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Present day (evolved) metabolism

studied from evolutionary perspective

Last time:

By assuming optimality and equillibrium conditions and given

the metabolic network of Yeast, genes kept in duplo after

WGD could be ”predicted”

TODAY

New insights in well studied metabolic regulation pathways

by taking an evolutionaary perspective

Lac operon



Experimental and Modeling strategies

Experiments: use ’controlled conditions’

Mini-models: can study parameter space and ’choose’

parameters based on outcome (fitting experiments)

Detailed models: use (MANY) measured / estimated

(’reasonable’) parameters

minimal evolutionary optimization models

(’what is it good for?) (bet-hedging)

Here use multilevel (evolutionary) modeling

to generate parameters and debug the above



Prototype gene regulation: Lac operon

genome structure regulatory network



Lac Operon: Prototype bi-stability in gene regulation:
classical mini-model, experiments

R = 1/(1 +An)

dM/dt = c0 + c(1 −R) − dM

dA/dt = ML− δA− vMA

L = 1.0; c = 1.0; c0 = .05; δ = .2; v = .25;n = 5)

bi-stability experimentally “verified”

cf Novick and Weiner 1957, Griffith 1968, Ozbudak et al 2004



Metabolic regulation in E.coli

Using Evolution to understand transcription regulation

Lac operon



experimental measurement of promotor function

Setty...Alon 2003

Not a simple AND function

“the wild-type region is selected to perform an elaborate com-

putation in setting the transcription rate.”



measurements fitted to model of promoter function



V1....V5 depend on 7 affinity parameters

data bestfit



Parameter sensitivity / parameter curse (1)

AND

OR



more complex model of the lac operon

Wong et al 1997 , adapted by van Hoek & Hogeweg 2006



eqs determining operon activity
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eqs determining further metabolism and cell growth(X)

(cell division if cell size = 2*basic size)

dG

dt
=

kc,LB ∗ L

L+Km,L
+

kc,AB ∗A

A+Km,A
− kc,GG

G+Km,G
− kG,o(G−Gext)− µG

dG6P

dt
=

kt,GGext

Gext +Kt,G
+

kc,GG

G+Km,G
+

kc,LB ∗ L

L+Km,L
+

kc,AB ∗A

A+Km,A
−

kG6P,RG6P

G6P +KG6P,R
− kG6P,FG6P 8

K8
G6P,F +G6P 8

− µG6P

dC

dt
=

ks,CKs,C

kt,GGext

Gext+Kt,G
+Ks,C

− (γC + µ)C

dATP

dt
=

YR ∗ kG6P,R ∗G6P

G6P +KG6P,R
+

2kG6P,F ∗G6P 8

K8
G6P,F +G6P 8

−BMC −

µmax ∗GC ∗ATP 4

ATP 4 +K4
ATP

− PC ∗ PA− kc,LB ∗ L

L+Km,L
− kc,AB ∗A

A+Km,A

dX

dt
= µmax

ATP 4

ATP 4 +K4
ATP

X

Wong concluded : bistable switch







Functionality of Lac-operon

Bistability?

• Most studied regulatory system
• often considered as AND gate

ON if lactose and not glucose;
otherwise OFF

• recent direct promoter measurements:
more graded response

• Bistability? exp ’seen’ and expected
from minimodels and ’verified’ in more
extensive parametrized models

• many (all) parameters measured
HOWEVER
may be orders of magnitude different
parameter curse (2)!

Setty .... Alon 2003

Does such a promotor function evolve
DOES BISTABILITY EVOLVE?; alleviate parameter uncertainty

van Hoek and Hogeweg, BJ 2006 PLOS Comp biol 2007



“experimental setup” evolution of the Lac operon:
timescales: metabolism, cell growth/division, prot. stab,

environmental switches, evolution

• Adapt existing detailed quantitative model of lac operon dynamics
(Wong et al 1997)

• use measured parameters EXCEPT for lac operon parameters
• evolve 11 lac-operon parameters

DO NOT use dimension reduction!
otherwise evolutionary lock-in

• Design environment! (“cover all possibilities”)
• global/aperiodic influx of lactose and glucose in medium,

diffusion, scaling
• growth (dependent on ATP), division (2*size),

decay (density dep; no ATP)
• encountered environments depend on dynamics! dynamics!

evolution as trick to cope with parameter uncertainty



initialize as a bistable switch
(because no bistable switch evolved...)

solid low glucose; dotted high glucose



Designing external environment
coverage of environmental statespace, while response to

environments



Evolution: how to observe
parameter of individuals in pop. in time



Evolution: how to observe
phenotypic features in time (4 extremes)



Evolution: how to observe
comparison of evolutionary outcomes

Ancestor trace!

Compete last common ancestors (n*)

Compete last populations (n*)

−− > “BEST” evolved promoter function



’Best’ evolved last common ancestor
deterministic intracellular dynamics; 11hr average influx regime

spatial pattern formation
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OBSERVED (Setty 2003) BEST EVOLVED LCA



Similar to measured promoter function
However NO bistability



What about experiments / prior modeling?

Conditions for bistability for artificial inducer VERY different from those
for lactose.

for lactose: for artificial inducer

Evolved promoter function bistable for artificial inducer!

LACTOSE ART INDUCER



evolved vs measured bistability for artificial inducer

measured (van Oudenaarden) evolve (van Hoek)



Why avoid bistability
why ’waste’ expression when no (low) Lactose available

Non-equilibrium: delays!

lines for different γ values (P(0,C))

(E.coli division time ca 1hr)



sensitivity to experimental design

cost of expression and frequency of environmental

switching

high cost bistab at rare high glucose fast switch : loss of regulation



Experimental support for evolutionary model

E.M. Ozbudak, M. Thattai, H.N. Lim, B.I. Shraiman, A. Van

Oudenaarden Multistability in the lactose utilization network

of Escherichia coli. Nature, 427 (2004), pp. 737

in supplementary material

During induction with lactose, as opposed to IPTG, TMG..........

the steady state distribution after 4 hours of growth is

always uni-modal, and we never observe hysteresis.



various responses for different sugars

suppressing catabolism enhances hysteresis

Afroz et al 2014



experimental support of fast evolutionary change,

avoidance of bistability even relative to TMG

cf Adaptive Evolution of the

Lactose Utilization Network

in Experimentally Evolved

Populations of

Escherichia coli

Quan et al 2012





model and parameters used (literature + measured)

((slightly) different to previous model)

No bistability for measured parameters, but can be induced
by over-expression of LacI. LacZ expression saturates, and
by dilution LacZ concentration peaks at intermediate Le, be-
cause growth rate increases. Zander et al 2017





Indeed in the model evolution of lac operon avoids
bistability by increasing repressed expression level

(and even more so in stochastic version)

dotted: start (bistable); solid evolved stoch.; dashed evolved
det.

evolved in well mixed system without glucose



conclusions
Evolutionary modeling to ’test’ regular systems biology

models/experiments

Evolutionary perspective helped to debug long held misconceptions

which were prior “verified” theoretically AND experimentally

Evolutionary modeling powerful tool for alleviating parameter
uncertainty

Evolutionary change in parameters very uninformative

Parameter uncertainty inherent in evolutionary context
(parameter redundancy; condition dependent parameter change

(“TRUE” parameters do not exist) )

Non-supervised modeling ’fits’ better then fitted supervised models



Modeling gene regulation/signal transduction

Monster of Loch Ness syndrome

“quod erat demonstrandum”

evolution as trick to cope with parameter uncertainty



HOWEVER: “function” of bistability is often assumed
increased population variability, and therewith rapid

adaptation, GIVEN stochastic gene expression

Above results artifact of deterministic modeling?

study: bistability and stochasticity
in the lac operon

cf Thattai & van Oudenaarden (2004):
noise + bistability can be ’good’ because it allows rapid
switching due to population heterogeniety.

However: minimization of expression noise in essential genes
(Fraser et al 2004)

But: Excessive stochasticity of promoter function measured
in E. coli (Wolf & van Nimwegen 2016)



from deterministic to stochastic model of lac operon
only one (measured) parameter added

protein translation occurs in bursts:
geometrically distribution, average size 5 proteins
(Cai et al 2007)

model chance of burst proportional to # mRNA

at cell division distribute proteins binomially over the cells



intrinsic vs extrinsic noise: experiments and model

extrinsic noise: cell cycle+ intracellular inducer concentration
(green)

intrinsic noise: difference in expression of 2 identical promo-
tors in a single cel (red)

Ntot = Next +Nint = std/mean in population (blue)

IPTG as inducer Lac as inducer IPTG as inducer
noise relative to internal protein numbers relative to external IPTG

black: internal protein number



evolution of lac operon with stoch. prot. expression

avoids bistability even more

dotted: start (bistable); solid evolved stoch.; dashed evolved

det.



WHY?
long delay in induction in stoch model

when in bistable regime (i.e. low repressed expression)

A: stochastic; B: deterministic
red ext. lac; blue ext. gluc; green βGalactosidase solid line: at high γ dotted at low γ



Relative Growth rates of promotor functions in

deterministic and stochastice models

all times resource pulses are different

low repressed expression ’better’ when no lactose and vv

therefor compare growth-rates over time relative to

deterministic, low repressed rates

green: deterministic, high repressed

black stoch. : high repressed rates

red stoch: low repressed rates



population heterogeneity in various model variants:
deterministic vs stochastic; genetic vs one clone,

spatial vs well mixed

deterministic stochastic

black: full model; red: well mixed; green 1 clone full model;
blue 1 clone well mixed; note partial synchronization; yellow
intrisic noise



Population heterogeneity can be smaller than intrinsic

noise

because of non-equillibrium circumstances

(during decay of proteins no heterogeneous burstsizes)



conclusions

Bistability even more detrimental when stochasticity is taken
into account

on induction: long waiting for large bursts.

role of stochasticity overestimated by considering genetically
identical cells in a homogeneous environment in equilibrium

non-equilibrium conditions can reduce population heterogene-
ity

large genetic heterogeneity in natural populations: fast adap-
tation to environmental condition

interlocking of evolutionary and regulatory timescales!
Parameter uncertainty inherent in evolution



Experimental and Modeling strategies

Experiments: use ’controlled conditions’

Mini-models: can study parameter space and ’choose’

parameters based on outcome (fitting experiments)

Detailed models: use (MANY) measured / estimated

(’reasonable’) parameters

minimal evolutionary optimization models

(’what is it good for?) (bet-hedging)

Here use multilevel (evolutionary) modeling

to generate parameters and debug the above


