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Last time:
CA as modeling tool
- generalizations of CA ss
- baseline expectations: “pattern default”

CA and ODE/MAP’s as dynamical systems
- alternative simplifications
- common features (types of attractors etc.)
- Qualitative and quantitave different behaviors:
- Example birth death processes.
- Population based vs individual based
- Mean field approximation/assumption

Event based systems: Gillespie algorithm
- (average) cellcycle time and/vs growth rate

QUESTIONS?



TODAY

Event based systems cont.:
example: large scale “whole cell” modeling of translation

modeling in terms of subsystems (cont)
Network models
Boolean networks as model for gene regulatory networks:
- multiple attractors (= celltypes)
- domains of attraction, reachability, alternative transients.
- Understanding/interpreting gene knockouts
- inference of GRN from transcriptomics data
- minimal vs ”real” networks
- non-network properties of GRN



Large scale, data driven EVENT based models:
continuous time, discrete events

Gillespie algorithm

seen as multi-entity - multistate decomposition

Example

Rate-Limiting Steps in
Yeast Protein Translation
P Shah, Y Ding, M Niemczyk, G Kudla, JB Plotkin Cell 2013



Data, states, events

DATA
• fasta file of yeast mRNA + number of mol/cell
• yeast tRNA’s (41) + number in cell + wobble
• number of ribosomes
• initiation prob of all mRNA types
• size of ribosome/tRNA’s yeast cell
• diffusion constant ribosomes, tRNA’s
• −− > characteristic times

STATES
• number of free ribosomes/tRNA’s(of every type)
• Position of each bound ribosomes/tRNA’s on each indi-
vidual mRNA

EVENTS

• Initiation (binding of ribosome at free 5’end of mRNA)
• Elongation (change postion, free - bind tRNA)



Yeast data on cell content



Algorithm (pseudocode)



Table S2. Markov States and Transition Rates, Related to Figure 1 
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A precise definition of the state space for our Markov model of translation. The table 
describes the state of the cell and all possible transitions to other states, along with their 
associated rates. The first column gives the gene number, which ranges from1 to n = 
3,795 in our model. The second column indicates the mRNA number of each gene i, 
which ranges from 1 to Ai. The third column indicates the codon position in a given 



Is protein production initiation or elongation limited in

exponential growing yeast populations?

more ribosomes at 5énd BUT due to >> intiation prob. on

short genes

initiation limited

debugging of wrong inference from exp. data



Under amino-acid starvation
down regulating
ribosomes can increase
protein production

because translation becomes

elongation limited

reducing Ribosomes increases

free TRNA’



conclusions event based modeling of stochastic
reaction kinetics

Data intensive modeling

Quantitative conclusions

Upscaling to “whole cell modeling”

But note simplifications:

space but no spatial structure

fixed number of molecules

fixed conditions

....



Further scruteny of traslation dynamics

Higher efficiency at higher growth rates

How??

AJ Maheshwari, AM Sunol, E Gonzalez, D Endy 2023:

Colloidal physics modeling reveals how per-ribosome productivity increases

with growth rate in escherichia coli



Detailed dynamics of elongation in ribosomes

Analyse dynamics per ”voxel”



Molecular composition of E.coli cell dependent on

growthrate



Charateristic times dependent on voxel composition:

transport time dominate in ”realistic compositions





Model explains speedup at higher growthrates

shorter distances, but slower diffusion by crowding

But not elongation rate, (parameter uncentainty??)



dynamical systems:

decomposition in many simple systems cont.,

NETWORKS

Neural net yeast transcription net Keg metabolic net

connected information transfer mass conservation

stochiometric



Gene regulation Networks:

“full” transcription network of yeast

How does it behave? how special is it? (evolution)



Boolean Networks

Proposed by S.Kauffmann (1969)

as model for gene regulation

Like binary CA but

specific network structure (IO relations)

each node own transition rule

(Boolean function with k inputs)

studied: NK networks



Boolean network : special cases can be mapped into CA
(homogeneous network structure, “rule-layer”)

Multiple attractors



simple random network (threshold dynamics)

(Anton Crombach)

MULTPLE

ATTRACTORS

ONLY 10 nodes (=genes)! STATESPACE



What kind of behavior do we expect from gene

regulation networks?

multiple attractors (cell types)

alternative trajectories from A’ and A” to B

multiple causes

robustness (knockouts)





2 pathways to Neutrophyl differentiation

Huang et all 2005 (Phys Rev Letters)

gene expression through time

2773 dim state-space, trajectories in 2D projection

n2773 states!



Robustness: Forcing structures





Properties of Random Boolean Networks (depending
on K)



Importance of sampling method: Dependence on K is

dependence on fraction (non) forcing rules!



Non forcing rules in 1D CA (k=2)



conclusion: Boolean Kaufman Networks

Important:

Identification of cell state with attractor of gene regulation

network

Multiple attractors in simple networks

alternative trajectories to attracotr

Domain of attraction: i.e. “robusteness”

forcing functions i.e. “robustness”

NOT IMPORTANT (WRONG!) connectivity of 2 “ideal”



Gene expression data −− > Boolean networks

Functional Overlap and Regulatory Links Shape Genetic In-

teractions between Signaling Pathways

Sake van Wageningen, Patrick Kemmeren,..... Berend Snel

and Frank C.P. Holstege Cell Dec 2010

141 kinases, 38 phosphatases in Yeast.

60% single knockouts “no phenotype”

(== <8 genes different of WT) (single growth condition)

Double knockouts: 21 “buffering” s with other

kinase/phosphatasse v



double knockout expression profiles





example of mixed epistasis

filamentous growth vs mating



2 simpler networks with same effect

(complexer network most similar to exp. inferred

network)



Many networks (max 2 inputs per node) with same

effect!



all buffering pairs: Many non-homologs!; many mixed



regulatory network via mixed response networks





Inference of (Boolean) GRN from timeseries
dynamic and static “accuracy”

VERY Active research:
Google Scholar 2023: “gene regulatory network inference”
4930 hits: Baysian, deep NN, random forests
heuristics: conform to known structural features

E.G. performance assessed from simulated
boolean networks
(extracted from E.coli GRN database)
. Pušnik,M.Mraz,N.Zimicand M.Moškon 2022

Fairly good Dynamic accuracy

Poor static accuracy
(many different measures)
TP, FP, TN, FN in different combi’s

hard because:

stochasticity, missing data, very large search space
AND
“redundant regulation”: minimal or “true” network? multiple regulators
with different Boolean functions produce the same results



some measurements of prediction quality





Analysis of network structure for:

Finding attractor
(stable cell states)
positive feedback loops

Finding “hubs”

HOW TO SWITCH CELL STATES/
== how to switch attractors

Examples of
minimal set of perturbations
needed to switch cell states
calculated from
Boolean network models
and verified in experiments.

Despite simplifications
usefull predictions

Crespo et al. BMC Systems Biology 2013



”ARE” GRN boolean networks”

no....

• not on/off but quantitative response. e.g. modeled as

set of ODE’s with sigmoid response sizes

• mRNA −− > protein

• Stochastic binding/unbinding of TF on DNA binding

sites; gene expression in bursts

• Competition for binding sites

overlap of binding sites for different TF

and competition for TF

• .......

insights are obtained by multiple (wrong) models (Carica-

tures)



Stochastic gene expression

single cell gene expression signatures

gene expression often in bursts, folowed by slow defradation

of mRNA and buildup/decrease of protein
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Coding structure of gene regulatory networks
e.g. global epigenetic factors and competition for binding sites

Competition for binding sites

Global epigenetic factors
bind at very many places

but they are in limited numbers

Model by distinguishing
bound/unbound states
of (overlapping) binding sites,
and EF and TF

Can lead to very counter intuitive outcomes.

Examples from the The Polycomb (repressors)
and Trithorax Groups (activators) of EFs which modulate histon tails.
Very many targets (e.g. PRC3 10% of genes in embryonic stem cells)

Epigenetic factor competition reshapes the EMT landscape

M. Ali Al-Radhawi... Herbert Levine PNAS 2022



some modeled and experimentally observed examples

everything possible by tuning the parameters...



Event based models (2)
Individual based models (IBM,IOM,agent based models)

simple rules -> complex behavior

Simplest form:

Individual simple (in)finite state machine
“schedules” its own next “event” in continuous time Interacts with (po-
tentially complex) environment
and other individuals like it

LOCAL information determines behavior

Variable structure: not invariant set of interaction partners
(in contrast to CA, Boolean nets)

distributed (shared) environmental “memory”
−− > flexible behaviour from rigid rules / automatic adaptation

The best model of the world is the world

internal model of the world as ”crux” for information shortage

contexts
Ethology; Ecology, Evolution, (also transcription) swarm intelligence
’intelligence without reasoning (Brooks)’



simple rules to complex behavior

cf “ Simon (1969)

“an ant seen as a behavioral system is quite simple -
the apparent complexity of its behavior is due to the complexity of the

environment in which it finds itself”

“ a human seen as a behavioral system is quite simple -
the apparent complexity of his behavior is due to the complexity of the

environment in which it finds himself ”

‘



TODO as alternative explanation for observed behavior
Social structure as side-effect of foraging

Question: social structure of chimpanzees
Why all males groups in Chimpanzees?

Why single females?
Why do males travel further?

Modeling strategy: Make model WITHOUT behavior we are interested
in

(but include some basic structure of system under consideration)
and OBSERVE

individuals: (CHIMPS)
- go to nearest fruit tree and eat until satisfied or fruit exhausted - rest
- males : search for receptive females - females eat protein food not

eaten by males

environment: GOMBE-like

−−−−− > Social structure of Chimpanzees

opportunity vs optimality based explanation
. Hogeweg & Hesper 1990; te Boekhorst H. 1994













IBM: continuous models of Collective behaviour:
information integration

Much studied prototypes:

flocking birds (BOIDS, Reynolds)
schooling fish (e.g. Hemelrijk) migrating herds (locusts (Couzin), wilde-
beest (Levin))

Mostly (continuous) force-based models:
attraction, repulsion, aligning relative to
neighboring ’beasts’ (variable set)

Different behaviours by different ranges
of vision (angle)
repulsion/attraction/aligning

minimal models
or more physics of environment
(air/water/)

NO environmental
memory



inert environment
basic grouping
modes;
bistability

from Couzin 2009,
Trend cogn science



Effective decision making in flocks and schools
Couzin, Nature 2005

repulsion attraction + alignment

purpose:



conflict resolution in schools and flocks

one more in group1



photo-taxis in fish groups, Berdahl,..,Couzin, Science

2013

Fish move slower in the dark

Larger schools can find dark places better


