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Development of characteristic tissue patterns re-
quires that individual cells be switched locally be-
tween different phenotypes or “fates;” while one cell
may proliferate, its neighbors may differentiate or die.
Recent studies have revealed that local switching be-
tween these different gene programs is controlled
through interplay between soluble growth factors, in-
soluble extracellular matrix molecules, and mechani-
cal forces which produce cell shape distortion. Al-
though the precise molecular basis remains unknown,
shape-dependent control of cell growth and function
appears to be mediated by tension-dependent changes
in the actin cytoskeleton. However, the question re-
mains: how can a generalized physical stimulus, such
as cell distortion, activate the same set of genes and
signaling proteins that are triggered by molecules
which bind to specific cell surface receptors. In this
article, we use computer simulations based on dy-
namic Boolean networks to show that the different
cell fates that a particular cell can exhibit may repre-
sent a preprogrammed set of common end programs or
“attractors” which self-organize within the cell’s reg-
ulatory networks. In this type of dynamic network
model of information processing, generalized stimuli
(e.g., mechanical forces) and specific molecular cues
elicit signals which follow different trajectories, but
eventually converge onto one of a small set of common
end programs (growth, quiescence, differentiation, ap-
optosis, etc.). In other words, if cells use this type of
information processing system, then control of cell
function would involve selection of preexisting (la-
tent) behavioral modes of the cell, rather than instruc-
tion by specific binding molecules. Importantly, the
results of the computer simulation closely mimic ex-
perimental data obtained with living endothelial cells.
The major implication of this finding is that current
methods used for analysis of cell function that rely on
characterization of linear signaling pathways or clus-
ters of genes with common activity profiles may over-
look the most critical features of cellular information
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INTRODUCTION

Tissue morphogenesis is driven by changes in cell
shape, growth, and function that are coordinated in
both time and space. Individual cells receive multiple
simultaneous inputs, yet somehow they are able to
rapidly integrate these signals so as to produce just one
of a few possible cell fates (distinct phenotypes). Dur-
ing development of an epithelial gland or a branching
capillary network, for example, an individual cell will
proliferate, while neighboring cells only micrometers
away turn on entirely different gene programs that
lead to differentiation or apoptosis [1]. The conven-
tional approach used to understand cell regulation fo-
cuses on how each of these distinct functional path-
ways is regulated. However, to fully understand
developmental control, we need to explain how cells
can be consistently switched between these different
gene programs in the local tissue microenvironment
when stimulated by a variety of environmental cues.

The greatest progress in our understanding of devel-
opmental control has been made in the area of cell
regulation by soluble hormones and growth factors.
The general paradigm is that these soluble factors bind
to specific cell surface receptors and elicit a linear
cascade of biochemical reactions or “signal transduc-
tion” events which lead to activation of genes that are
specific for one cell fate or another (e.g., growth versus
differentiation). One central “mitogenic pathway” that
has emerged is the ras–raf–MAPK/ERK signaling cas-
cade which mediates activation of growth-related
genes which drive cell cycle progression and entry into
S phase [2–4]. Various mitogenic signals with different
chemistry (e.g., EGF, PDGF, FGF, etc.) converge on

this same signaling pathway [5].
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While we tend to assign specific functions to signal-
ing molecules and pathways (e.g., mitogenic, apopto-
tic), the reality is that the information conveyed by the
signal transduction machinery often cannot be local-
ized to an individual cascade, rather it is distributed
among numerous pathways. On one side of the spec-
trum, activation of a single signaling receptor results
in fanning out of the biochemical signal, such that a
very large array of genes becomes induced. For in-
stance, when more than 6000 genes were monitored
with DNA microarrays, activation of the FGF or PDGF
receptor induced the expression of over 60 genes [6].
Even activation of a signaling molecule far down in the
mitogenic pathway (the c-myc transcription factor) in-
duced expression of 27 different genes [7]. On the other
end, the same signaling molecule can produce paradox-
ical effects. Ras promotes growth via MAP kinases
ERK1/2; however, in the absence of NF-kB or PI-3K,
activation of the same pathway results in programmed
cell death [8–10]. Functional characterization of key
regulatory molecules by their overexpression or inhibi-

TAB

Genes and Proteins with Paradoxic

Growth Differentiatio

c-ras Most cell lines (2) p16
expression

Fibroblasts (1
(2) rho [93

c-myc Fibroblasts (1) serum [71]

NF-kB Various cell types, via
cyclin D1 [78]

Immune resp
inflammati
[79–81]

MAPK-ERK1/2
(p44/p42)

PC12 (1) EGF (transient)
[84]; fibroblasts, via
cyclin D1 [2]
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smooth mu
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MAPK-p38 Fibroblasts (1) FGF2
[100]
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Rho Fibroblasts
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pRb Most cells (2
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Bcl-2 Lymphocyte [

Note. Shown is a selection of genes and signaling proteins (left colu
top row) depending on the circumstances, analyzed as indicated in t
olecules. (1) Cell fate observed in presence of indicated factor; (2
tion has revealed a number of similar examples in
which a protein can be assigned paradoxical functions
depending on the cell type or activity state of other
regulatory proteins (Table 1). Taken together, these
findings raise the question of how signal specificity is
established and maintained in living cells [11, 12].

This picture is further complicated by the fact that
diffusible factors alone are not sufficient to fully ex-
plain cell fate regulation. Structural cues also affect
cell behavior: normal cells need to adhere to an insol-
uble extracellular matrix (ECM) substrate in order to
survive and proliferate. Furthermore, loss of anchor-
age-dependence is a hallmark of transformation [13]
which results in disorganization of tissue architecture
[14]. As with soluble factors, ECM molecules bind to
specific cell surface receptors—integrins—and thereby
activate intracellular signaling pathways that govern
whether a cell will proliferate, differentiate, move, or
die [15–19]. Importantly, integrin-generated signals
also converge with those elicited by growth factor re-
ceptors. For instance, cell binding to ECM directly
activates the ras–raf–MAPK/ERK pathway and also
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soluble growth factors [20–22]. Convergence of ECM-
and growth-factor-induced transduction cascades upon
a common signaling pathway provides one possible
molecular mechanism for the observed synergism be-
tween growth factors and ECM in switching cells from
quiescence to growth [23] as well as from growth to
apoptosis [19].

Despite this complex network of signaling pathways,
activation of chemical events elicited by specific molec-
ular recognition of cell surface receptors is not suffi-
cient to explain how cell fate is controlled within the
physical context of growing tissues in which cells are
both bound to ECM and surrounded by multiple
growth factors. The answer to this riddle of form gen-
eration may lie in the fact that tissues are also exquis-
itely sensitive to mechanical forces (e.g., hemodynamic
forces in blood vessels, compression in bone, tension in
skin and muscle, and cell-generated forces in develop-
ing tissues) which are transmitted over ECM to indi-
vidual cells [1]. Importantly, these mechanical stresses
may differ locally (beneath one cell versus its neighbor)
due to local changes in ECM turnover that alter scaf-
fold compliance or through contraction of underlying
cells (e.g., mesenchymal condensation). Both of these
alterations are characteristically observed in regions of
enhanced cell growth during tissue morphogenesis in
the embryo.

In vitro studies similarly demonstrate that cells can
be switched between entirely different gene programs
through alterations of ECM structure or mechanics
that produce changes in cell shape, independent of
growth factor binding or integrin binding [24–27]. For
example, when growth factor-stimulated capillary en-
dothelial cells were cultured on microfabricated adhe-
sive islands of varying size that were coated with a
saturating density of ECM molecules, spread cells on
the larger islands proliferated; retracted and rounded
cells on tiny islands underwent apoptosis, and cells on
the intermediate islands that promoted a moderate
degree of spreading switched into a differentiation
mode and formed hollow capillary tubes. These results
confirm those from past studies which demonstrated
tight coupling between cell shape and function in a
wide variety of cell types using various experimental
techniques [28–32].

Analysis of the mechanism of shape-dependent
growth control in endothelial cells revealed that cell
distortion does not alter the classic ras–raf–MAPK/
ERK signaling pathway. Instead, cell spreading was
found to act many hours later in the cell cycle and to
harness the same molecular machinery that is respon-
sible for control of the G1/S transition by growth fac-
tors [26]. Specifically, cell extension permitted signals
elicited by binding of growth factor receptors and inte-
grins to upregulate cyclin D1 and downregulate the

cdk inhibitor, p27, thereby promoting Rb hyperphos-
phorylation and passage through this late G1 restric-
tion point. In contrast, even though growth factors and
ECM activated common early signaling events, cyclin
D1 and p27 protein levels remained respectively low
and high in cells that were prevented from spreading.
Importantly, this gene activation pattern in round cells
is nearly identical to the cell arrest induced by growth
factor withdrawal and by inducing cell rounding from
within by disrupting the actin cytoskeleton [26, 33, 34].
So, once again, different regulatory cues converge on a
common biochemical switching mechanism, as indi-
cated by activation of a common profile of signaling
activities.

The molecular mechanism by which a cell shape
change is translated into these biochemical signals is
currently not known; however, several lines of evidence
suggest that tension-dependent integrity of the actin
cytoskeleton is essential for this form of cell cycle con-
trol [1]. For example, disrupting the actin cytoskeleton
using cytochalasins and simply inhibiting cytoskeletal
tension generation without altering cell shape using
pharmacological modulators of actomyosin-based con-
tractility both produce a block in G1 progression simi-
lar to that induced by cell rounding [26, 33, 35]. In fact,
cytomechanical measurements have shown that iso-
metric cytoskeletal tension is increased in spread cells
[36] and that tension-driven restructuring of the cy-
toskeleton promotes formation of a microcompartment
specialized for protein synthesis (containing poly(A)
mRNA and ribosomes) directly at the site of integrin
binding surrounding the focal adhesions [37]. More-
over, focal adhesion formation is itself dependent on
cell spreading and associated tension generation
within the cytoskeleton [25, 38]. This might represent
a direct mechanism for transferring mechanical inputs
into growth signals, given that cyclin D1, a rate-limit-
ing protein in G1 progression, and other growth-re-
lated proteins are translationally regulated [39, 40].
Furthermore, many mRNAs associate directly with the
cytoskeleton [41, 42]. Taken together, these findings
suggest that cell shape and behavior may adapt to the
mechanics of the cell’s microenvironment which, in
turn, may be modulated through localized changes in
ECM remodeling during tissue development.

CELL FATES AS ATTRACTORS IN CELL
REGULATORY NETWORKS

Our current understanding of cell regulation in-
volves such a complex picture of the underlying molec-
ular machinery that it is commonly necessary to break
it down into individual signaling pathways that link
activated receptors to gene induction in order to gain
any insight into the mechanism of control. The concept
of linear signaling pathways assumes that the instruc-

tion for a cell is encoded in the molecular structure of
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the ligand (whether soluble or insoluble) and its spe-
cific recognition by its cell surface receptor. The in-
struction is then passed down to the nucleus by a series
of molecular recognition events. In contrast, work on
cell shape control has revealed that a generalized me-
chanical stimulus—cell shape distortion—is sufficient
to modulate cell sensitivity to specific regulatory cues
and, thereby, to govern whether individual cells will
switch between different gene programs. More impor-
tantly, this “nonspecific” stimulus can direct cells to
take on the same fates (and hence, activate the same
signaling intermediates and end-target gene pro-
grams) as molecular factors that bind with high spec-
ificity to their cognate cell surface receptors. But how
could cells have evolved this capacity to trigger devel-
opment along common pathways whether stimulated
by specific chemical conformations or by external me-
chanical stresses devoid of any information encoded by
molecular specificity? Moreover, how can a gradual
change in a physical parameter over a broad range,
such as cell shape (round to spread), be translated into
just these same distinct cell fates? Perhaps by address-
ing these fundamental questions we may gain further
insight into the mechanism by which living cells inte-
grate and process regulatory information.

The paradigm of pathways linking receptors with
genes has led to the identification of many new signal-
ing molecules over the past decade. In organisms
whose entire genome has been sequenced, more than
10% of the genes appear to encode signal transduction
proteins [43]. As we enter the postgenomic era, we
must ask: can identification of all these signaling pro-
teins and their assignment into distinct functional
pathways lead to full understanding of developmental
control and cell fate regulation? Importantly, the find-
ings that cellular signaling involves “distributed infor-
mation” with intense cross-talk between pathways,
that a single signaling molecule produces pleiotropic
effects (e.g., activates many genes), and that the same
signaling protein may produce opposite effects depend-
ing on the chemical and physical context in which it
acts, strongly suggest that the concept of linear signal-
ing pathways is inappropriate [44, 45]. Thus, a new
paradigm is required for further advancement in this
field. Careful analysis of developmental control reveals
that the characteristic phenotypes cells exhibit—
growth, quiescence, differentiation, apoptosis, motility,
etc.—represent emergent behaviors that arise through
collective interactions among various different genes
and signaling components. As described above, these
pathways are not linear connections between receptor
and gene; rather they are elements of a complex net-
work of interacting signaling components.

How can one begin to approach the problem of bio-
logical network behavior and, specifically, address the

question of how distinct cell fates emerge? One possible
handle on this problem is the finding that gradual
variations in a single control parameter, such as cell
shape, can switch living cells between distinct gene
programs, including growth, differentiation, and apo-
ptosis. This behavior is reminiscent of phase transi-
tions—abrupt macroscopic changes between qualita-
tively discrete stable states (e.g., liquid versus gas or
solid)—that are observed in physical systems. Thus,
the various fates that a cell may experience can be
viewed as “cellular states,” and the switches between
these states may then be viewed as biological phase
transitions.

With this formulation as a handle, it is then possible
to describe the collective ordered behavior of the cell’s
information processing system and the relation be-
tween cell fate switching and possible underlying con-
trol elements in precise terms, without focusing on the
properties of the individual molecular components. For
example, the fact that different stimuli, or a single
stimulus acting over a specific range, lead to the same
distinct phenotype (e.g., growth), suggests that cell
fates can be viewed as common end programs or “at-
tractors” within a regulatory network [46]. To visualize
attractors, imagine a potential landscape containing
multiple valleys with hills in between; a droplet of rain
which lands on this terrain and rolls down the energy
potentials is always attracted to one of the same set of
possible valleys or “basins of attraction,” eventually
coming to rest in a stable end-state (attractor) at the
bottom of one of these valleys (Fig. 1). The position of

FIG. 1. Attractor landscape representation of cell fate. A hypo-
thetical “potential landscape” representing the N-dimensional state
space compressed into two dimensions (xy) for visualization pur-
poses. Every position in the xy plane would correspond to a network
tate. The vertical axis (z) represents a potential function, an “energy
quivalent,” representing some distance measure of a network state
o the attractor state. Lowest points in the valleys correspond to
ttractor states that represent cell fates in our model. In this exam-
le, the apoptosis state is the deepest and broadest valley, reflecting
he fact that apoptosis often appears as a default program which is
riggered by a large variety of stimuli.
the droplet at any time may be viewed as the internal
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95SHAPE-DEPENDENT CONTROL OF CELL GROWTH AND DEATH
state of the cell which, when activated by some stimu-
lus, rolls along the potentials always falling into one of
the same set of possible valleys, or in this case, cell
fates.

But are cell fates structured as attractors within the
cell’s regulatory networks? In support of this hypothe-
sis, regulation of cell function appears to involve selec-
tion of preexisting (latent) behavioral modes of the cell,
rather than instruction by specific binding molecules
[47, 48]. Moreover, nonspecific pharmacological stimuli
that activate multiple proteins across several signaling
pathways often trigger expression of the same set of
cellular phenotypes. General inhibition of serine/thre-
onine kinases with staurosporine or elevation of pro-
tein tyrosine phosphorylation using orthovanadate in-
duces apoptosis in many cell types [49, 50].
Differentiation of many cell types also can be turned on
by nonspecific agents, including DMSO or ethanol [51–
55]. In these cases, it appears that simultaneous per-
turbation of multiple targets in different pathways re-
sults in the channeling of the biochemical effects into
common end-programs and hence the same set of dis-
tinct cell fates.

The dynamic nature of this switching between dif-
ferent phenotypes, combined with the finding that di-
verse stimuli produce the same set of end responses,
suggests that cell fates are indeed organized as attrac-
tors. Thus, the different fates a cell may experience—
differentiation, growth, quiescence, motility, apoptosis,
etc.—indeed do appear to be preexisting behavioral
modes that are wired into cells’ regulatory networks.
Furthermore, there may be more than one low energy
well at the bottom of an attractor (Fig. 1), such that the
same cell can experience, for example, more than one
state of “quiescence.” The transition between different
cellular states in this type of dynamic regulatory sys-
tem would result from a selection process that can be
as equally triggered by a nonspecific control parameter
(e.g., general kinase inhibitor, cell spreading) as by a
soluble growth factor that binds to specific transmem-
brane receptors. In other words, the functional state of
the cell “self-organizes” itself: no external instruction is
required, only a stimulus that the cell can perceive.

GENETIC NETWORKS AND SIGNAL TRANSDUCTION
NETWORKS AS BOOLEAN NETWORKS

If living cells use this type of dynamic regulatory
network, then how do these attractor states (latent
behavioral modes or cell fates) self-organize them-
selves through collective interactions among different
molecular components? One mathematical approach
that may be used to understand information processing
and generation of a macroscopic collective behavior
within this type of complex regulatory network is the

use of Boolean networks composed of binary genes or t
signaling molecules interconnected by regulatory in-
teractions (Fig. 2a) [46, 56, 57]. This idealized model is
sufficient, for example, to reveal how ordered collective
gene activity patterns spontaneously emerge within
certain classes of networks while circumventing the
need to know quantitative details about all of the in-
ternal biochemical interactions [57, 58]. A Boolean net-
work is a mathematical formulation which consists of
interconnected binary elements, such as genes or pro-
teins that can be either ON 5 1 (e.g., representing a
kinase that is expressed and in the phosphorylated,
catalytically active state) or OFF 5 0 (representing the
ilenced gene, or the expressed, but inactive kinase).
he digitization allows the use of the Boolean formal-

sm to characterize the effects of the collective actions
f the inputs on any individual network element (e.g.,
regulatory protein). For instance, in the simple case

f two inputs per element, an AND function implies
hat a target protein is turned ON only if both inputs
“upstream regulators”) are ON; a NOT IF function
equires that one of the inputs be ON and the other
FF to turn the target ON (Fig. 2a, see Fig. 3 for
etails) [59]. The activity statuses of all the N genes or
roteins within the network form an activity pattern;
ach pattern at a given time t constitutes a network
tate, S(t) (Fig. 2b). Together, all the possible activity
atterns (network states) define the complete state
pace (Fig. 2c) in which every point represents a cellu-
ar state (i.e., the pattern of gene or protein activities
ithin the network at any given time).
Because of the constraints imposed by the intercon-

ections between different signaling elements within
he network, most of the activity patterns that are
heoretically possible are unstable, that is, they violate
he logical rules of the Boolean function. For example,
enes A and B cannot be simultaneously ON, if A
nhibits B, and A and B cannot both be OFF, if A
ctivates B. Unstable states migrate along trajectories
n the state space until they reach stable ones as the
oolean functions are executed and the network dy-
amically changes its activity profile over time. Trajec-
ories can converge, like rivers in a landscape, and flow
nto one of a few possible attractors resulting in estab-
ishment of a stable, discrete pattern of gene or signal-
ng protein activities. Attractors may represent either
single stable state that is self-reinforcing once formed

i.e., when the activity profiles are “updated” over time,
hey regenerate the same activity profile) or a stable
eries of states that together form a small loop (“limit
ycle”), as shown on the bottom right of Fig. 2c. Such
ycling attractors would correspond, for example, to
epeating gene activation patterns that recur during
epetition of each cell cycle [46].
The set of activity profiles in the state space that lead

o the same attractor form the basin of attraction of

hat attractor. Basin boundaries divide the state space
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which results in compartmentalization of the total pos-
sible state space (Figs. 1 and 2c). Importantly, the state
space of this regulatory network therefore has an in-
ternal structure that imposes certain dynamics onto
the global activity pattern of the interacting compo-
nents—genes and signaling proteins in the case of
living cells. The dynamics of regulatory switching
within this type of regulatory network can be pictured

FIG. 2. Basic principles of Boolean network models and cellular
attractors arise from the interactions between different network elem
could represent genes or proteins of a regulatory network. In this id
the element itself, representing a feedback loop. The thin arrows indic
function, as shown in the corresponding boxes below (for details, see
the activity state of that element). (b) Network state S(t). Each ele
ON/OFF configurations for all elements defines the network s
possible network states (in this case 24 5 16) together form the state s
by the wiring diagram and the Boolean functions, the network sta
represent the trajectories. Attractor states are depicted in gray. Not
network, resulting in the formation of basins that drain into the attr
boundaries are shown with a dotted line. Each attractor and its ba
apoptosis, or proliferation. The proliferation attractor is a limit cycl
corresponds to the oscillatory gene expression patterns characteristic
represent physical interactions constituting the wiring diagram while
(trajectories).
as a marble on a landscape with broad valleys, narrow
troughs, and pits; the marble may explore various ini-
tial paths; however, it is eventually forced to follow a
certain trajectory that leads to one of the few final
attractor states (Figs. 1 and 2c). The position of the
marble at any given time in the state system of the
cell’s regulatory network represents a transient pat-
tern of gene activation or protein signaling protein
activity. The choice of the final attractor state depends

tes. A four-element network is used as an example to illustrate how
s. (a) The wiring diagram of the four elements, A, B, C, and D, which
ized case, all elements have two inputs that can include input from
specific regulatory interactions. Each element is assigned a Boolean

g. 3), which dictates how the input is processed into an output (i.e.,
nt can be ON (represented by 1) or OFF (0). The set of all the

e at a given time point t. (c) The state space and attractors. All
ce, in which every box is a network state. Following the rules defined
transition into each other, as indicated by the thick arrows which
at trajectories can converge, but not diverge, due to the rules of the
ors. The entire state space is divided into basins of attraction whose

can be equated to a cell fate, such as differentiation, quiescence,
n this case, containing two states that transit in each other) which
repeated passage through the cell cycle. Note that thin arrows in (a)
e thick arrows in (c), the abstract state space, are dynamic processes
sta
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97SHAPE-DEPENDENT CONTROL OF CELL GROWTH AND DEATH
influences that may perturb the dynamics of the pro-
tein or gene activity pattern.

In summary, the generic dynamic properties of Bool-
ean networks predict that if the cell organizes its reg-
ulatory network in this manner, then multiple attrac-
tor states (distinct stable gene activity patterns or
signal transduction profiles) will spontaneously
emerge as a result of internal network interactions.
This model is therefore consistent with the proposal
that the different cellular states characteristic for any
particular cell type (e.g., growth, differentiation, apo-
ptosis, motility, etc.) may be viewed as attractor states
within the cell’s regulatory network [46]. The depth of
the valleys in the attractor landscape indicate that
attractors are mutually exclusive states that are inher-
ently stable to perturbations, such as the random “flip-
ping” of the activity status of any individual network
element. This is also a property exhibited by living
cells. For example, differentiation and proliferation are
well known to be mutually exclusive and robust [60];
moreover, in many cell systems just quitting the pro-
liferation state by overexpressing the cell cycle inhibi-
tor p21 forces the cell to automatically enter the differ-
entiation program [61–64]. But how can the intrinsic
stability of an attractor state be overcome? Network
simulations reveal that it is necessary to change the
activities of multiple network elements in order to
ause this type of dynamic regulatory network to
witch between different self-stabilizing attractors
65]. Thus, each transition requires the modification of
he activity status of a precise set of regulatory mole-
ules. Importantly, these transitions correspond to the
witch of cell fate that is induced by external stimuli
hich trigger pleiotropic effects, such as when cells are

timulated by soluble mitogens, adhere to ECM, or are
xposed to mechanical stresses [1]. Herein might lie a
asic design principle behind the wiring architecture of
egulatory networks, such as those observed in living
ells, that are dominated by convergence and pleiot-
opy. In this context, “master switch” genes, such as

FIG. 3. Example of how to encode a regulatory protein interactio
cdk4) that is a signaling protein which receives two inputs from its
inhibitor (CDI; e.g., p27). The cdk requires association with a cycli
inhibits cdk activity. This regulation can be encoded with a NOT IF
(active kinase) only IF CDI is NOT present (5 0) and the cyclin is p
yoD [66] or PPARg [67], that transform cells between
entirely different lineages (e.g., from fibroblasts or fat
cells to muscle cells), may be viewed as elements which
precisely activate the correct set of genes and proteins
which leads to major changes in their activity patterns,
thereby triggering the transition of the network state
to a new attractor representing an entirely new differ-
entiation state. (Such transitions would correspond to
transdifferentiation and require that the new attrac-
tor, the differentiation attractor of another cell type, is
accessible from the original state. This in turn depends
on the local structure of the state space as defined in
the genome-wide wiring diagram [65].)

BOOLEAN NETWORK SIMULATIONS MIMIC
BEHAVIORS OF LIVING CELLS

If the cell’s regulatory networks self-organize into
multiple alternative cellular states in this manner,
then a nonspecific control parameter that elicits pleio-
tropic changes in intracellular signaling, such as a
physical force or cell distortion, would be able to evoke
similar signaling trajectories into a common set of at-
tractors and, hence, the same cellular responses that
are induced by specific biochemical signals which con-
tain regulatory information in their three-dimensional
structure. Given that we observed precisely this re-
sponse in our past studies on shape-dependent control
of cell function, it may therefore be useful to explore
whether experimental results obtained during analysis
of the switching between different phenotypes with
living cells are consistent with the existence of this
type of information processing system which is based
on self-organizing dynamic networks.

To illustrate the idea of Boolean networks and
shape-dependent switching between attractors, we
simulated the dynamics of the signaling system within
capillary endothelial cells as a simple Boolean network
which consists of cell cycle genes and proteins and
whose wiring diagram and mathematical processing
functions are based on the known signaling interac-

a Boolean function. cdk represents a cyclin-dependent kinase (e.g.,
stream regulators, one a cyclin (e.g., cyclin D1) and the other a cdk
o be activated; the CDI binds to the cyclin–cdk complex [102] and
olean function shown in the bottom of Fig. 2a: The cdk is ON (5 1)
ent (1).
n in
up
n t
Bo
tions (biochemical or functional) between these differ-
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FIG. 4. Computer simulation of gene and protein signaling activity patterns within a small model Boolean network compared with
experimental results relating to the switch between growth and quiescence in living cells. (a) The wiring diagram used in the dynamic network
model consists of nine growth-related genes or proteins; logical placeholders are used for S-phase genes (S) and the process of mitosis (M) and
unknown processes involved in transduction of the shape signal into a biochemical signal response (X). The system is under the control of two
external inputs: growth factors (GF) and cell spreading (shape). Simple arrows indicate positive stimulation; barbed ends denote inhibition; dashed
lines represent indirect effects. (M) was used in the simulation to close the circle and represents collectively the events downstream of (S). The
self-limiting property of mitosis was implemented by a negative feedback loop. For simplicity, every gene was allowed to have only two inputs
corresponding to the best characterized upstream regulators. The table summarizes the Boolean functions of the network elements with the names
of the Boolean function in the bottom row. Implicat, “implication,” a Boolean function in which the output is always ON except in the situation in
which one of the inputs is ON and the other is OFF. Nand, “not and,” a Boolean function in which output is always ON except if both inputs are
ON (for details see [46, 59]). (b) State space structure of the network described in (a) obtained from the computer simulation and compared to
experimental results obtained in studies with capillary endothelial cells cultured on ECM-coated adhesive islands of varying size that were created
with a micropatterning technique [26]. The small 3 3 3 checkerboard grids represent the network states with the activities of each of the nine genes
r signaling proteins highlighted in the nine corresponding boxes of the checkerboard (see legend). Black squares indicate the ON 5 1 status of the

gene or protein; the two larger squares with rounded corners at the top of each checkerboard denote the status of the external inputs to the network:
presence or absence of GFs and of cell spreading. Solid arrows signify transitions between network states upon execution of the Boolean functions;
dashed arrows indicate transition between attractors resulting from changes in the two external inputs. Results of experimental monitoring of gene

protein signaling protein activities in endothelial cells are shown in the gray inset boxes for four of the network states. For cyclin E and E2F, mRNA
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ent regulatory components (Fig. 4a) [26]. For example,
as shown in the table in Fig. 4a, if growth factors and
spreading were present (both ON 5 1), then due to the

oolean AND function, the output of X would also be
N (5 1), whereas due to the NOT IF function, cyclin
1 would be induced (ON 5 1) only if p27 was OFF 5
(“not on”) and ERK was ON(5 1). The entire signal-

ng network was idealized in this manner to allow
xactly two inputs per element; it also contains some
ogical placeholders instead of specific genes, such as
S), representing S phase, and (M), representing mito-
is. We then compared the gene and signaling protein
ctivity status of the attractor states (3 3 3 checker-
oard in Fig. 4b) which spontaneously arise within this
omputer-simulated network with the observed activ-
ty profiles obtained in our past experimental studies
ith living endothelial cells (insets with images dis-
laying results from Western blots or PCR analysis are
hown in Fig. 4b) [26]. This analysis revealed that in
he presence of soluble growth factors and cell spread-
ng the theoretical network exhibited a single, limit-
ycle attractor corresponding to the proliferation state
growth attractor in Fig. 4b). In this attractor, the cell
isits a series of network states repeatedly; this move-
ent corresponds to the recurring gene and protein

ctivity patterns characteristic of passing through the
ell cycle progression multiple times. The gene and
rotein activity patterns of the individual states which
orm the state cycle as cells undergo cell cycle progres-
ion are very similar to the biochemical activity profiles
f genes and proteins measured within cultured endo-
helial cells (insets, Fig. 4b). Upon removal of growth
actors or induction of cell rounding (removal of spread-
ng), the network transitions into single-state attrac-
ors (quiescence attractors I and II in Fig. 4b) which are
nstable in the presence of both stimuli (i.e., growth
actor and spreading). These two single-state attrac-
ors correspond to quiescent states which differed
lightly in their gene and signaling protein activity
rofiles, much like what is observed in living endothe-
ial cells which stop growing and enter slightly differ-
nt G0/1 quiescence states when they are prevented
rom spreading or cultured in the absence of soluble
itogens [26]. Fibroblasts similarly experience differ-

nt forms of quiescence when growth is blocked by
erum removal or detachment from ECM [68, 69].
In the Boolean network simulation, the shape-de-

endent signal elicited a concerted response leading to

levels were monitored by reverse PCR; cyclin D1 and p27 protein leve
pRB hyperphosphorylation (doublet band indicates pRb inactivati
activation (ON 5 1) is indicated by the increased band staining inte
data inset remains empty; however, the ON or OFF status in the com
turned on after about half of the cell cycle in the simulation, consis
aberrantly turned on transiently early in the cycle (right bottom squa

rise to aberrant oscillations.
the transition between quiescence and growth attrac-
tors because we explicitly fed the shape signal in as the
input of a Boolean function via a putative transducer,
“X” (Fig. 4a). In reality, the molecular pathways for
shape-dependent control remain obscure. Still, the fact
that, in living endothelial cells, shape modulation in-
duces changes in patterns of gene activation and signal
transduction that are almost identical to those pro-
duced both by specific soluble mitogens and by the
computer simulation based on Boolean networks is
remarkable. These findings strongly support the con-
cept that the nonspecific “shape signal” is translated by
the cell into coherent patterns of gene expression and
signaling activity (cell fates) that represent attractors
within the cell’s dynamic regulatory network.

IMPLICATIONS FOR THE FUTURE

We have rapidly reached the limits of the current in-
formation processing paradigm in cell biology which is
based on the use of linear signal transduction pathways
for developmental control. This paradigm emerged from
recognition of the importance of soluble hormones for cell
regulation and from the fact that the functional effects of
these regulators are mediated by their binding to cell
surface signaling receptors. However, more recent stud-
ies have clarified that insoluble ECM molecules and me-
chanical forces that produce cell distortion play equally
important roles in the control of the cellular phenotype.
Furthermore, cell shape regulates switching between dif-
ferent cell fates by inducing the same gene and signal
protein activity profiles that are activated by cell binding
to specific growth factors and ECM molecules. This ob-
servation, combined with the increasing awareness of
“distributed” information processing within cell signaling
networks, emphasizes the necessity to develop a more
global and integrated model of cell regulation.

In this article, we introduced the use of Boolean
networks as simple idealized models of cellular infor-
mation processing, particularly as it relates to switch-
ing between different cell fates. Computer simulations
revealed that the different phenotypes that a particu-
lar cell may exhibit—growth, differentiation, apopto-
sis, quiescence, motility, etc.—may represent attrac-
tors which spontaneously arise (self-organize) within
the dynamic network of molecular interactions that
comprises the living cell. The existence of a basin of
attraction for a cellular state massively increases the

ere analyzed using Western blots as were Erk phosphorylation and
. Note that for cyclin D1, basal expression was always detected;
y. For (X), (S), and (M), the corresponding field in the experimental
ter simulation is noted in the small checkerboard grid. Note that (S)
t with cell cycle progression leading to entry into S phase. (M) was
—revealing an intrinsic artifact of the Boolean network that can give
ls w
on)
nsit
pu

ten
re)
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odds for evolution to link the intricate biochemistry of
cell fate regulation with the physical world that lacks
specific molecule-encoded information. This might
have facilitated the evolution of larger organisms
whose development and function must satisfy the laws
of physics at all size scales, yet are regulated by genes.
More importantly, the concepts of Boolean networks
and attractor landscapes capture many properties of
the dynamics of cell regulation that otherwise would
have required metaphoric descriptions to grasp, such
as the recognition of a “balance of survival and apopto-
tic signals,” “cellular decision-making,” “conflicting sig-
nals,” and “default programs” [70–73]. In addition, rec-
ognition of the use of this type of complex dynamic
networks by cells provides a formal basis for analyzing
tolerance and sensitivity of cellular systems to various
types of interventions (e.g., pharmacological or infec-
tious agents) [46, 74]. The Boolean network model de-
scribed here is no doubt an oversimplification; how-
ever, it represents a first step toward development of a
language for conceptualizing how information is pro-
cessed within regulatory networks in living cells. Fur-
ther refinements will be necessary to embrace features
of real molecular interactions, including the temporal
order of inputs, asynchrony of network updating, and
multiple thresholds.

The implications of the use of dynamic regulatory
networks by cells go much further than control of cell
fate determination by cell shape. For example, the
results of our Boolean network model suggest that the
current approaches used in functional genomics to an-
alyze results of DNA microarray-based gene expres-
sion profiling [75], such as clustering similar expres-
sion profiles, may overlook the most important features
of cell regulation. Very simply, existing forms of gene
cluster and proteomic analysis [76], at best, transform
data into information. To convert information into
knowledge, novel approaches are needed that address
the fundamental principle of cellular regulatory sys-
tems as a whole. The concepts of dynamic Boolean
networks and attractor landscapes could provide a
more meaningful, albeit rudimentary, framework for
such an integrative approach. Broadening our view
beyond the realm of molecular recognition events to
embrace physical control parameters in cell regulation,
such as cell shape and mechanics, also should help to
bridge the gap between test tube biochemistry and the
biology that we observe within intact living cells and
organisms. Continued efforts of this type which at-
tempt to place molecular regulation in the context of
cell and tissue structure will be necessary to ensure
that we take the most expeditious and meaningful path
forward in this newly emerging postgenomic era.
This work was supported by grants from NIH, NASA, and NSF.
REFERENCES

1. Huang, S., and Ingber, D. E. (1999). The structural and me-
chanical complexity of cell-growth control. Nat. Cell Biol. 1,
E131–138.

2. Lavoie, J. N., L’Allemain, G., Brunet, A., Müller, R., and
Pouysségur, J. (1996). Cyclin D1 expression is regulated pos-
itively by the p42/p44MAPK and negatively by the p38/HOG-
MAPK pathway. J. Biol. Chem. 271, 20608–20616.

3. Terada, Y., Inoshita, S., Nakashima, O., Kuwahara, M.,
Sasaki, S., and Marumo, F. (1999). Regulation of cyclin D1
expression and cell cycle progression by mitogen-activated pro-
tein kinase cascade. Kidney Int. 56,1258–1261.

4. Cheng, M., Sexl, V., Sherr, C. J., and Roussel, M. F. (1998).
Assembly of cyclin D-dependent kinase and titration of
p27Kip1 regulated by mitogen-activated protein kinase kinase
(MEK1). Proc. Natl. Acad. Sci. USA 95, 1091–1096.

5. Marais, R., and Marshall, C. J. (1996). Control of the ERK
MAP kinase cascade by Ras and Raf. Cancer Surv. 27, 101–
125.

6. Fambrough, D., McClure, K., Kazlauskas, A., and Lander,
E. S. (1999). Diverse signaling pathways activated by growth
factor receptors induce broadly overlapping, rather than inde-
pendent, sets of genes. Cell 97, 727–741.

7. Coller, H. A., Grandori, C., Tamayo, P., Colbert, T., Lander,
E. S., Eisenman, R. N., and Golub, T. R. (2000). Expression
analysis with oligonucleotide microarrays reveals that MYC
regulates genes involved in growth, cell cycle, signaling, and
adhesion. Proc. Natl. Acad. Sci. USA 97, 3260–3265.

8. Wang, H. G., Millan, J. A., Cox, A. D., Der, C. J., Rapp, U. R.,
Beck, T., Zha, H., and Reed J. C. (1995). R-Ras promotes
apoptosis caused by growth factor deprivation via a Bcl-2 sup-
pressible mechanism. J. Cell Biol. 129, 1103–1114.

9. Mayo, M. W., Wang, C. Y., Cogswell, P. C., Rogers-Graham,
K. S., Lowe, S. W., Der, C. J., and Baldwin, A. S. Jr. (1997).
Requirement of NF-kappaB activation to suppress p53-inde-
pendent apoptosis induced by oncogenic Ras. Science 278,
1812–1815.

10. Kauffmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E., Gilbert,
C., Coffer, P., Downward J., and Evan, G. (1997). Suppression
of c-Myc-induced apoptosis by Ras signalling through PI(3)K
and PKB. Nature 385, 544–548.

11. Chao, M. V. (1992). Growth factor signaling: Where is the
specificity? Cell 68, 995–997.

12. Brunet, A., and Pouyssegur, J. (1997). Mammalian MAP ki-
nase modules: How to transduce specific signals. Essays Bio-
chem. 32, 1–16.

13. Shin, S. I., Freedman, V. H., Risser, R., and Pollack, R. (1975).
Tumorigenicity of virus-transformed cells in nude mice is cor-
related specifically with anchorage independent growth in
vitro. Proc. Natl. Acad. Sci. USA 72, 4435–4439.

14. Ingber, D. E., Madri, J. A., and Jamieson, J. D. (1981). Role of
basal lamina in neoplastic disorganization of tissue architec-
ture. Proc. Natl. Acad. Sci. USA 78, 3901–3905.

15. Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling.
Science 285, 1028–1032.

16. Boudreau, N., and Bissell, M. J. (1998). Extracellular matrix
signaling: Integration of form and function in normal and
malignant cells. Curr. Opin. Cell Biol. 10, 640–646.

17. Streuli, C. (1999). Extracellular matrix remodelling and cellu-
lar differentiation. Curr. Opin. Cell Biol. 11, 634–640.

18. Aplin, A. E., Howe, A. K., and Juliano, R. L. (1999). Cell
adhesion molecules, signal transduction and cell growth. Curr.

Opin. Cell Biol. 11, 737–744.



101SHAPE-DEPENDENT CONTROL OF CELL GROWTH AND DEATH
19. Frisch, S. M., and Ruoslahti, E. (1997). Integrins and anoikis.
Curr. Opin. Cell. Biol. 9, 701–706.

20. Lin, T. H., Chen, Q., Howe, A., and Juliano, R. L. (1997). Cell
anchorage permits efficient signal transduction between ras
and its downstream kinases. J. Biol. Chem. 272, 8849–8852.

21. Zhu, X., and Assoian, R. K. (1995). Integrin-dependent activa-
tion of MAP kinase: A link to shape-dependent cell prolifera-
tion. Mol. Biol. Cell. 6, 273–282.

22. Morino, N., Mimura, T., Hamasaki, K., Tobe, K., Ueki, K.,
Ikuchi, K., Takehara, K., Kadowaki, T., Yazaki, Y., and
Nojima, Y. (1995). Matrix/integrin interaction activates the
mitogen-activated protein kinase, p44erk-1 and p42erk-2.
J. Biol. Chem. 270, 269–273.

23. Schwartz, M. A. (1997). Integrins, oncogenes, and anchorage
independence. J. Cell. Biol. 139, 575–578.

24. Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N.,
Wang, D. I., Whitesides, G. M., and Ingber, D. E. (1994).
Engineering cell shape and function. Science 264, 696–698.

25. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and
Ingber, D. E. (1997). Geometric control of cell life and death.
Science 276, 1425–1428.

26. Huang, S., Chen, S. C., and Ingber, D. E. (1998). Cell-shape-
dependent control of p27Kip and cell cycle progression in hu-
man capillary endothelial cells. Mol. Biol. Cell 9, 3179–3193.

27. Dike, L. E., Chen, C. S., Mrksich, M., Tien, J., Whitesides,
G. M., and Ingber, D. E. (1999). Geometric control of switching
between growth, apoptosis, and differentiation during angio-
genesis using micropatterned substrates. In Vitro Cell Dev.
Biol. Anim. 35, 441–448.

28. Folkman, J., and Moscona, A. (1978). Role of cell shape in
growth control. Nature 273, 345–349.

29. Li, M. L., Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., and
Bissell, M. J. (1987). Influence of a reconstituted basement
membrane and its components on casein gene expression and
secretion in mouse mammary epithelial cells. Proc. Natl. Acad.
Sci. USA 84, 136–140.

30. Ben-Ze’ev, A., Robinson, G. S., Bucher, N. L., and Farmer,
S. R. (1988). Cell–cell and cell–matrix interactions differen-
tially regulate the expression of hepatic and cytoskeletal genes
in primary cultures of rat hepatocytes. Proc. Natl. Acad. Sci.
USA 85, 2161–2165.

31. Mooney, D. J., Hansen, L. K., Vacanti, J. P., Langer, R. R.,
Farmer, S. R., and Ingber, D. E. (1992). Switching from differ-
entiation to growth in hepatocytes: Control by extracellular
matrix. J. Cell. Physiol. 151, 497–505.

32. Mochitate, K., Pawelek, P., and Grinnell, F. (1991). Stress
relaxation of contracted collagen gels: Disruption of actin fil-
ament bundles, release of cell surface fibronectin, and down-
regulation of DNA and protein synthesis. Exp. Cell Res. 193,
198–207.

33. Bohmer, R. M., Scharf, E., and Assoian, R. K. (1996). Cytoskel-
etal integrity is required throughout the mitogen stimulation
phase of the cell cycle and mediates the anchorage-dependent
expression of cyclin D1. Mol. Biol. Cell 7, 101–111.

34. Assoian, R. K., and Zhu, X. (1997). Cell anchorage and the
cytoskeleton as partners in growth factor dependent cell cycle
progression. Curr. Opin. Cell Biol. 9, 93–98.

35. Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura,
K., Maekawa, M., and Narumiya, S. (2000). Pharmacological
properties of Y-27632, a specific inhibitor of rho-associated
kinases. Mol. Pharmacol. 57, 976–983.

36. Lee, K. M, Tsai, K. Y., Wang, N., and Ingber, D. E. (1998).

Extracellular matrix and pulmonary hypertension: Control of
vascular smooth muscle cell contractility. Am. J. Physiol. 274,
H76–H82.

37. Chicurel, M. E., Singer, R. H., Meyer, C. J., and Ingber, D. E.
(1998). Integrin binding and mechanical tension induce move-
ment of mRNA and ribosomes to focal adhesions. Nature 392,
730–733.

38. Chrzanowska-Wodnicka, M., and Burridge, K. (1996). Rho-
stimulated contractility drives the formation of stress fibers
and focal adhesions. J. Cell Biol. 133, 1403–1415.

39. Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L., and
Sonenberg, N. (1996). Translation initiation of ornithine de-
carboxylase and nucleocytoplasmic transport of cyclin D1
mRNA are increased in cells overexpressing eukaryotic initi-
ation factor 4E. Proc. Natl. Acad. Sci. USA 93, 1065–1070.

40. Zhu, X., Ohtsubo, M., Bohmer, R. M., Roberts, J. M., and
Assoian, R. K. (1996). Adhesion-dependent cell cycle progres-
sion linked to the expression of cyclin D1, activation of cyclin
E-cdk2, and phosphorylation of the retinoblastoma protein.
J. Cell Biol. 133, 391–403.

41. Hesketh, J. (1994). Translation and the cytoskeleton: A mech-
anism for targeted protein synthesis. Mol. Biol. Rep. 19, 233–
243.

42. Bassell, G. J., Powers, C. M., Taneja, K. L., and Singer, R. H.
(1994). Single mRNAs visualized by ultrastructural in situ
hybridization are principally localized at actin filament inter-
sections in fibroblasts. J. Cell Biol. 126, 863–876.

43. Chervitz, S. A., Aravind, L., Sherlock, G., Ball, C. A., Koonin,
E. V., Dwight, S. S., Harris, M. A., Dolinski, K., Mohr, S.,
Smith, T., Weng, S., Cherry, J. M., and Botstein, D. (1998).
Comparison of the complete protein sets of worm and yeast:
Orthology and divergence. Science 282, 2022–2028.

44. Strohman, R. C. (1997). The coming Kuhnian revolution in
biology. Nat. Biotechnol. 15, 194–200.

45. Coffey, D. S. (1998). Self-organization, complexity and chaos:
The new biology for medicine. Nat. Med. 4, 882–885.

46. Huang, S. (1999). Gene expression profiling, genetic networks
and cellular states: An integrating concept for tumorigenesis
and drug discovery. J. Mol. Med. 77, 469–480.

47. Wolpert, L. (1994). Do we understand development? Science
266, 571.

48. Kirschner, M., and Gerhart, J. (1998). Evolvability. Proc. Natl.
Acad. Sci. USA 95, 8420–8427.

49. Jacobson, M. D., Burne, J. F., King, M. P., Miyashita, T., Reed,
J. C., and Raff, M. C. (1993). Bcl-2 blocks apoptosis in cells
lacking mitochondrial DNA. Nature 361, 365–369.

50. Hehner, S. P., Hofmann, T. G., Droge, W., and Schmitz, M. L.
(1999). Inhibition of tyrosine phosphatases induces apoptosis
independent from the CD95 system. Cell Death Differ. 6, 833–
841.

51. Yu, Z. W., and Quinn, P. J. (1994). Dimethyl sulphoxide: A
review of its applications in cell biology. Biosci. Rep. 14, 259–
281.

52. Spremulli, E. N., and Dexter, D. L. (1984). Polar solvents: A
novel class of antineoplastic agents. J. Clin. Oncol. 2, 227–241.

53. Messing, R. O. (1993). Ethanol as an enhancer of neural dif-
ferentiation. Alcohol Alcohol Suppl. 2, 289–293.

54. Bogomolova, E. V. (1999). Morphological potential of Phae-
ococcomyces sp (strain ?h 49)—A typical representative of
microcolonial lithobiontic fungi. Mikol. Fitopatol. 33, 95–100

55. Kulyk, W. M., and Hoffman, L. M. (1996). Ethanol exposure
stimulates cartilage differentiation by embryonic limb mesen-

chyme cells. Exp. Cell Res. 223, 290–300.



102 HUANG AND INGBER
56. Somogyi, R., and Sniegoski, C. A. (1996). Modelling the com-
plexity of genetic networks: Understanding multigenic and
pleiotropic regulation. Complexity 1, 45–63.

57. Kauffman, S. A. (1993). “The Origins of Order,” Oxford Univ.
Press, New York.

58. Thomas, R., Thieffry, D., and Kaufman, M. (1995). Dynamical
behaviour of biological regulatory networks. I. Biological role
of feedback loops and practical use of the concept of loop-
characteristic state. Bull. Math. Biol. 57, 247–276.

59. Kaplan, D., and Glass, L. (1995). “Understanding Nonlinear
Dynamics,” Springer-Verlag, New York.

60. Goss, R. J. (1967). The strategy of growth. In “Control of
Cellular Growth in the Adult Organism” (H. Teir and T. Ry-
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