Evolution of Regulatory Complexity Through Genome Organization

Sam von der Dunk, Berend Snel & Paulien Hogeweg

March 4, 2022
Evolution of complexity

Homo sapiens

Caulobacter crescentus
Evolution of complexity in gene regulation.
Modelling evolution of gene regulation

Advantages:

Study **general patterns** of evolution:
 N>1; independent of biochemistry.
Record the entire **evolutionary history**.
Uncover the precise **regulatory mechanisms**.
Modelling evolution of gene regulation

Advantages:

Study **general patterns** of evolution:
- $N > 1$; independent of biochemistry.

Record the entire **evolutionary history**.

Uncover the precise **regulatory mechanisms**.

Crombach & Hogeweg (2008)
Modelling evolution of gene regulation

Advantages:

Study **general patterns** of evolution:
N>1; independent of biochemistry.
Record the entire **evolutionary history**.
Uncover the precise **regulatory mechanisms**.

Crombach & Hogeweg (2008)
A model of cell-cycle regulation
A model of cell-cycle regulation

Caulobacter crescentus

Sanchez-Osorio et al. (2017)
A model of cell-cycle regulation

Caulobacter crescentus

Sanchez-Osorio et al. (2017)
A model of cell-cycle regulation

Caulobacter crescentus

Network

 Sanchez-Osorio et al. (2017)

Cell-cycle
A model of cell-cycle regulation

Caulobacter crescentus

Network

Sanchez-Osorio et al. (2017)
A model of cell-cycle regulation

Caulobacter crescentus

Network

Sanchez-Osorio et al. (2017)

division death

Cell-cycle
A model of cell-cycle regulation

Sanchez-Osorio et al. (2017)
A model of cell-cycle regulation

Caulobacter crescentus

Network

Sanchez-Osorio et al. (2017)

Mutations
- small (e.g. bitstrings)
- large (e.g. organization)

Genome structure

Cell-cycle

division death

4/10
A model of cell-cycle regulation

Caulobacter crescentus

Network

Mutations
- small (e.g., bitstrings)
- large (e.g., organization)

Genome structure

Stochastic binding

\[p_i = \frac{k_0 \cdot e^{\epsilon \cdot H_i}}{1 + \sum_j k_0 \cdot e^{\epsilon \cdot H_j}} \]
A model of cell-cycle regulation

Caulobacter crescentus

Network

Sanchez-Osorio et al. (2017)

Mutations
- small (e.g., bitstrings)
- large (e.g., organization)

Genome structure

Mutation impacts regulation

Stochastic binding

\[p_i = \frac{k_0 \cdot e^{e \cdot H_i}}{1 + \sum_j k_0 \cdot e^{e \cdot H_j}} \]
A model of cell-cycle regulation

Caulobacter crescentus

- **Network**
- **Sanchez-Osorio et al. (2017)**
- **Genome structure**
- **Stochastic binding**

- **Mutations**
 - small (e.a. bitstrings)
 - large (e.a. organization)

- **Replication** impacts regulation

Cell-cycle

- division
- death

Nutrient gradient sets replication speed

\[p_i = \frac{k_0 \cdot e^{\epsilon \cdot H_i}}{1 + \sum_j k_0 \cdot e^{\epsilon \cdot H_j}} \]
Rich evolutionary dynamics in replicate experiments

Range expansion coincides with genome expansion

Genome size (L): 60 90 120
Density (N): 0.0 1.0

Replicate

$T_n = 0.683$
Rich evolutionary dynamics in replicate experiments
Rich evolutionary dynamics in replicate experiments

→ Range expansion coincides with genome expansion
Rich evolutionary dynamics in replicate experiments

→ Range expansion coincides with genome expansion
Cell-cycle adaptation to poor conditions

![Graph showing cell-cycle duration vs. nutrient abundance]

- Ancestor
- Evolved:
 - Sector 3
 - Sector 5
 - Sector 7
 - Sector 9

Cell-cycle duration (τ, in t) vs. Nutrient abundance (n)

Limit
Cell-cycle adaptation to poor conditions

![Graph showing cell-cycle duration (τ, in t) vs. nutrient abundance (n)]
Cell-cycle adaptation to poor conditions

![Graph showing cell-cycle duration vs. nutrient abundance](image)
Cell-cycle adaptation to poor conditions

Slower cell-cycles to deal with low nutrient abundance
Cell-cycle adaptation to poor conditions

Slower cell-cycles to deal with low nutrient abundance
Cell-cycle adaptation to poor conditions

Slower cell-cycles to deal with low nutrient abundance

Low quality cell-cycle

High quality cell-cycle: more efficient
Network expansion enhances cell-cycle
Network expansion enhances cell-cycle

High quality (R2)

- More efficient replication
Network expansion enhances cell-cycle

High quality (R2)

- More efficient replication
- Network expansion & rewiring at the core
Network expansion enhances cell-cycle

High quality (R2)

- More efficient replication
- Network expansion & rewiring at the core

Low quality (R10)

- Exploits ancestral S-loop
Specialist and generalist strategies evolve
Specialist and generalist strategies evolve
Specialist and generalist strategies evolve

Specialists: Adaptation to local conditions

Generalists: Individual plasticity

Cell-cycle duration (τ, in t)

Nutrient abundance (n)
Specialist and generalist strategies evolve

- **10**: Evolution of strategies with different nutrient abundance (n).
- **3**: Lines indicating n observed in sector and R_0 values.
- **2**: Graph showing cell-cycle duration (τ, in t) for different sectors.
- **8**: Further analysis of nutrient abundance and cell-cycle duration.

Legend:
- Ancestor
- Evolved:
 - Sector 3
 - Sector 5
 - Sector 7
 - Sector 9
Regulation depends on network & genome

Emergence of cell-cycle checkpoint
Multiple innovations required for generalism

Emergence of cell-cycle checkpoint
Multiple innovations required for generalism

Emergence of cell-cycle checkpoint

1. Activation

2. AND-gate
Multiple innovations required for generalism

Cell-cycle

3. Time integration

Network

1. Activation

Genome

2. AND-gate

Emergence of cell-cycle checkpoint
Range expansion coincides with genome expansion
Range expansion coincides with genome expansion

Extra complexity:

generalism ← emergent genome organisation
Summary

- Range expansion coincides with genome expansion
- Extra complexity:
 - generalism ← emergent genome organisation
- Regulation = network + genome + ...
 - → Caulobacter
Acknowledgements

Paulien Hogeweg
Berend Snel
Jan Kees van Amerongen
Bram van Dijk
Rutger Hermsen
TBB group @Utrecht
Supplementary Figures (1)

- Figures labeled 1, 2, 3, and 8 depict graphs showing the relationship between cell-cycle duration (τ) and nutrient abundance (n).
- Figures 1 and 2 likely compare ancestral and evolved conditions.
- Figures 3 and 8 highlight different scenarios of R_0, with $R_0 > 1$ and $R_0 < 1$.
- The graph shows a limit in sector 3, indicating a threshold effect.
Supplementary Figures (4)