ICs evolve whereas in
the evolutionary model only the CAs evolve while the ICs are generated anew every
generation according to a fixed procedure (see below).

parameter value
grid size � ����� �
population sizes 900
generations per run 5000
CA mutation probability 0.0016
IC mutation probability 0.0034

Table 1: The model parameters.

The fitness of a CA is based on the nine ICs in its Moore neighborhood (i.e., the
same site and the eight adjoining neighbors). The fitness of an IC is based only on
the CA in the same site. This asymmetric fitness evaluation was found to improve the
evolutionary search process (Pagie & Hogeweg, 1997). In both models the fitness eval-
uation is extremely sparse. Sparse evaluation is in fact unavoidable since a complete
evaluation of a CA would cover all � � ��� possible ICs—clearly an infeasible task. Pagie
& Hogeweg (1997) showed that sparse fitness evaluation can in fact help the evolu-
tionary process rather than hinder it (see also Hillis, 1990 for a discussion of sparse
evaluation).

Selection of CAs in both models is based on tournament selection. Each CA in
the population is replaced by the winner of the tournament including the CA itself and
its eight neighboring CAs. The winner is selected, probabilistically, based on the rank
order of the fitness of individuals in the tournament. The probability of an individual
to be selected is ��� 	 rank, for the eight highest ranked individuals. The lowest ranked
individual (i.e., rank=9) has a probability �
��	
� of being selected, so that the sum of all
the probabilities will be 1. In the coevolutionary model the same selection procedure
is applied to the ICs.

After selection we apply point mutations to the CAs and, in the coevolutionary
model, to the ICs. The mutation probabilities are 0.0016 per bit for the CAs and, in
the coevolutionary case, 0.0034 per bit for the ICs � . For the sake of simplicity in this
study, crossover is not used in either model. The parameters that we used in the model
are summarized in table 3.

In the evolutionary model the population of ICs is generated anew at every gen-
eration, selected at random from a uniform density distribution in which each density
in [0,1] is equally likely (c.f. Werfel et al., 2000, see Mitchell et al., 1994; Juillé &�

The mutation probabilities that we used used correspond to an expected number of mutation events of��� ���
population size in the CA population and

��� ���
population size in the IC population.
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Pollack, 2000 for a discussion on the effect of using a uniform versus a binomial distri-
bution over densities). Thus, the only difference between the two models is the origin
of the new generations of ICs: based on the previous generation in the coevolutionary
model and based on a fixed procedure in the evolutionary model.

The CAs are initialized as random bit strings with an unbiased (binomial) density
distribution. In the coevolutionary model the ICs are initialized with all-0 bit strings.
This initialization of the ICs strongly induces a transient phase of Red Queen dynamics
which, in a spatially embedded model, is unstable (Pagie & Hogeweg, 2000). Each
simulation is run for 5000 generations. Although this number is high compared to
the length of evolutionary runs in most other studies, the computational burden per
generation in our model is relatively small because each CA is evaluated on only nine
ICs. Define an IC evaluation as the classification by a CA of a single IC. Then in each
model, at each generation � � � ������� ��� � IC evaluations are performed, i.e., ��� � 	 � �����
IC evaluations per simulation. This compares to a total number of IC evaluations per
simulation in other studies as: �
� � � � ��� � in Andre et al. (1996), � �	� in (Das et al.,
1994) and Oliveira et al. (2000), ��� � � ��� � in Werfel et al. (2000), and 	
� � � � � � and
��� � � � � � (in two different sets of runs) in Juillé & Pollack (2000). For each model we
ran 100 simulations each starting with a different random seed.

4 Results

4.1 Efficacy

Table 2 lists the efficacy for each model and each classification strategy, i.e., the number
of runs out of 100 on which the given strategy was produced. Each model produced
both default and block-expanding strategies on every run. Eighty-six coevolutionary
runs produced particle CAs, whereas only two evolutionary runs did.

model default block particle
coevolution 100 100 86
evolution 100 100 2

modified coevolution 100 100 23

Table 2: Number of runs (out of 100 total runs) in which each of the three strategies is
found in the coevolutionary model, the evolutionary model, and in a modified version
of the coevolutionary model (see sect. 4.4).

Figure 3 plots, for each of the 100 runs, the maximum performance
�

obtained by
a CA in that run, for both the coevolutionary model (solid line) and evolutionary model
(dashed line). The values are ordered according to decreasing performance values. The
symbols denote which strategy is used by the CAs: block-expanding ( 
 ) or particle
( � ).

The difference in efficacy between the coevolutionary and the evolutionary mod-
els is very striking. The evolutionary model is unable in almost all cases to make the
transition from the block-expanding strategy to the particle strategy, whereas the co-
evolutionary model is able to make this transition in most runs. We have identified a
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mechanism that takes place in the coevolutionary model—and not in the evolutionary
model—that we believe underlies its increased efficacy: the evolution of bit patterns in
the ICs that specifically target block-expanding CAs. (There are likely to be additional
mechanisms that we have not yet identified.) We describe this mechanism and some of
its side effects in the next subsections.

4.2 Coevolution of “deceptive” blocks

As was discussed in section 2, the block-expanding strategy operates by expanding
sufficiently large blocks of 1s (or 0s) in the IC to produce an all-1 (all-0) state. This
strategy can produce fairly high fitness when the fitness of a CA is evaluated using
random ICs drawn from a uniform distribution, as is done in the evolutionary model,
but produces much lower performance

�
, which is evaluated using random ICs drawn

from the unbiased (binomial) distribution.
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Figure 3: The maximum CA performance
�

found for each of the 100 runs in the
coevolutionary model (solid line) and the evolutionary model (dashed line). The co-
evolutionary model produces high-performance particle strategies ( � ) more often than
the evolutionary model which produces lower-performance block-expanding strategies
( 
 ) more often.
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In the coevolutionary model, block-expanding strategies can easily be exploited
by coevolving ICs, and this process of exploitation is very important for producing
the high efficacy seen in the coevolutionary model. An IC with a low (high) density
can incorporate a block of 1s (0s) which deceptively indicates a high (low) density
to a block-expanding CA and thereby force mis-classification. We call such blocks
deceptive blocks.

For the purpose of this investigation we define the occurrence of a “deceptive
block” in an IC to be the occurrence of a block of seven or more adjacent 0s or 1s
in the 149-bit-string but only when the probability of the occurrence of such a block
in a randomly generated string of the same density is less than 0.01. The top panel
of fig. 4 illustrates the occurrence and dynamics of deceptive blocks in the IC pop-
ulation in a run of the coevolutionary model. We plot, at every 10 generations, the
proportion of ICs in the population that contain deceptive blocks as defined above. We
have marked the periods during the simulation when the highest performance CAs use
default strategies, block-expanding strategies, and particle strategies. Clearly, in the
period when the CAs use block-expanding strategies the number of ICs that contain
deceptive blocks is significantly higher than would be expected in random bit strings
of the same density. These deceptive blocks—a result of coevolution that directly tar-
gets the block-expanding CAs in the population—push the CA population to discover
new, more sophisticated strategies that are immune to deceptive blocks.

4.3 Coevolution of bit patterns that target weaknesses in particle
CAs

The effect of the coevolution of particular bit patterns in the (coevolving) ICs becomes
clear when we compare the classification accuracy of CAs based on evolved ICs and
based on random ICs with identical density values. Evolved ICs in many cases contain
bit patterns that exploit certain weaknesses in CA strategies and thus lead to reduced
classification accuracy of the CAs. The random ICs are expected not to contain such bit
patterns; the classification accuracy of CAs based on these ICs serves as an accuracy
base-line. The difference in classification accuracy � of a CA is defined as the fraction�

ran of correct classifications the CA makes on a set of random ICs minus the fraction�
evol of correct classifications it makes on the evolved ICs in a given generation:

� � �
ran � �

evol �
A non-zero � indicates that the evolved ICs contain bit-patterns that the CA uses as a
classification criterion. A negative � indicates that the CA correctly correlates these
bit-patterns with density values of the set of evolved ICs. A positive � indicates that
the bit-patterns in the set of evolved ICs are incorrectly correlated with the density
values.

We have calculated � for concurrent populations of CAs and ICs in a single run.
The black curve in the lower panel in fig. 4 plots for every 10th generation the average,

� , of � over all unique CAs in the population. At each generation, for each CA in
the population,

�
evol is calculated using the set of all unique ICs in the concurrent IC

population, and
�

ran is calculated using a randomly generated set of ICs of the same
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Figure 4: Coevolving ICs exploit CAs. In the top panel the proportion of ICs with de-
ceptive blocks is plotted for a single coevolutionary simulation. When CAs use block-
expanding strategies ICs tend to contain significant numbers of deceptive blocks. In
the lower panel the black curve plots the average difference in classification accuracy

� when CAs are evaluated on the basis of evolved ICs and of ICs with equal density
values but random bit-patterns. A negative � indicates that the CAs base their clas-
sification on the presence of particular bit-patterns in the ICs, which in this case are
correctly correlated to the density of ICs. A positive � also indicates that the CAs
base their classification on bit-patterns contained in the ICs but now the bit-patterns
are actually correlated to the other density class; the ICs exploit the criterion that the
CAs use as a basis for their classification. The grey curve plots � fixed, the difference in
classification accuracy for a fixed set of five particle CAs from generation 5000 using
the same sequence of ICs as was used to calculate � .
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size and with the same densities as the set of evolved ICs. As can be seen in the figure,
after the CAs evolve block-expanding strategies, � becomes positive and remains so
for the rest of the simulation. Thus, in every generation the evolved ICs appear to
contain bit patterns such as blocks of 0s or 1s (not present in the random ICs) that are
used by the CAs as a basis for their classification. The fact that � is positive indicates
that CAs are constantly exploited (i.e., deceived) by the bit patterns in the evolved ICs.

We also measure � fixed over a fixed set of CAs, using the same sequence of sets of
ICs to calculate

�
evol and

�
ran at each generation as were used for � . The fixed set of

CAs consists of five CAs from generation 5000 of this run that use particle strategies
and have a relatively high performance value. � fixed is plotted with the grey curve
in fig. 4. Surprisingly, � fixed is negative during the block-expander period, which
indicates that these five particle CAs exploit the presence of deceptive blocks in ICs;
they perform better on the basis of ICs that evolved during the block-expander period
than on the corresponding random ICs. However, � fixed becomes sharply positive
during the particle period, indicating that these five particle CAs are exploited by the
ICs that evolve during this period. In fact, � fixed is even larger during this period than

� , indicating that the particle CAs from generation 5000 are exploited by the evolving
ICs more strongly than the particle CAs in earlier generations.

In summary, the plots in fig. 4 indicate that the ICs indeed evolve such that they
specifically exploit the weaknesses in the strategies used by CAs, e.g., by incorporat-
ing deceptive blocks. This aspect of the coevolution of the CAs and the ICs is very
important for the eventual discovery and evolution of particle CAs, and thus the high
efficacy of the coevolutionary model. The data suggest that the particle CAs are also
exploited by the ICs in a similar manner to the block-expanding CAs. In the next sec-
tion we will introduce a modification in the coevolutionary model that points out some
side effects of this exploitation of particle CAs by the ICs.

4.4 Results from a modified coevolutionary model

To further explore the effect of the evolution of particular bit patterns in the ICs, we
modified the coevolutionary model so that no such patterns can form. In this modified
model, the coevolving population of ICs contains density values rather than explicit bit
strings. At each generation, for each density value in the IC population, we create a
new bit string with that density (c.f. Werfel et al., 2000, and Juillé & Pollack, 2000).
The mutation of the density values is now defined as a unit change (i.e., � �� � � ) in
the density value. The mutation rate is such that the same number of mutation events
occur in the population of ICs as in the original coevolutionary model (i.e., 0.5 � IC
population size).

The third row in table 2 shows the efficacy of this modified model. In 23 out of 100
simulations (23%) at least one particle CA was found. The efficacy is much lower than
in the original coevolutionary model, which is in accordance with the idea that particle
strategies evolve as a consequence of the exploitation of block-expander strategies by
the ICs. In the modified model such bit-patterns can no longer be selected for. In
comparison with the evolutionary model, however, this modified coevolutionary model
still shows a higher efficacy. Apparently, the exploitation of CA strategies by evolving
particular bit patterns is not the only mechanism that results in the high efficacy of the
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Figure 5: The middle panel shows the evolution of the density distribution of the ICs in
a typical run of the modified coevolutionary model. The top panel shows the evolution
of the maximum performance value. The lower panel shows the IC density distribution
at generation 5000.

coevolutionary model.
An additional mechanism that may be important for the increased efficacy of the

modified model compared to the evolutionary model is the change of the distribution
of density values of the ICs over time. The middle panel in fig. 5 shows the evolution
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Figure 6: The maximum CA performance found for each of the 100 runs in the modi-
fied coevolutionary model. Although the efficacy of the modified model drops sharply,
the performance of particle CAs that evolve in this model tend to be somewhat higher
than that of the particle CAs that evolve in the original coevolutionary model.

of the IC density distribution in a typical simulation of the modified model; every
density in the IC population is plotted at each generation. The upper panel shows the
evolution of the maximum CA performance value as context. The lower panel shows
the density distribution for generation 5000. The IC population adapts, as can be seen
in the changing density distribution, as CAs evolve more sophisticated classification
strategies. As a result, initially ICs are not too difficult for evolution to progress; later
they become difficult enough in order to present continued selection pressure for the
CAs. The density distribution at t=5000 shows two peaks at approximately 0.48 and
0.55. This bimodal distribution indicates the existence of separate sub-species in the IC
population (Pagie & Hogeweg, 2000). The coexistence of separate sub-species can be
seen even more clearly in the middle panel between

���
��� � � and

��� � � � � . Previous
work showed that the distribution of IC density values is very important in the evolution
of high performance strategies (Mitchell et al., 1994; Juillé & Pollack, 2000).

The particle CAs that evolve in the modified model tend to have higher performance
values than the particle CAs that evolve in the original coevolutionary model. In fig.
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6 we show the maximum performance values found per simulation for the modified
coevolutionary model. In the modified model the average of the highest performance
particle CAs that are found during a simulations is 0.80 (stdev=0.02). In the original
coevolutionary model the average is 0.76 (stdev=0.04).

The difference of performance values reflects the strong selection bias imposed by
the ICs on the CAs in the original model, which is absent in the modified model. In the
original model the ICs evolve particular bit patterns which exploit weaknesses in the
CAs (fig. 4) and thus present very atypical bit strings to the CAs. In the modified model
ICs represent density values only and actual bit strings are made anew every generation.
Not only are CAs evaluated on a larger variety of bit strings (ICs are re-initialized every
generation and ICs with identical genotypes usually give rise to different bit strings),
the bit strings are also initialized randomly, resulting in the presentation of much more
generic sample of bit strings during the CA fitness evaluation. Thus it seems that the
CAs in the modified coevolutionary model evolved to be more general than those in
the original coevolutionary model; the latter evolved to target more specific challenges
reflected in the evolving IC population. This may explain the difference in average
performance values between the two models.

4.5 Maintenance of diversity

As a consequence of the exploitation of the CAs by the ICs the diversity of strategies
that is present in a population in the coevolutionary model is much higher than in
the evolutionary model. In the coevolutionary model, at all generations, all possible
strategies of equal and lesser quality than the current best strategy are present in the
population (fig. 7, top panel). Not only do default CAs coexist with block-expanding
CAs, during the block-expanding phase often both types of block-expanding strategies
and both types of default strategies are present in the population, or the different types
of each strategy are present in an oscillatory manner. In the evolutionary model only
during the transient following the (random) initialization do the default-0 and default-
1 strategies coexist in the population. As soon as a CA with a higher-than-average
performance evolves, here at

� �
��� � , the whole population is overtaken and the loss of

diversity is never reversed (fig. 7, middle panel). In the modified coevolutionary model
the diversity is in-between the diversity in the coevolutionary and the evolutionary
models (fig. 7, lower panel). The modified coevolutionary model also shows that the
CAs with a relatively high performance value tend to dominate the population whereas
this is much less the case in the original coevolutionary model. Also, when strategies of
a higher quality evolve they tend to dominate the population more strongly than is the
case in the coevolutionary model (i.e., at

� �
� � � block-expanding begin to dominate

and at
� � � � � � particle strategies begin to dominate). A high diversity is often cited as

being beneficiary for evolutionary search models. It is unclear whether the difference
in diversity that we find here is a side-effect of the evolutionary dynamics or whether
it has a causal effect on the efficacy or on the difference in performance values of the
evolved particle CAs.
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Figure 7: The number of individuals that have a performance value in one of three
ranges, in single runs of each of the three models. The performance range gives an
indication of strategies that are used by the CAs: ��� � � � ���

��� 	 	 indicates default
strategies; �
��	 	 � ���

����� � indicates block-expanding and low performance particle
strategies; �
��� � � �

indicates particle strategies.

5 Discussion

Coevolutionary search is sometimes believed to lead to arms-races between the co-
evolving populations which should lead to the evolution of individuals that exhibit
general solutions to a given problem (Rosin & Belew, 1997; Pollack et al., 1997; Pare-
dis, 1997). However, in addition to the evolution of general solutions, coevolution can
also result in Red Queen dynamics (Paredis, 1997; Shapiro, 1998; Pagie & Hogeweg,
2000; Juillé & Pollack, 2000), speciation (Pagie, 1999), or mediocre stable states (Pol-
lack et al., 1997; Juillé & Pollack, 2000). It is often unclear under what conditions
coevolution will lead to which of these outcomes.

In this paper we compared evolutionary and coevolutionary search for solutions to
the the density classification task for cellular automata. We showed that the coevo-
lutionary search model exhibits a very high efficacy: 86% of the runs produce CAs
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that use high quality strategies. The standard evolutionary model does so in only one
run. We showed that the difference in the efficacy between the two models results from
the exploitation by the coevolving population (the ICs) of lower quality strategies, i.e.
block-expander strategies. When the ability of the ICs to exploit the CAs is removed,
the efficacy of the coevolutionary model drops sharply to 23%.

We have shown that the coevolving IC population explicitly targets weaknesses in
the strategies that are used by the CAs. As a result, the CAs undergo strong selection to
adapt to this exploitation, which leads to the high efficacy in the coevolutionary model.
Our results also suggest that this exploitation can lead to the evolution of less generally
applicable CAs, i.e., CAs with lower performance values, than when the exploitation
by ICs is prevented (as in the modified coevolutionary model). Interestingly, the orig-
inal and modified coevolutionary models each has positive and negative effects on the
search of optimal CAs by imposing different selection pressures on the CAs. One
choice improves the efficacy of the search procedure, while the other choice improves
the maximum performance value being evolved.

In summary, the results presented here suggest that coevolution can significantly
improve the results of evolutionary search. They also show that there can be a trade-off
between overall search efficacy and maximum performance of the evolved individuals.
Thus the best method of coevolution to be used on a particular search problem depends
on the search goals of the user.
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JUILLÉ, H. & POLLACK, J. B. (2000); Coevolutionary learning and the design of
complex systems. Advances in Complex Systems 2(4):371–394.

LAND, M. & BELEW, R. K. (1995); No perfect two-state cellular automata for density
classification exists. Physical Review Letters 74(25):5148–5150.

MITCHELL, M.; CRUTCHFIELD, J. P. & DAS, R. (1996); Evolving cellular automata
with genetic algorithms: A review of recent work. In: Proceedings of the First Int.
Conf. on Evolutionary Computation and its Applications (EvCA’96).

MITCHELL, M.; CRUTCHFIELD, J. P. & HRABER, P. T. (1994); Evolving cellular au-
tomata to perform computations: Mechanisms and impediments. Physica D 75:361–
391. SFI Working Paper 93-11-071.

OLIVEIRA, G. M. B.; DE OLIVEIRA, P. P. B. & OMAR, N. (2000); Evolving solu-
tions of the density classification task in 1d cellular automata, guided by parameters
that estimate their dynamic behavior. In: M.A. Bedau, J.S. McCaskill, N. P. & Ras-
mussen, S. (eds.), Artificial Life VII. MIT Press, pp. 428–436.

PACKARD, N. (1988); Adaptation towards the edge of chaos. In: Kelso, J. A. S.;
Mandell, A. J. & Shlesinger, M. F. (eds.), Dynamic Patterns in Complex Systems,
World Scientific. pp. 293–301.

PAGIE, L. (1999); Coevolutionary dynamics: information integration, speciation, and
red queen dynamics. In: Information integration in evolutionary processes, Bioin-
formatics group, Utrecht University, www.santafe.edu/˜ludo/articles/thesis.pdf,
chap. 5. pp. 67–93.

PAGIE, L. & HOGEWEG, P. (1997); Evolutionary consequences of coevolving targets.
Evolutionary Computation 5(4):401–418.

PAGIE, L. & HOGEWEG, P. (2000); Information integration and red queen dynamics
in coevolutionary optimization. In: Proceedings CEC 2000. pp. 1260–1267.

PAREDIS, J. (1997); Coevolving cellular automata: be aware of the red queen! In:
Baeck, T. (ed.), Proceedings ICGA VII. pp. 393–400.

17



POLLACK, J. B.; BLAIR, A. D. & LAND, M. (1997); Coevolution of a backgammon
player. In: Langton, C. G. & Shimohara, K. (eds.), Artificial Life V. The MIT Press,
pp. 92–98.

ROSIN, C. D. & BELEW, R. K. (1997); New methods for competitive coevolution.
Evolutionary Computation 5(1):1–29.

SHAPIRO, J. L. (1998); Does data-model co-evolution improve generalization perfor-
mance of evolving learners? In: Eiben, A.; Bck, T.; Schoenauer, M. & Schwefel,
H.-P. (eds.), PPSN V. vol. 1498 of LNCS, pp. 540 – 549.

SIMS, K. (1994); Evolving 3D morphology and behavior by competition. In: Brooks,
R. A. & Maes, P. (eds.), Proceedings Artificial Life IV. MIT Press, pp. 28–39.

WERFEL, J.; MITCHELL, M. & CRUTCHFIELD, J. P. (2000); Resource sharing and
coevolution in evolving cellular automata. IEEE Transactions on Evolutionary Com-
putation 4(4):388–393.

18


