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Morphogenesis: pattern formation, growth,
and cell movement

Course Computational Biology 2025 Paulien Hogeweg;
T heoretical Biology and Bioinformatics Grp Utrecht University


http://bioinformatics.bio.uu.nl

Morphogenesis: pattern formation, growth, and cell movement
“what about the horse part”

LAST TIME

Classical models of (pre)pattern formation
Themes: supervised modeling; general models vs specific
implementation
evolutionary drift in mechanism/trajectory but conserved/converged
outcome and at multiple levels of " conservation” " divergence”
"convergence”

TODAY
From pattern to morphogenesis, through growth, and cell movement

e Limbbud morphogenesis by differential cell growth rate
possible/compatible with measurements?
e segmentation: pattern to shape
-Elongation by segmentation
e Single cell movement models
- detailed model of keratocytes
- mini model: keratocytes and amoeboids
e Multicellularity “by coming together”
“from single cells to multicellular organism”
through signaling, chemotaxis and differential adhesion
(from data intensive to behavior intensive models)



Making and fitting shape(1) measuring and modeling
shape
limb bud development

Question: can limb bud MORPHOGENESIS be explained by
gradient based differential cell proliferation?
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The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis Bernd
Boehm1, Henrik Westerbergl, Gaja Lesnicar-Puckol, Sahdia Rajal,2, Michael Rautschkal,
James Cotterelll,2, Jim Swogerl, James Sharpel,3* PLOS BIOL 2010



Measurement

Of 3D shape at 2 developmental stages

Of mitotic frequescies in different regions of the bud
colour cell cycle specific proteins
calculated cycle frequencies

DO these 2 measurement FIT?
(Is differential proliferation sufficient to explain growth/morphoge

NO...



lation of measured growth rates

iImu

te element si

ini

F

COMPARISON WITH
REAL DEVELOPMENT

TISSUE
DISPLACEMENT SIMULATED SHAPES

GROWTH RATES

T
T

s

n

BT w g
e
e

ey

SPATIAL
DISTRIBUTION OF S

MIIA TVSHOd

M3IA HOIH31S0d

REAL SHAPE CHANGE

=

C

TED SHAPE CHAN

.
=

PREDIC

0.03 m— o .07



Failure due to mistakes in growthrates measurements??
Do growht rates exist such that shape emerges?

1) 3D GROWTH PATTERN

2) FEM SIMULATION

PREDICTS SHAPE - '
CHANGE

GENERATES NEW
GROWTH PATTERN !

3) SHAPE COMPARISON

SHAPE DIFFERENCE



Yes differential growth CAN generate bud
morphogenesis
BUT only for VERY different proliferation patterns (4
shrinkage)
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conclusions

e Nice (because negative result!)
e [ heir hypothesis: directed cell movement plays a role
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Use measured growth + fitted outward force (representing
cell movement



convergent extension, morphogenetic cell movement
common to insects, fish, frogs,( mammals)

Elongation by intercalation but by different mechnisms, eg

e ( Drosophila intercalation by contraction of those parts of
the membrane that have a dorsal-ventral orientation )

e Xenopus: dorsal mesodermal cells polarize and change their
adhesive properties; cells then crawl between each other in
a zipper-like process (intercalation) axial adhesion

e Zebrafish: directed migration to the dorsal axis and inter-
calation follow a gradient in cadherin activity towards the
central axis graded adhesion

e Xenopus and Drosophila: anterior-posterior patterning /
segmentation crucial for cpnvergent extension

how is tissue patterning maintained during extensive cell movemennt?



adhesion based models; superimposed axis
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Convergent extension (CE)

(often)
after segmentation;

How is segmentation
conserved?

Segment specific
adhesion
(here minimal)

without segment-specific adhesion
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itself sufficient for CE
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more ‘realistic” :extension to posterior only
same results

GRADED CE

ONLY SS adh.



Xenopus after mixing of cells: sorting AND CE
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= Protein A

== Protein B

protein concentration

For sorting strong persistence is needed;
Weak persistence is sufficient in sorted tissue (WT)



chemotaxis: modeling internal dynamics at different
levels of detail

In CPM model chemotaxis can be implemented as ' extend
phyllopodia preferentially in direction of gradient’

How does the cell do this?
Interaction of small g proteins and actin network

Well studied in Keratocytes

Modeled by Stan Maree et al (Bull Math Biol 2007 and Plos
comp biol 2012)



importance of mutual feedback between cell shape and
gene regulation

importance of biochemical detail ONLY apparent through
this interaction



relevant small g protein interactions
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actin dynamics and cell wall dynamics

Direction of motion

> Possible orientations:
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fully parametrized

Table 1 Parameter estimates relevant to the small G-proteins and their interactions

Parameter Meaning Values Units
* typical level of active Cded2 I |

R typical level of active Rac 3 M

ot typical level of active Rho |.25 |
Clint total level of Cded2 24 M
R total level of Rac 7.5 M

Mol total level of Rho Al M

I Cded activation inpult rate 34 uM s~
In Hac activation inpul rate .5 uMs—!
I, Rho activation input rate 3.3 uM s~
8, Rho level for half-max inhibition of Cded2 [.25 uhd

B Cdcd? level for hall-max inhibition of Rho I M

n Hill coefficient of Cded2-Rho mutual inhibition response 3 -

T Cded2-dependent Rac activation rate 4.5 5]

R Rac-dependent Rho activation rate 0.3 51

di, dg, d, decay rates ol activated small G-proteins | ) 51

e diffusion coefficient ol active small G-proteins [ s Il'.l: nm” s~
Die diffusion coefficient of inactive small G-proteins | = 10 nm” s~
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Table 2 Parameter estimates relevant to actin dynamics

Yarameter  Meaning Values Units

A* typical Arp2/3 concentration 2 uM

F* typical filament density 0.278 nm~!

B* typical barbed end density 1.7 % 1073 nm—>

P typical edge density of barbed ends 0.05 nm-~!

Hes Hg Cdc42 and Rac-dependent Arp2/3 activation 0.16 g !

d A activated Arp2/3 decay rate 0.1 g1

Dy diffusion coefficient of Arp2/3 1 x 10 nm? s~
0 Arp2/3 nucleation rate 60 UM nm s-
K, saturation constant for Arp2/3 nucleation 2 LM

[ scale factor converting units of F to concentration 255 uM nm

k scale factor converting concentration to units of B 1.06 x 107*  nm~—2 p M
Y actin filament growth rate (free polymerization) 500 nms~ !
dp actin filament turnover rate 0.03 5~

Kmax barbed end capping rate 2.8 5!

Krac max reduction of capping by Rac 2.1 51

Kp Rac level for half-max reduction of capping 3 uM

r recluction of capping close to the edge 0.14 -




Shapes itself into a walking keratocyte and
Walks! (and at the correct speed)
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Can reorient itself:
polarity and/vs rotation and/vs shape




y (pum)

400+

300 4

200

100+

—
|




feedback internal dynamics and cell shape
faster internal polarity change because of cell shape
changes ( which are caused by internal polarity
change)




HOWEVER, internal dynamics more complex WHY?

R

Cdc42 —» Rac —3» Rho

V - ~
Arp2/3 Capping Contraction

» F-actin



Feedback through PIP network smoothes out gradient

high level of actlée form “
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Feedback through PIP network causes faster
adaptation

e

10 min. time 8.5 min. 7.5 min. 5 min.
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e~~~

90 min. time 80 min. 70 min. 60 min.

d da da
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( HOWEVER: in round cell SLOWER reorientation to external signal!)
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Feedback through PI

P network enable resolving

conflicting signals
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Feedback through PIP network maintains cell integrity
when bumping in wall

o b > ...
“ .. I _a..




Feedback through PIP network maintains cell

when bumping in obstacle

integrity

c No feedback

Pl feedback
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» time
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conclusions

Multilevel modeling makes things simpler!

Understanding of complexity at one level
needs understanding of multilevel interactions

speeds up response to cell shape
AND reorientation in flexible cell
AND Maintains cell integrity




Very simple model for Keratocyte
AND Amoeboid movement
duration of local, directional memory

(== actin network persistence)
Ioanna Niculescu and Rob de Boer Plos comp biol
2015

Simple extension of CPM model wit
No representation of internal dynam
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Duration (MAX) determines mode of movement

limited duration

long duration

Nnsiti

h

m

200

10 h

.

5 €

o« |
s 4

¢

¢

& "

¢

)
Muaxsq

80




lvmphocyte movement through skin




conclusions

Duration of local memory of protrusion sufficient to model
difference between keratocyte and amoeboid movement

Keratocytes very robust (like extended model with PIP net-
work)

Why?

Efficient Movement within tight tissue by small cell shape
fluctuations



“How to compute an organism
Multilevel modeling of Morphogenesis
bridging levels of organization

Model premises

Target morhogenesis ss (not only pattern formation)
Cell basic unit (growth, division, movement, ...)

Cell is NOT point, bead, homunculus

Cells are deformable highly viscuous objects

Genes act through cells 'with a dynamics of their own”

use CPM as simple but basically correct representation of a
cell



Finding Sufficient Conditions for complex behavior
using only (subset of) known processes
allowing many (open set) different observations

explicit 2-level model for implicit multilevel behavior
Dd morphodynamics:

From single cells (amoebae) to
multicellular 'individuals’
with 'new’ ways of sensing
and metamorphosis
to groups of those
Savill et al 1997, Marée et al 1999a,b, 2001,2002



Dictyostelium phylogeny

w100 Darwins

Archaga

Early offshoot:
shares protein domains otherwise exclusive for
plants, fungi, and animals



Lifecycle Dictyostelium discoideum

mature

fruiting body ’

/’_‘)’ GERMINATIO& .

FRUITING-BODY Be¥
FORMATICN CELL &P free-living
armoebae

DIVISION &

&

AGGREGATION INDUCED
Gy BY STARVATION

TN S

Question

Can the morphodynamics of Dd emerge by selforganization
from the behavior of the 2scale CA "cells’ ?
when (a minimum of) known properties of Dd are added?

YES...(almost)



Goldbeter-Martel model of cAMP signaling

equations and

dp

ful LA + 1-n), 1+ L, +xLcy

d:“g flylp + fly W1 - p) (1) fily) = 1 1_":. fly) = _=I+‘_‘;

. o . £ =5Pe.v) - 8. 2}
Models for cAMP signalling in Dictyostelium ar ~ o AT oy

dy eleY)=y 33 Y=115-

(HT=5?ﬁ_7‘ (3) H

where The parameters appearing in system (1)-{3) are
) ) ) explained and estimated in tables T and II; refer

p = fraction of TECEPIOT 1 aclive siate., also 1o ﬁg 2

B=[cAMP],,. . i/ K g Parameter set A in table 11 was used by Marticl

¥ = [cAMP], i/ K g :n_mi Goldbeter 116] 10 _rnc»d.c:l autonomous -:usc:lllu-
) tions of ¢cAMP in stirred suspensions of Dic-

=k, % time,

tyosielium cells, The numerical solution of the

5.3 Relay and oscillations




chemical reactions Goldbeter model

MARTIEL & GOLDBETER, 1987 (cont’d)

R z D - -
" E+S = ES B E1p
R+P = RP < )
jg C+S = CSB.Cc4P
D+P = DP i—‘*
dz Pz i
k> k k
RP = DP p b, p ke
k_ > 1 )
ay Vi S k

2RP+C = E




Parameter estimates of Goldbeter-model (Tyson 1989)

JJ. Tyson et al 7 Spiral waver of oyclic A MP

Table 1T
Madel parameters.
Values used in calouluibons® -
Mame Diefinition Sel A Sa b Sa Sen D S E
Ll kgl 10 = - - -
Ly : ;}{ﬁ: ij:ls 0005 000 0005 0000
[} 1 1 = - - -
€ Kp/Kyp 10 10 0 10 45
a [ATPI/K,, 3 - - - -
Vo 'K, K,
A mo|| hE - =3 -1 =% i
. {'E‘.—'T;)( ni, 10 10 i 10 6.7 % 10¥
1+ak /K, K,
Ay {ﬁ}(—é} 026 24 24 4 1
VoK
5 k’:‘:_k': }|1—:; ) 90 50 50 360 0
5 k Sk h 0,033 005 008 012 pas
] iy 23 47 47 47 i
¢ ke Ak + k) 0014 0019 onis 005 0oy
' iy, T BT 0 L1l D024
Time-scale L7k, 28 ki &1 28 17
Space-scale (&, Dy 10 B2 44 B.2 41

*All parameters (exeepi the lass two) are dimensicaless, The time-scales are given in min, the space-scales in
. When all four s=ts have the same valus of & parsmeter, the symbol = 5 wsed,

Table T
Kinetic constants {refer to fig. 21
Experimental Vabues used in calewl atons®*
HMame Deseription ranggs* Rel A et B Set C SeiDd St E
Ry Total receptor LS00 % Ix10t = - - =
coneeniration
Kg Diissoe. const 1077-10"*M 10-? 107 107 107 @ 10-*
Kn Dissoc. const I%107%-9x10°"M  107? w-® n-F 10-F 1x10*
E, Rate const. B2 min-" Q036 0,036 012 0.0 (il
ko, Rabe const 0004 min " .36 0.36 12 035 06
ks Rate const. 0,22 min " ! QL66E D666 in DL&b6 11
kg Rase comst. 0,055 min ' L0033 00033 oot 0033 §x1074
K Dissoc. enmst. (WAL MY 9x107™ ex10 ¥ osxiat exi0cY lgwip-Y
K. Michackis const, II--Ax10'M dxlt = - - -
¥ K Apparent 0.06~1.4 ey ! 06 057 2 0LRG o
i const,
K. Michaekis const. (A, MY PR - - -
¥ Ky  Apparent (HA, min ) ExI0°*  ex107*  Lix107* Bax107° 271070
e comst.
&, Raie const, L. Tmin" " 1.7 L0 11 1.7 1.7
ky Transport cocdl, 0.3-0.9 min ! e 0.9 10 55 41
ke Rate const. 15-125 min ' 5.4 18 12 16 1%
L] Ratio of extracellular & - 100
1o imiracelluar i1 = = - -
walumes.
o Diffusion coeff,*** 0024 mm® min~" ke - - = -

*From Marticl and Croldbeter [16] NA = mot available, in which case units of the quantity are given with oo numerical valoe.
**Linkts arc the same & in columa giving experimental range. When all four parameicr scis assame the same value of a parameter,
the symbod = iz used.

Set Az wed by Manticl and Goldbeser 1o mdel cAMP cscillations in well-stirmed cell suspensions.

Set B used by Marisel and Goldbeter 1o model cAMP signal-relaying in well-stirred cell suspensions.

Bt C: used in this paper to cabeulate spiral waves in the full throe-companent model

Scts [F and E: used in this paper 1o calculate spiral waves in the swo-companent madel.

** = Diwoekan and Keller [6]

—— > spirals



from smgle ceII to movmg slug

GG 2scale CA (CPM) + excitable mediun (PDE) + chemotaxis
Jyy < Jyg = Jgg < Ju.m CAMP dynamics towards cAMP

refractory period

C
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ne \
:
ATP cAMP Ore

@) | (b) ©) | 7

Savill & Hogeweg J Theor. Biol (1997)



aggregdation and SLUG: behaviour 4+

e Faster movement in streams & larger slug move faster then smaller ones

12 T
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e Slug keeps elongated shape because of cAMP diffusion: curved wavefront

e Cell sorting during slug-phase:
differential adhesion 4+ equal chemotaxis + movement
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Marée & al 1999, Savill & Hogeweg 1997



Emergent sensing of environment in slug
Thermotaxis (and phototaxis)

CAMP dynamics depends on temperature

skews shape of wave front
cell chemotaxis up gradient

pushes slug towards higher temeratures

noise reduction!

Marée & al 1999

.
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0.5
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the culmination (fruiting body formation)

i

) ;é{’

—+ -+ Cell differentiation:

prespore-cells (green) — > prestalk-cells(red) — >
autocycling cells(blue) — > scenecent-cells (light-blue):
which do not produce or react to CAMP; produce stiff slime

| Marée & Hogeweg PNAS 2001




CPM mechanics of culmination
how does the stalk move down?
why does it stop when bottom is reached?

front of cAMP wave cell sizes due to chemotaxis

Pressure waves in prespore cells push
the non-responding scenecent cells downwards
This stops when no prespore cells surround them
(i.e. when the prespore cells moved upwards toward the cCAMP waves )

Marée & Hogeweg PNAS 2001



Lifecycle of Dd by chemotaxis and adhesion

aggregation

Streams

110

10 140
Position along the y-axis




Dd morphodynamics:

multiple causes and multiple effects

Aggregation

streams if wave propagation dep on density
faster movement in streams

Mount/slug
slug

cell sorting| by differential adhesion AND chemotaxis
slug shape attractor of
energy minimization vs inward movement (wave shape)
taxis (thermo- photo-taxis) via NH3 effect on excitability)
slug shape and wave shape
bi-directional mutant direction of movement vs momentum

culmination

needs dynamic cell differentiation

downward movement of stalk cells caused by peristalsis
caused by upward movement of spore cells

pressure waves and wave shape

self-correcting| and self-terminating




Movement Dd slugs:
measured bead displacement and calculated force fields

cf Rieu, Baranth, Maeda and Sawada 2005
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similar forces in model Dd slugs?

Note:
forces are (emergent) observables

instead of model ingredients!

Can be measured (like in experiments)
cf From energy to cellular forces in the Cellular Potts Model: An algo-

rithmic approach EG Rens, L Edelstein-Keshet - PLoOS Comnutatinng|
Biology, 2019

Perpendicular forces expected because:
- wave shape (most concave in middle of slug)
- sideward push because of pressure gradient




conclusions

Using simplifications which allows multilevel modeling we
“can go for the horse part”

Development as trajectory of dynamical system

model minimizes regulation within cells

Assumption of CPM seem very suitable to describe biolog-
ical cells

Relatively few parameters need to be specified; large set of
'new’ observables

Treating forces as observables rather than model assump-
tion alllow close comparison with experimental measure-
ments

BUT WHAT ABOUT THE GENES?



Evolutionary “testing” of the model

who wants to be a stalk?, cf Queller
how to come become another dictyosteloid?
multiple levels needed to understand complexity



Who want to become a stalk?
Evolution of cooperation and why cheaters do not take over
single gene greenbeard effect

Who depends on phase in cell cycle
Cell adhesion gene csA binds to csA
on agar csA knockouts become spores because wildtye cells
have more adhesion — > go to front - become stalk
BUT
INn soil csA knockouts are left behind during aggreg. phase
— > fruiting body 85% wildtype

Queller et al. Science 299:105-106 (2003)



conclusion: who wants to become a stalk

Simple optimality reasoning often flawed

Important role of non-inheritable behaviour

stochasticity

environmental heterogeneity

selforganization



from Dictyostelium to other discyosteliids
Polysphondinium

Polysphondylium violaceum

-

ommo icoelid Slim Molds of

Great Smoky Mountains National Park

A R. Swanson, A Guide to the

continuous redifferentiation prestalk-stalk
sidebranches (polyshondinium)



....SO far - so good BUT
mostly unidirectional micro— >macro level causation
cell property changes only externally imposed
within CPM one can do better!

(include macro— >micro level causation)

“2% Multilevel modeling of multilevel behaviour =%
Morphogenesis as side effect of
cell differentiation and differential adhesion

combining
within cell dynamics (gene regulation)
between cell dynamics (signalling and adhesion)
cell growth and division
evolutionary dynamics (fitness cell differentiation)

physical processes + inherited information

Hogeweg 2000a,b



DEVELOPMENT
2 scale CA model(Glazier and Graner 1993)
1 biotic cell represented as many CA cells
cell surface energy minimisation

H=Y 204 J t A0 - V)

l

cell migration
cell death (v =0)
cell growth/division (v >V +7 =V ++)

l

cell (re-)differentiation

GENE-REGULATION
boolean network:< 32 nodes
2 nodes define cell signalling
2 nodes define maternal factors

10 nodes define J;; _

l \

cell differentiation ?

/

EVOLUTION
GA : population size 32
genetic operators: point mutations + gene duplication/loss
selection fitness®, randomdeath

fitness: sum of distance between cell types ———

T

Modelling Morphogenesis:
Interplay between Gene requlation, Differential adhesion and Evolution



Morphogenesis by differential adhesion and cell differentiation




modes of cell differentiation and morphogenesis

cell differentiation evolved morphogenesis

many morphemes by few mechanisms
alternative attractors of | - engulfing

gene regulation network intercalation

= Stable memory

convergence extension
meristematic growth
budding

signal dependent
cell differentiation
re-differentiation

automatic orchestration of
adhesion,migration,differentiation
cell growth - division and - death
“pseudo-isomorphic outgrowth”

Morphogenesis as sustained transient of energy minimization
intrinsic conflict maintained by
cell growth cell division and cell differentiation




Evolutionary history: after cell differentiation diversity of shapes
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Early Evolution: Cell differentiation

Late Evoldtiona: Newtral Path and *Shapes in the Shadow’

"conserved’ ZOOTYPE followed by differential outgrowth






conclusion
FUN!
showing beauty of CPM

Simplicity

easily extendable

"natural” flexible interface between levels

dynamic micro-macro and macro-micro interactions

emergence at multiple space and time scales

(and .... models "real” biological cells pretty well)



