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The cornerstone of polyautomata theory and the principal result established 
by this book2 is that it is logically possible for a nontrivial computing machine to 
reproduce, or replicate, itself ad infinitum. The realization of this logical result in 
physical objects has not yet been accomplished, even on paper, except to the ex-
tent that a living, reproducing thing is a machine. Although this latter view has 
certainly been supported by the description of nuclear DNA programs in the liv-
ing cell and the transcription of them into protein building blocks, it still takes a 
leap of faith to believe that von Neumann’s result means it is physically possible 
for a general-purpose computer to reproduce itself. We have taken the chemicals 
of living things and made vital parts of living things from them (e.g., genes [62]), 
but we have not yet generalized the secrets of living things to non-living crea-
tions of our own. (By “non-living” I mean not a member of the biological king-
dom with its history of evolution, man-made). I believe we shall, that the leap of 
faith is a small one and shall soon require no faith. I see forests of inorganic trees. 
I see buildings construct themselves, growing from a single brick-egg each. I see 
robots reproduce and evolve. I see amplification of our species and its celebration 
but also competition. There is an eerie beauty in these visions, generation-
spanning mystery, the sense of frontier, but also the horrors possible from abuse, 

                                                 
1 [Title changed by the addition of “Cellular Automata or” because “polyautomata” never be-
came common currency. Actually, polyautomata are generalizations of CA as explained in this 
article.] 
2 The book referred to throughout this article is John von Neumann’s Theory of Self-
Reproducing Automata, edited by Arthur W. Burks, Univ. of Illinois Press, Urbana, 1968. The 
present article is an introduction to the German edition of this volume [which was never pub-
lished]. 
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shortsightedness, and habitual blindness. The following book is the down-to-
earth origin of this visionary space, written by a founding father of computer sci-
ence and pursued the seventeen years since his death by his followers in spirit, 
the computer scientists. 

In this introduction, I shall survey and taxonomize the subbranch of com-
puter science which I have chosen to call polyautomata theory, where a polyautoma-
ton is a multitude of interconnected automata operating in parallel to form a lar-
ger automaton, a macroautomaton formed of microautomata. The mathematical 
device employed by von Neumann to solve the logical problems of self-
reproduction—he sets aside his own attempt at physical realization early on—is 
a polyautomaton called the cellular space3. Thus this book is one of the first pub-
lished documents of polyautomata theory, a branch of automata theory [9, 43]. 
As we shall see, particularly in the discussion of “dynamic” polyautomata, 
growth and development of living things, biological computations, are never far 
from the mind of the polyautomata theorist. Nor is the sense that the theory is 
leading him to a profounder understanding of parallel computation. 

I have chosen to introduce the survey by chronicling the refinements of von 
Neumann’s solution to the problem of self-reproduction. To understand his re-
sult it is necessary to establish some basic concepts of polyautomata theory. In 
particular, the cellular space is described in some detail; von Neumann’s result is 
then presented, followed by its refinements. The developments of the theory of 
cellular spaces are catalogued, and then the generalization of cellular spaces to 
polyautomata is accomplished via a taxonomy which makes the statement of 
open questions straightforward. I believe the taxonomy clarifies a theory pres-
ently muddied by use of the same name for different polyautomata and different 
names for the same polyautomaton. I have selected the name “polyautomata 
theory” to be descriptive while avoiding problems of vested interest in any one 
of the many names used for members of the polyautomata family. 

Not only is it appropriate to begin with the von Neumann cellular space for 
historical reasons, but it is also convenient, his model being rapidly grasped via 
our natural human inductive powers. For example, consider a chessboard ex-
tended to infinity in both dimensions with its rows and columns aligned with the 
north-south and east-west axes. Think of each square as representing an ordinary 
(serial) digital computer and suppose all these computers are identical. Further-
more, assume that each computer has input and output lines from and to its four 
nearest-neighbor cells—that is, the computers just to its north, south, east, and 
west. This hypothetical piece of hardware, extending to infinity in the four direc-
tions, is an intuitive model of the cellular space. 

The abstract model utilized by polyautomata theorists, including von Neu-
mann in this book, is easily obtained from the intuitive model by replacing each 
digital computer with an abstraction, an automaton, called a finite-state machine. 
Here “machine” means logical machine and does not necessarily imply anything 
mechanical. A finite-state machine is a theoretical device with a finite number of 
states, one and only one of which it must be in at any given time. For example, 
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the finite-state machine abstraction of a light switch has two states corresponding 
to the two stable positions of the switch. A cell is one of the infinity of finite-state 
machines in a cellular space (which is thus not a finite-state machine). The cell 
designed by von Neumann in this book is a 29-state finite-state machine. A much 
larger example is the finite-state machine abstraction of the Univac 1108 I used at 
New York University last year. It would have more than 22

22
 states since the 

computer has more than 222 bits in its main memory. This is more than 1010
6
 

states, a one followed by a million zeroes! A cellular space with each cell of this 
size is a piece of theoretical hardware of staggering complexity, it may seem, but 
the concept of cellular space allows us to play at ease among these vast numbers. 

Besides a finite number of states, a finite-state machine, and hence a cell, has 
only a finite number of distinct input values and only a finite number of distinct 
output values. In the von Neumann cellular space, the set of output values is the 
same as the set of states. Then, if a cell is in state s, its output (the value on the 
output lines in the intuitive model) is also s. It is distributed as input to the four 
nearest-neighbor cells and also fed back to the cell itself as input. These five cells 
form the neighborhood of each cell. The four cells in the neighborhood of a cell, ex-
cluding itself, are the neighbors of the cell. Hence the set of input values from each 
neighbor is also the same as the set of states. 

To complete a description of a cell, it is only necessary to add a table that 
gives the next state of the cell, and hence its next output, given its present state 
and the present states of its neighbors, for all possible present state combinations. 
A large part of the following book is devoted to describing this table for a typical 
cell of one cellular space. It is quite large—295, or approximately 20 million, en-
tries—but finite. 

For a finite-state machine, time flows in the direction of present state to next 
state, the important points being the times of state transition. Hence a finite-state 
machine can be thought of as a clock that ticks at each change of state. Alterna-
tively, a finite-state machine listens to a regularly ticking clock and changes state 
at each tick. It is this latter view that is most convenient for a cellular space. All 
cells are assumed to listen to the same clock. That is, they change state simulta-
neously. 

There is a special state, called the quiescent state, for each cell which is the 
state all but a finite number of cells assume. (This finiteness condition is not al-
ways assumed [14, 54]). Intuitively, most cells are off, or quiescent, leaving a finite 
number on. A cell can turn on only if at least one of its neighbors is on and then 
only if the next-state table allows it. Thus, although a cellular space is infinite, 
only a finite portion of it is of interest at any given time. A configuration in a cellu-
lar space is the arrangement of states formed at any one time by every cell as-
suming one of its states. An initial configuration is the configuration existing at 
time zero—that is, the only time at which an external agent may act upon a cellu-
lar space, placing each cell in some starting state. All changes in configuration 
after time zero occur autonomously, with one change possible per time step. 

The support of a configuration is the set of nonquiescent cells. By the finite-
ness condition mentioned above, configurations are usually assumed to have fi-
nite support. These are called finite configurations when it is desired to make the 
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finiteness explicit. Thus the support of a (finite) configuration at any one time 
corresponds intuitively to a parallel computer, a (possibly quite large) number of 
serial computers operating simultaneously and interdependently. The infinity of 
quiescent cells surrounding the support can be thought of as a soup, or sea, in 
which this parallel machine is afloat and from which it can extract hardware to 
append to its surfaces. This makes it appear to expand in the space. If it detaches 
hardware from its surfaces, by turning cells off, then it appears to contract. 

It is just such a machine that is shown capable of self-reproduction in this 
book. It is a nontrivial machine because it is shown to be a general-purpose com-
puter, capable of computing any computable function. The machine is specified, 
as the states of the cells in the support of an initial configuration, by an external 
agent, in this case von Neumann. The next-state table, also called the local transi-
tion function, then takes over at each cell. Since all cells change state simultane-
ously, this causes a sequence of configurations to unfold, one per tick of the 
clock. The sequence can be visualized as a cartoon of nonquiescent states against 
a background of quiescent states. The initial machine begins to move, by expan-
sion and contraction. It extends an arm into quiescent regions of the space where 
it places new cells on a machine it constructs there (by turning the cells on and 
placing them in some appropriate nonquiescent state). When the machine it con-
structs is a copy of itself, then it is said to self-reproduce. 

I stated in the first paragraph that the physical realization of a self-
reproducing machine had not yet occurred. With the cellular space concepts de-
veloped so far, we can obtain a feeling for the distance separating the theoretical 
from the actual. It is straightforward to realize a finite-state machine with elec-
tronic components—any computer engineer can do it—though perhaps ineffi-
ciently. Hence any cell is realizable and any finite set of cells. It is not straight-
forward, however, to exchange the theoretically convenient infinite hardware 
soup for real non-homogeneous space surrounding an artificial mechanical or-
ganism—it with organs capable of acquiring raw materials from the space and 
converting them into new cells which the organism grows as and where needed. 
To the extent one can tolerate a homogeneous model of nonhomogeneous space 
and the discontinuity at the surfaces of the machine is the demonstration in this 
book a proof ot the existence of real-world self-reproducing machines. 

What it does unequivocally prove though is that a very large array of not 
very powerful computers operating in parallel can be programmed to be quite 
powerful—that is, to perform any computation digital computers can compute—
and that the program to accomplish this feat can spread copies of itself through-
out the array. So, not only is the array of relatively powerless computers capable 
of computing what one powerful computer can, but it is capable of computing 
what a large number of powerful computers can compute simultaneously, with 
only one of the programs being provided by man. 

The von Neumann result has been refined and simplified several times in 
several ways. In the nine years between von Neumann’s work and the first pub-
lication of it by editor Burks, Thatcher, a former student of Burks, published a 50-
page version of the proof using the 29-state cells of the von Neumann cellular 
space [97]. Codd [22] reduced the size of the cell to 8 states in a proof of 80 pages. 
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Arbib [7] reduced the length of the proof to 8 pages by using very large cells (2335 
states). Most recently, Banks [14] has demonstrated in about 20 pages the exis-
tence of nontrivial self-reproducing machines in a cellular space with only 4 
states per cell. In all these cases, the 5-cell von Neumann neighborhood is as-
sumed, and nontriviality means computation universal in the sense that the two-
dimensional self-reproducing machine can compute any computable functino. In 
addition, each of these self-reproducing machines can construct any of a large 
class of machines over which it is said to be a universal constructor. Of course, this 
class of machines includes the self-reproducing machine itself. I have shown [90] 
that one dimension suffices and that the concept of universal constructor is not 
necessary for the existence of computation-universal self-reproducing machines. 
This proof is accomplished, in about three pages, in a one-dimensional cellular 
space (one row of a two-dimensional cellular space) with 18-state cells and the 3-
cell nearest-neighbor neighborhood4. It is also shown that one nearest neighbor 
suffices if 40-state cells are assumed and that 2-state cells suffice if the neighbor-
hood is increased to 21 cells. This is an example of the state-neighborhood size 
trade-off, to be mentioned again, possible in cellular spaces. 

If the condition that a self-reproducing machine be nontrivial is relaxed, then 
self-reproduction is obtained trivially: Consider a one-dimensional cellular space 
with 2-state cells (0 and 1) and a 2-cell neighborhood consisting of a cell and its 
left nearest neighbor. Let 0 be the quiescent state, and let a single cell in state 1 be 
the only nonquiescent cell in the initial configuration. Then this single cell is a 
one-cell self-reproducing machine under local transition function f given by 

(01) (10) (11) 1f f f= = =  and (00) 0f = . More interestingly, there are cellular 
spaces [4, 63, 72, 89, 105] in which the pattern—that portion of a finite configura-
tion restricted to its support—of every initial configuration self-reproduces. 

The existence of nontrivial self-reproducing machines is only one of a “clas-
sic” set of properties a cellular space might possess. Given a cellular space one 
may ask if it is construction universal over some class of machines. This class is 
usually taken to include a set of computers of the computable, or partial recur-
sive, functions, where each computer has a representation in the cellular space. If 
a cellular space supports a universal constructor over the given class of machine, 
then it is clearly construction universal. It is not known whether construction 
universality implies the existence of a universal constructor. Analogously, a cel-
lular space is computation universal if it supports a universal computer, one ma-
chine capable of being programmed to compute any computable function. Arbib 
[9] has shown that, with the usual assumption for computations of the partial re-
cursive functions—namely that the “program” can always be separated from its 
“data”, with perhaps a decoding—computation universality implies the exis-
tence of a universal computer. The von Neumann cellular space is construction 
                                                 
4 [The small neighbor or state counts apply only to computation-universal CA, not necessarily to 
self-reproducing CA. Details of this correction are in Smith, Alvy Ray, Simple nontrivial self-
reproducing machines, Artifical Life 2, Santa Fe Institute Studies in the Sciences of Complexity, 
vol X, ed by C G Langton, C Taylor, J D Farmer, and S Rasmussen, Addison-Wesley, 1991, 709-
725. The brevity of the proof of nontrivial self-reproducing CA remains unchanged, however. 
This paper should also be consulted for further up-to-date results on topics covered here.] 



Introduction to and Survey of CA (Polyautomata) Theory  6 

and computation universal because it supports a universal constructor that is 
also a universal computer. The existence of a universal constructor that is a uni-
versal computer does not necessarily imply nontrivial self-reproduction unless 
the universal constructor is a member of the class of machines over which it is 
universal. This, however, has usually been the case as, for example, in this book. 
For a discussion of the definitions of universal computers and constructors, see 
Herman [37]. 

By the usual choice of the class of machines over which a construction-
universal cellular space is universal, construction universality implies computa-
tion universality. It is not known whether computation universality implies con-
struction univerality in general although this is the case for the one-dimensional 
cellular spaces in [92]. Similarly, it is not known whether computation universal-
ity implies nontrivial self-reproducing machines in general although this too is 
the case for the one-dimensional cellular spaces just noted. 

The simplest known construction-universal cellular space is that with 4-state 
cells already mentioned in the discussion of self-reproduction. Its inventor, 
Banks, has also discovered the simplest known two-dimensional computation-
universal cellular space with the 5-cell von Neumann neighborhood. It has 3-
state cells [14]. From a theorem of Codd [22], it is the simplest possible computa-
tion-universal cellular space with this neighborhood—that is, there is no 2-state 
cell version possible. However, if the neighborhood is increased to include the 
four nearest diagonal neighbors as well as the four nearest orthogonal neighbors, 
then computation universality is possible with 2-state cells. This 9-cell neighbor-
hood is called the Moore neighborhood after Moore [64]. The cellular space 
called the “game of ‘life’”, invented by J.H. Conway of Cambridge University 
[29, 30], has the Moore neighborhood and 2-state cells. It has been informally 
proved computation universal by Conway and independently by W. Gosper of 
the Massachusetts Institute of Technology. Their formal proofs would be very 
long and tedious; hence they will probably never write them down. A local, 
hence brief, test for computation universality is not known—i.e., one which 
could be applied to the local transition function of a cellular space. I have estab-
lished the simplest known one-dimensional computation-universal cellular 
spaces [92] in the following “sizes”, where the first number in each pair is the 
state-set size and the second is the neighborhood size: 2x21, 3x13, 4x9, 5x8, 7x6, 
11x4, 18x3, 40x2. [5] 

Another “classic” property of some cellular spaces is a Garden-of-Eden con-
figuration. This is a configuration that cannot arise by autonomous operation of a 
cellular space but must be the initial configuration if it is to exist at all. The lack 
of existence of Garden-of-Eden configurations was originally thought to be an 
important indicator of construction universality—an unattainable configuration 
is not constructible. But construction is usually defined to be of a specific class of 
configurations (which compute), hence none of these configurations need be 
Garden-of-Eden even if the cellular space has Garden-of-Eden configurations. 
Furthermore, subtleties in the definition of construction make it possible for 

                                                 
5 [Deleted: “All of these support nontrivial self-reproduction.”] 
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some Garden-of-Eden configurations to be constructed [97]. Thus construction 
universality is possible in cellular spaces with Garden-of-Eden configurations—
e.g., the von Neumann cellular space. It turns out, in fact, that very weak cellular 
spaces have Garden-of-Eden configurations—e.g., the cellular space defined 
above for trivial self-reproduction—and their existence is certainly not sufficient 
to guarantee computation universality [90]. Moore [64] proved that the existence 
of a pair of “mutually erasable” configurations implies the existence of a Garden-
of-Eden configuration, where two configurations are mutually erasable, roughly 
speaking, if they differ at time t but become identical at time 1t +  under action of 
the global transition function—i.e. simultaneous action of the local transition func-
tions of all cells. For example, consider again the cellular space defined above for 
trivial self-reproduction. The two configurations 111 and 101 (assume 0 every-
where else) are both transformed by the global transition function into the con-
figuration 1111. Hence 111 and 101 are mutually erasable, and there exists a Gar-
den-of-Eden configuration—e.g. 1. Banks and his coworkers at the Massachusetts 
Institute of Technology have recently discovered an efficient method for deriving 
Garden-of-Eden configurations (unpublished daily log memo). One application 
of the technique resulted in a Garden-of-Eden configuration for the game of 
“life” [103]. 

Myhill [68] proved the converse—that existence of mutually erasable con-
figurations is equivalent to existence of Garden-of-Eden configurations. Since a 
global transition function takes any configuration, the Moore and Myhill results 
can be stated in terms of properties of the function. Amoroso and Cooper [3], 
Richardson [78] and Golze [31] have made these properties precise: A one-to-one 
global transition function is both one-to-one and onto if it is restricted to finite 
configurations. The converse is not true; a restricted one-to-one global transition 
function (restricted to finite configurations) is not necessarily a restricted onto 
global transition function, and a restricted onto global transition function is not 
necessarily a one-to-one global transition function. However, a global transition 
function is onto if and only if its restriction to finite configurations is one-to-one. 
We shall return to the Garden-of-Eden problem after polyautomata more general 
than the cellular space are discussed. 

Polyautomata theory has been pursued simultaneously along several fronts 
by independent researchers in the time since von Neumann and the “cellular 
space”. A representative, but certainly not exhaustive, list includes Hennie [34] 
on “iterative circuits”; Waksman [104], Balzer [13], and Moore and Langdon [65] 
on the “firing squad problem”; Holland [40] on “iterative computers”; Wagner 
[101] on “modular computers”; Cole [23] and Fischer [28] on “iterative arrays”; 
Kosaraju [50] on “cellular arrays”; Moore [64] on “tessellation structures”; Ya-
mada and Amoroso [107] on “tessellation automata”; Smith III [91] and Codd[22] 
on “cellular automata”; Kilmer [48] and Kasami and Fujii [47] on “iterative logic 
networks”; Herman [36] and Lindenmayer and Rozenberg [59] on “developmen-
tal systems”; Rosenstiehl, Fiksel, and Holliger [81] on “intelligent graphs”; Alad-
yev [1] on “homogeneous structures”; Case and Steward [21] on “local computer 
systems”; and Arnold, Tan, and Newborn [11] on “iterative realizations”. The 
following taxonomy should help to standardize this plethora of names. 
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Every polyautomaton has these properties: It is an interconnection of cells. 
Each cell computes an output from inputs it receives from a finite set of cells, 
forming its input neighborhood, and possibly from an external source. Each cell 
computes an output at each tick of a clock, and the output is distributed to its 
output neighborhood, a finite set of cells, and possibly to an external receiver. Al-
though it is usually assumed that the clock of a polyautomaton is a single global 
clock, ensuring that all cells compute synchronously, it has been shown that this 
is not always necessary for synchrony, that a local clock built into each cell suf-
fices for some polyautomata [81]. 

The term “cell” is intended mean a finite-state machine, perhaps augmented 
with tapes or stacks, although little work has yet been done with polyautomata 
having cells so augmented (but see [79, 87]). Generalizations to probabalistic or 
fuzzy cells [9] are possible but will not be treated here. In this survey, it is as-
sumed that all cells of a given polyautomaton are identical—the polyautomaton 
is monogeneous. This is not taken to be a defined restriction on polyautomata but 
a reflection of the fact that the branch of the theory allowing a variety of cell 
types (polygeneity) is unexplored except for the work of Holland [41] who has 
presented a careful definition of polyautomata in terms of “compositions of finite 
automata”. Similarly, it is usually assumed here that any polyautomaton is input-
output symmetric, that the input and output neighborhoods of a given cell are the 
same unless otherwise specified. It is also assumed here that input and output 
values are the states, no input encoding or output decoding being necessary. It is 
not assumed that a cell is necessarily in its own neighborhood. A final assump-
tion about polyautomata local to this survey is that each cell has memory, or 
more than one state. That is, the polyautomata here are assumed to be not combi-
national. 

The class of polyautomata can be divided into two (not necessarily disjoint) 
subclasses in several convenient ways. There are the infinite and finite polyauto-
mata each being an interconnection of, respectively, an infinite number or a finite 
number of cells. These two subclasses are mutually exclusive, with the infinite 
polyautomata being more powerful, of course, than the finite. There are the uni-
form and the nonuniform polyautomata. A uniform polyautomaton has a uniform 
interconnection scheme, a “wiring diagram” that somehow “looks the same” 
viewed from any cell. This intuitive notion can be made rigorous in terms of 
group graphs [102]. The von Neumann cellular space, its interconnection scheme 
specified by the 5-cell von Neumann neighborhood, is an infinite uniform poly-
automaton. A non-uniform polyautomaton has an interconnection scheme that is 
not necessarily uniform. The relationship between the uniform and nonuniform 
polyautomata is not completely understood. However, Jump and Kirtane [46] 
have recently determined some of the structure of this relationship by consider-
ing those nonuniform polyautomata, the balanced polyautomata, which are not 
necessarily input-output symmetric but have the size of the input neighborhood 
equal to the size of the output neighborhood. They found that the finite balanced 
polyautomata are of power equal to the finite uniform polyautomata but their 
technique does not generalize to the infinite case, the infinite balanced being per-
haps more powerful than the infinite uniform polyautomata. As an example of a 
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finite nonuniform polyautomaton, consider a set of five cells, such that each has 
three neighbors, no two of which are the same cell, and at least one cell is not its 
own neighbor. The interconnection scheme of this example is specified by a finite 
bidirectional graph of degree 3. The cells can be visualized as occupying the 
nodes of this graph with the arcs specifying the neighborhood of each cell. They 
are bidirectional arcs in this example because input-output symmetry is as-
sumed. 

Another taxonomic distinction to be made is that between static and dynamic 
polyautomata. These terms can be defined by reference to the interconnection 
graph. If the cells and the neighborhoods of all cells in a polyautomaton remain 
unchanged in time, then it is a static polyautomaton. That is, if the interconnec-
tion graph remains unchanged in time, the polyautomaton is static. If the arcs 
can change in number and position but the nodes are fixed, then the cor-
respponding polyautomaton is only node-static but still considered static. A dy-
namic polyautomaton is not static. Both the arcs and nodes can change in num-
ber and position in its interconnection graph. Thus the dynamic polyautomata 
are those to which cells can be added in time and from which cells can be de-
leted. Except for the random pairwise interconnections considered in [100], node-
static polyautomata have received scant attention. The dynamic polyautomata, 
however, are being extensively studied because of the relevance of certain sub-
classes of them to modeling living things. They have been particularly well in-
vestigated in the simplest forms—one dimension and no neighborhood other 
than the cell itself [26, 36, 58, 59, 74, 82, 84]—and are now being looked at in more 
generality [24, 25, 27, 35, 83, 85]. A detailed bibliography of this fastest growing 
branch of polyautomata theory is that of Lee and Rozenberg [55], containing over 
a hundred entries; an excellent text is that of Herman and Rozenberg [39]. Some 
of the biological implications of polyautomata theory have been explored at re-
cent symposia attended by both biologists and polyautomata theorists [76, 77]. 

The cells in the von Neumann cellular space are deterministic because, for a 
given combination of present state and present input values, there is one and 
only one next state specified by the local transition function. A nondeterministic 
cell, however, has a local transition function that determines the next state only 
to within a set of possible choices. If this set is always of size one for a nondeter-
ministic cell, than it is equivalent to a deterministic cell. Hence determinism is a 
special case of nondeterminism for cells. Hence, deterministic static polyauto-
mata, those restricted to deterministic cells, are a subclass of the nondeterministic 
static polyautomata, which have nondeterministic cells. Whether the subclass is 
proper or not is an unanswered question, being related to the “lba problem”, an 
unsolved problem of long standing in automata theory [9, 43, 93]. In the case of 
dynamic polyautomata, however, it has been shown that nondeterminism does 
lend additional power to that which can be obtained deterministically [35]. This 
is a consequence of the extension of the meaning of “(non)determinism” of dy-
namic polyautomata to sets of cells, as opposed to single cells in the static case. 

The von Neumann cells are also examples of Moore-type finite-state machines 
that require a unit time step, the time between successive ticks of the clock, be-
tween any output and the inputs from which it is computed by the cell. A Mealy-
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type cell permits zero delay between an output and its associated inputs. Thus a 
signal can pass instantaneously through a Mealy-type cell. In a Mealy-type poly-
automaton, with cells of the Mealy-type, this implies that a signal can travel in-
stantaneously to any cell or cells regardless of the distance as opposed to the 
situation in a Moore-type polyautomaton, with cells of the Moore-type, where a 
signal can travel instantaneously only from a cell to its neighbors. Holland [41] 
has proved that the Moore-type polyautomata are not as powerful as the Mealy-
type polyautomata, there being finite “compositions”, or interconnections, of (not 
necessarily identical) finite-state machines that can be simulated by the latter but 
not the former—i.e., Mealy-type polyautomata (in fact, uniform Mealy-type 
polyautomata) can be composition universal but Moore-type polyautomata can-
not. Since a Moore-type cell is the special case of a Mealy-type cell where the 
property of instantaneous signal propagation is not used, Moore-type polyauto-
mata are a sublclass of Mealy-type polyautomata. They form a proper subclass, 
by Holland’s result. 

The cellular spaces described in the discussion of self-reproduction are 
autonomous after time zero, having no input for external control. These are ex-
amples of autonomous polyautomata. If a polyautomaton is not autonomous, then 
an external input is assumed. Since external input schemes are numerous, the 
scheme of a particular subclass of polyautomata must be specified. For example, 
a single external input might be global, distributed to all cells, or local, distrib-
uted to a subset of cells, perhaps to only one cell. Or each cell might have an ex-
ternal input independent of the external inputs to each of the other cells. A finite 
polyautomaton may contain cells with inputs not connected to outputs of other 
cells in the polyautomaton nor designated as external inputs. Each of these is as-
sumed to receive a constant boundary signal. 

Similarly, a polyautomaton can have external output. Otherwise it is termed 
without output as, for example, the von Neumann cellular space. Again the possi-
ble output schemes are numerous and must be specified. 

The polyautomaton described in this book is infinite, uniform, deterministic, 
Moore-type, autonomous, without output, and static6. Such a polyautomaton is 
called a cellular space if its cells lie on the nodes of the integer grid. It may have 
arbitrary dimensionality d. The von Neumann 2-dimensional cellular space has a 
5-cell neighborhood, but, in general, the only restriction on neighborhood size in 
a cellular space (or any polyautomaton) is that it be finite. It has been shown, 
however, that the von Neumann neighborhood always suffices in the sense that a 
cellular space with arbitrary neighborhood can be simulated, time step for time 
step, by a cellular space with the von Neumann neighborhood after an initial en-
coding [91, 109]. This is true in any d-dimensional cellular space, where the d-
dimensional von Neumann neighborhood consists of a cell and one nearest 
neighbor in each of the 2d directions from it. 

It is an unproved claim, but apparently true, that the cost of neighborhood 
reduction is an increase in state-set size. If N is the size of a neighborhood and n 
is the size of the state set before neighborhood reduction, then the size of the 

                                                 
6 [This is the usual meaning of the term CA.] 
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state set after reduction is on the order of nN when reduction is to the Moore 
neighborhood (in d dimensions, a d-dimensional cube of 3d cells centered on the 
cell that is in its own neighborhood). Of particular interest, because it is surpris-
ingly difficult, is the cost of a reduction of the Moore neighborhood to the von 
Neumann. The best result known so far that holds for an arbitrary number of 
dimensions [91] shows an increase in the state-set size from n to nV, where V is 
the volume (number of cells) in a d-dimensional sphere of radius 3 22d . This cost 
has been reduced dramatically to n4 for the 2-dimensional case [20] and to about 
n350 for the 3-dimensional [32]. Of course, for a particular cellular space or for a 
particular subclass of cellular spaces—e.g., the computation-universal cellular 
spaces—this cost can be greatly reduced, as already indicated. 

Another surprising discovery has been that neighborhoods smaller than the 
von Neumann suffice. The neighborhood consisting of a cell and one nearest 
neighbor in each dimension works in a step-by-step simulation for arbitrary di-
mension, after an initial encoding [91]. It might appear that two-way information 
flow along each dimension is lost in the reduction of the von Neumann 
neighborhood to this neighborhood, but the trick is to let the configuration being 
simulated “slide” through the cellular space in time. In fact, the cell itself can be 
omitted from this neighborhood to obtain a d-cell neighborhood that also works, 
after an initial encoding. In a result even more counterintuitive than those above, 
Amoroso and Guilfoyle [5] have shown that, in two dimensions, any neighbor-
hood can be reduced to a 3-cell neighborhood without using the trick of sliding, 
after an initial encoding. The cost is, in general, an increase to n45 states for reduc-
tion from the Moore neighborhood. This result has not yet been extended to 
higher dimensions. The phrase “after an initial encoding” can be omitted from all 
neighborhood reductions mentioned if a strict step-by-step simulation of the 
nonreduced cellular space is not necessary. This is because the cellular space it-
self can perform the initial encoding if appropriately designed. 

Besides trading a state-set increase for a neighborhood reduction, it is also 
always possible to trade a neighborhood size increase for a reduction in the 
number of states. For N and n as before, the cost for reduction of n to m is an in-
crease to on the order of logmN n  cells in the neighborhood, where m can be as 
small as 2 [91]. Again, this is a general result for an arbitrary cellular space and 
can be greatly improved in specific cases. It also has not been proved optimal. 

Another valuable theoretical tool, in addition to the trade-off results above, is 
speed-up. One can design a cellular space to simulate any given cellular space, but 
k times faster, for any given integer k, after an initial encoding. Speed-up can be 
obtained by simply increasing the neighborhood, the number of cells “seen” in-
stantaneously at each time step. More interesting, however, are speed-ups in 
which the neighborhood remains fixed. There is a cost, of course, and this is in 
state-set size—on the order of 

dkn  for n as before and assuming the Moore 
neighborhood before and after speed-up [91]. Speed-up and neighborhood re-
duction can be accomplished simultanesouly, the cost being on the order of nkN. 

All the state-neighborhood trade-off results listed above for the cellular space 
also hold for a generalization to a polyautomaton called a tessellation space [107, 
109], which is a cellular space with a single external input distributed to each cell. 
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Thus a cellular space is an autonomous tessellation space, or a tessellation space 
is a programmable cellular space, where the “program” is the sequence of exter-
nally supplied inputs. Each cell in a tessellation space can be thought of as hav-
ing a finite set of local transition functions, and hence the tessellation space has a 
finite set of global transition functions. Each “instruction” in the program selects 
the global transition function to be used at that time step. The speed-up results 
for cellular spaces do not generalize to tessellation spaces unless it is assumed 
that the external program is one in which the instruction changes only once 
every k time steps, for speed-up by a factor k. Reference [109] is an excellent dis-
cussion of behavioural equivalence as well as structural equivalence of tessella-
tion spaces, and hence cellular spaces. 

A problem that is peculiarly tessellation, and not cellular, space theoretic is a 
nonautonomous generalization of the Garden-of-Eden question. This is called the 
completeness problem [108]: Is it possible to generate any finite configuration, with 
a suitable external program, where the initial configuration is primitive—one cell 
on, all others quiescent? If the answer is yes for a given subclass of tessellation 
spaces, then the subclass is said to be complete. The completeness problem has not 
been fully solved. For one-dimensional tessellation spaces with contiguous 
neighborhoods—i.e., such that every cell just to the left of a cell in a neighbor-
hood is also in the neighborhood, except for the cell just left of the leftmost cell—
the partial solutions are: Such tessellation spaces with 2-cell neighborhoods are 
not complete but with n-cell neighborhoods, 3n ≥ , they are complete [60, 108]. 
There are only partial solutions for higher dimensions and neighborhoods that 
are not contiguous [61, 108]. 

Another variety of infinite polyautomata, closely related to the cellular and 
tessellation spaces, which has received detailed treatment in the literature is what 
I shall call an iterative space. An iterative space is a cellular space with one of its 
cells given an external input and an external output. Let this distinguished cell 
for each iterative space be called the input-output cell. Cole [23] has extensively 
analyzed the speed-up and neighborhood reduction possibilities of this subclass 
of polyautomata. His work was the inspiration for the analogous work for cellu-
lar spaces in [91]. The costs for speed-up and neighborhood reduction are higher 
for iterative spaces, though this has not been proved necessarily true. This is be-
cause of the special difficulties caused by the input-output cell. The best results 
known for neighborhood reduction from Moore to von Neumann neighborhoods 
in iterative spaces of two and three dimensions have state-set size costs of n21 and 
about n700, respectively [32]. 

Because of its single input and single output, an interative space can be 
thought of as a “finite-state machine” with a highly structured, potentially infi-
nite memory. Then, in analogy with finite-state machine theory, it becomes inter-
esting to characterize the sets, or languages, of strings of input symbols that are 
accepted by the machine. An input string is accepted, if, just when or after the 
string has been completely entered, one symbol per time step, the output of the 
input-output cell goes into a specially designated accept state. Cole has character-
ized these languages for iterative spaces as a generalization of the languages ac-
cepted by finite-state machines. Kosaraju [50] has shown that the well-known 
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context-free languages [43] are a subset of the iterative space languages and are 
accepted by one-dimensional iterative spaces in a number of time steps propor-
tional to the square of the length of the input string. He also showed that, by in-
creasing the number of dimensions to two, the number of time steps for accept-
ing the context-free languages could be reduced to a number proportional to the 
length of the input string. Seiferas [86] has proved that nondeterministic two-
dimensional iterative spaces can accept in linear time any language accepted in 
linear time by a nondeterministic multihead Turing machine with a tape of arbi-
trary dimension. He also has shown that nondeterministic d-dimensional itera-
tive spaces accept in linear time any language accepted in time nd by this same 
type of Turing machine but with only one-dimensional tapes (n is the length of 
the input word). 

A tessellation space has an external input like an iterative space and could be 
used similarly as a language acceptor if acceptance were defined in some way—
e.g., by any nonquiescent cell going into an accept state. Similarly, a one-
dimensional cellular space could be used as a language acceptor by assuming the 
initial pattern was the string to be processed for acceptance, which is defined 
perhaps as just suggested for tessellation spaces. Neither of these possibilities has 
been pursued, the sequence of configurations usually being of more interest in 
cellular and tessellation spaces than any one configuration. However, in the finite 
versions of these polyautomata, to be introduced next, language acceptance and 
recognition become very important, where a language is recognized if it is not 
only accepted but any string not in the language is rejected by a cell entering a 
special reject state. In dimensions higher than one, language recognition is some-
times referred to as pattern recognition. 

A cellular automaton is a finite cellular space in which the finite set of cells is 
neighbor-connected. That is, the nodes representing any two cells in the intercon-
nection graph of a cellular automaton are connected by a sequence of arcs. Simi-
larly, a tessellation automaton is a finite neighbor-connected subset of cells in a tes-
sellation space, and an iterative automaton is a finite neighbor-connected subset of 
cells in an iterative space, one of which must be the input-output cell. As already 
mentioned, for all these polyautomata, a cell with a missing neighbor has a spe-
cial boundary signal substituted instead. 

The pattern of states at time zero in a cellular automaton is taken to be the 
string or pattern to be accepted or recognized, where acceptance or rejection is 
determined by a specific cell, the accept cell, going into an accept or reject state. In 
one dimension this cell is, say, the rightmost cell. For the special subclass of two-
dimensional cellular automata, each of which forms a rectangular array, the rec-
tangular cellular automata, the accept cell is, typically, the northeast corner cell. 
For general two-dimensional cellular automata, it is, say the easternmost cell in 
the most northern row of cells. Language recognition by one-dimensional cellu-
lar automata is studied in [47] and [93]. Pattern recognition capabilities of rectan-
gular cellular automata have been investigated by Beyer [18] and Kosaraju [51]. 
Pattern sets recognized by general two-dimensional cellular automata and the 
formal language characteristics of these sets have been described by Smith III 
[94]. These polyautomata are powerful pattern recognizers and fast, as might be 
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expected since the inherent parallelism is exploited. Interesting unsolved prob-
lems are: Is there a language that requires, of one-dimensional cellular automata, 
nonlinear recognition time—i.e., a number of time steps not proportional to the 
length of the initial pattern but larger? (The answer is yes for iterative spaces 
[23].) Can the context-free languages be accepted, by one-dimensional cellular 
automata, in real time—i.e., a number of time steps equal to the length of the ini-
tial pattern? What are the capabilities of cellular automata of dimension greater 
than two? 

Nondeterministic cellular automata, which are the nondeterministic poly-
automata obtained by replacing the deterministic cells of a cellular automaton 
with nondeterministic cells, have been useful in theoretical pattern recognition 
studies [93, 94]. For example, it has been proved that the context-free languages 
can be accepted in real time by nondeterministic one-dimensional cellular auto-
mata. 

Tessellation automata have not been studied but, in a sense, iterative auto-
mata have. For real-time language recognition by a one-dimensional iterative 
space with the 3-cell nearest-neighbor neighborhood (which, because of the 
neighborhood reduction results, we can assume without loss of generality), the 
number of cells that can ever become nonquiescent, or used, in the iterative space 
is twice the length of the input string. Hence, so long as real-time recognition is 
the concern, the iterative space can be assumed finite in size, limited by the 
length of the input string, an iterative automaton. There are languages that can 
be accepted in real time by cellular automata which cannot be accepted in real 
time by iterative automata [93]. Hence cellular automata are inherently faster 
than iterative automata. This is not surprising since input is spatial to the former 
and temporal (hence one-way) to the latter. 

A famous problem for cellular automata is the so-called Firing Squad Prob-
lem. Here each cell is called a “soldier” and one of them is called the “general”. 
All cells but one, the general, are off initially. Then the general gives the “com-
mand to fire”. The problem is to design the cells so that all go into the same, “fir-
ing”, state simultaneously and for the first time. The cell design must be inde-
pendent of the number of soldiers. The problem has been solved numerous times 
in a sequence of improvements summarized in [65]. The solution, called the Fir-
ing Squad Theorem, has turned out to be quite useful in pattern recognition stud-
ies of cellular automata [93, 94]. A closely related result, also useful in pattern 
recognition, the Queen Bee Theorem solves a sort of reverse of the Firing Squad 
Problem [95]: Design a cellular automaton such that, if all cells are initially in the 
same state, one and only one of them is eventually, but rapidly, marked as the 
accept cell, the “queen bee”. 

Although the Firing Squad Theorem was originally stated only for one-
dimensional cellular automata, it has been generalized to rectangular cellular 
automata [18], to general cellular automata of arbitrary dimension [18, 71, 80, 88] 
and to certain node-static and dynamic polyautomata [38, 100]. In fact, Rosen-
stiehl [80] has shown that it remains valid even when a nonuniform interconnec-
tion scheme is allowed—that is, for finite, nonuniform, deterministic, Moore-
type, autonomous, and static polyautomata without output—so long as the finite 



Introduction to and Survey of CA (Polyautomata) Theory  15 

set of cells is neighbor-connected and is input-output symmetric. This very inter-
esting class of cellular graph automata has been analyzed in terms of what graph-
theoretic properties of the interconnection graph each member of the class can 
decide or identify about itself [17, 81]. They have been called, in fact, “intelligent 
graphs”. The decision or identification is said to have occurred when a steady-
state configuration is obtained—that is, one that does not change under further 
applications of the global transition function. A far-reaching result of the work 
on cellular graph automata is that an independent global clock is unnecessary, 
that by appropriate cell design incorporating a local clock such a polyautomaton 
can synchronize itself. This applies, for instance, to cellular automata which are a 
special subclass of cellular graph automata. Some work has been done on cellular 
graph automata which are not input-output symmetric and which are not neces-
sarily neighbor-connected. In the latter case, for example, it has been demon-
strated that, in general, the polyautomaton cannot decide whether its intercon-
nection graph is connected or not, except by judicious selection of initial configu-
ration [81]. 

To my knowledge, the tessellation graph automata, each a cellular graph 
automaton with a global external input to all cells, have not been investigated. 
However, the iterative graph automata, each a cellular graph automaton with an 
input-output cell, have been studied in a manner quite different from the tech-
niques so far discussed for polyautomata, namely, as “uniform modular realiza-
tion, or decompositions” of finite-state machines (where “uniform” here means 
identical modules). Given a finite-state machine with, say, q states, the problem is 
to realize it with, or decompose it into, an interconnection of simpler, e.g., 2-state, 
finite-state machines which are identical. The input to the finite-state machine to 
be realized is distributed globally to all modules, or cells, in the modular fsm reali-
zation. Its output is taken from only one cell, the output module, and may be fed 
back to all cells as part of the global input. Any finite-state machine has a modu-
lar fsm realization with appropriate choice of module [10, 11, 99, 110]. Newborn 
and Arnold [70] have shown that any modular fsm realization can be replaced 
with an interative graph automaton—i.e., the external input can be restricted to 
the output module. An open question in this branch of polyautomata theory is: Is 
there a linear modular fsm realization of an arbitrary q-state finite-state ma-
chine—i.e., one that requires no more than cq cells, c constant? The restriction is 
that one module has to suffice for modular fsm realizations of the entire class of 
finite-state machines with p or fewer input and output values. Work has been 
performed on uniform as well as nonuniform modular fsm realizations [10, 11, 
70] (where “uniform” again assumes its polyautomata theoretic meaning). An 
iterative graph automaton equivalent to a uniform modular fsm realization is, in 
general, not an interative automaton, so far as is currently known. 

All of the polyautomata discussed so far have been static. I have already 
suggested that, with respect to the possible application of polyautomata theory, 
perhaps its most relevant subclass is the dynamic polyautomata that allow a cell 
to divide into one or more daughter cells and that allow the death, or disappear-
ance, of cells. Consider a one-dimensional cellular automaton in which, at each 
time step, a cell not only changes state according to the states of its neighbors but 
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may also be replaced by a finite number of cells in specified states. Thus the 
“next state” is actually a string of states, but the next-state table is deterministic, 
as for the static case, if there is only one possible choice for the string in each dis-
tinct set of neighborhood circumstances. A cell in the finite cellular automaton so 
obtained is assumed to have the same neighborhood as before the cell division. 
Thus, if any cell’s neighborhood is itself and its two nearest neighbors before di-
vision, then any cell’s neighborhood after division is itself and its two nearest 
neighbors at that time. These one-dimensional dynamic cellular automata have 
been called “Lindenmayer systems” or “L-systems” after their originator Lin-
denmayer [57] who utilized them to model the growth of filamentary organisms. 
As mathematical entities, they have been extensively studied as “developmental 
systems” [36, 58, 59]. Just as for cellular and tessellation spaces, it is the sequence 
of configurations which is of interest, not any one configuration or the state of 
any one cell. If each pattern generated at each step is taken as a “word” in the 
“language” generated by these polyautomata, then the developmental languages 
generated by one-dimensional dynamic cellular automata with one-cell 
neighborhoods have been thoroughly described [58, 59, 82, 84]. Higher dimen-
sional dynamic cellular automata have begun to receive treatment in the litera-
ture as well as the very interesting dynamic cellular graph automata [24, 25, 27, 50, 
73]. This class should be the polyautomata most useful for modeling growth and 
development of living things. Dynamic tessellation automata have been investi-
gated under the name of “table L-systems” [39, 82]. 

All of the polyautomata discussed so far have been Moore-type. By allowing 
Mealy-type cells, each variety of polyautomaton mentioned gives rise to a Mealy-
type version. In particular, Holland [41] and Wagner [101] have studied Mealy-
type cellular spaces. Finite Mealy-type polyautomata theory receives occasional 
investigation because of its close relationship to “real-world” computers [52, 96]. 

The bibliography which follows contains all references used in this survey. It 
is not meant to be exhaustive and should be combined with bibliographies such 
as that in Burks [19]. It does, however, contain many of the most recent papers 
written on polyautomata. Readings in this literature will familiarize interested 
persons in those areas I feel I have slighted or even ignored in this survey such as 
Mealy-type polyautomata [33, 34, 53], unbounded pattern growth in cellular 
spaces [22, 30], linear cellular automata [44, 45, 105], the regularity of one-
dimensional pattern sets for cellular automata [49, 56], evolution of machines in 
cellular spaces [15, 16, 67], fault-tolerant cellular spaces [76] and pattern genera-
tion [42, 56, 98]. Applications of polyautomata theory include biological devel-
opment [66, 75], highway traffic flow [75], physics [75], and economics [2]. 

Von Neumann states in his 1949 lectures (Part I of the following book), “You 
will see that our discussion of complex automata is very far from perfect and that 
one of our main conclusions is that we need very badly a theory which we do not 
at this moment possess.” I suggest that polyautomata theory is just such a theory 
and hope that the many unsolved problems and open questions mentioned 
throughout this survey will inspire others to join in the exploration of the poly-
automata theoretical space. 
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