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Last time:

Eco-evolutionary dynamics of RNA -
sequence-structure-interaction: Coding strategies

• Symmetry breaking + and - string
like in minimodels (− > not model artefact of mini model
− > not due to coding limitations of RNA)

• Coding evolves to to cope with high mutations rates
• Steep quasispecies with ”functional” mutational NB
(vs Eigen: no functionality to be expected in quasispecies)

• individually coded but ecosystem based diversity evolves
and persists close to the Information Threshold”

• Lower mutation rates: speciation: replicators and parasites
• Coding adapted to evological ’role’
• BUT Very different coding of functional similar competing
replicators.



Mutational neighborhood of 2 functionally equivalent RNA’s

optimal replicator random replicator

-s,
black replicator; yellow parasite; green helper; red staller

Takeuchi & Hogeweg 2008, Colizzi & Hogeweg 2014



Quasispecies based division of labour:
Antibiotic production is organized by division of labour in Streptocyces

Zheren Zhang...Daniel E Rozen,Science advances, 6(3) 2020.

High Mut. Rate Mut. fitness antibiotics production QS fitness

only > 50

Genome structure and targeted mutations



TODAY:

What does ecology do for evolution to predefined target

Evolution of coding structure to cope with high mutation rates
- multiple coding

To cope with complex ”target”
- sparse fitness evaluation
- ecosystem based ”problem solving”

combatting parasites
- and in evolution of computation

Genome GRN evolution



Evolution of coding structure cont.

versatility of RNA structure: multiple coding

Evolve towards target == set of (25) RNA structures .

ALL other structures (Shapiro) TOXIC

define possible interaction of RNA’s:
adaptors (=single hairpin)
can bind to other RNA
bound (modified) nucl not ’available’
for folding

fitness of cell: set of struct.
cells compete in space

replication of cells and RNA’s coordinated
mutations: point mutations;
dupdels of RNA’s and parts of RNA’s
single bases; point mutations
.

How to cope with high mutation rates?
How to cope with high mutation rates?

. de Boer & H. PLOS-One 2012





high mutation rate - short genome - same functionality



one adaptor used by all sequences



many adaptors used by 1 sequence



Conclusion: multitple coding

RNA even more an “ideal evolvable molecule”

information threshold shapes coding structure
multiple coding arises and alleviates information threshold

information threshold does not (necessarily) limit functionality

(Similar effects seen with alternative (non-minimal energy) foldings)

Also in this case:
local competition in space helps!

. well mixed:



Conclusions

Coding structure adapts to mutation rate

Coding length, selection strength

Result:

Evolution converges to being

Close to Information Threshold



“Doing something” in spatial eco-evolutionary systems

Life as “function optimization”

individual vs ecosystem based problem solving

• NON ’trivial’ task (constructive evolution))

Problem solving (modeling trick)

• Local vs Global ’fitness’

sparse fitness evaluation

• Study longterm information integration

• competition and/or cooperation

Spatial pattern formation and speciation enable evolving complex problem

solving



Local Competition and Co-evolution as

Optimization Strategy (Hillis)

• Evolution of FAST sorter

• Coding:

Diploid Shuffles

• Fitness:

# of correctly sorted (side effect)

• FAST SORTERS



Green’s Sorter



Function fitting as model for (complex) TODO

coevolution as optimization strategy

sparse fitness evaluation through co-evolving problems

cf Pagie and Hogeweg 1997

ISSUES

• How gets the ’complete’ problem solved

- Information integration

- generalizability (never ’seen’ cases)

• What type of solution is generated

- complexity of solution

- mutational robustness

- generalizability

compare sparse vs complete fitness evaluation

in SPACE (local competition)



Individual based problem solving:

Information integration

sparse fitness evaluation more efficient

(< number of evaluations)

Linear model: bitstring match



Individual problem solving Type of solution:

complexity, generalizability, mutational robustness

• function: f = 1/(1 + x−4) + 1/(1 + y−4)
• Genetic programming without minimum atom / function set

-> alternative solutions
• co-evolved solutions and sampled points in space
• compare sparse fitness evaluation:

(only some values (8) seen per lifetime) and coevolution
with ’complete’ fitness evaluation (many values seen (here 262))

• fitness distance to target functions

sparse fitness evolution
better fit (distance)

“better fit (simpler function)
“better fit (more generalizable)
LOWER mutational robustness

Pagie and Hogeweg 1997







Looking at solutions



Static vs. sparse fitness evaluation (unseen data)



Mutational Stability



Genome size



Spatial pattern formation and PARASITE speciation

G = 1/(1 + x−4) + 1/(1 + y−4)



Differentiation of host phenotypes:

“good at eating different prey”



Spatial pattern formation and speciation vs red queen

evolution HOST ANCESTOR TRACE



conclusions

Evolutionary “setting” influences evolved structures at mul-

tiple levels even if identical “target”.

Sparse fitness evaluation:

better results

mutational less robust

more generalisable

(=== more robust to changes in environment

smaller genome



Individual based vs ecosystem based “problem solving”
predator-prey-scavenger coevolution

FK de Boer, P Hogeweg 2010

Problem: solve “function” - fully digest all possible prey
prey 2 continuous properties:0 < X,Y < K
Fully eaten when predator calculates f(X,Y) correctly

e.g.

Fitness predator: how well it solves “its” prey
Fitness prey: how badly predator solves it
Fitness scavenger: How it solves “what is left”

do individual predators, or does the ecosystems solve it



Ecosystem based solution ’easier’ to evolve
preceeds individual based solution

Two predator populations specializing on X or Y

Two scavenger populations specializing on X or Y

Two prey populations with high X or high Y values

Self organize in spiral waves,

X predator and Y scavenger pairs together digest prey fully

(i.e. encode the target function correctly)



high mutation rates lead to ecosystem based solutions

(cf hypercycles, RNA model)

evolving information processing maintaining information processing



Conclusions

Ecosystem based solution feasible when mutation rate too
high for individual to “fit in”

Difference between generation and maintainance of individual
based solution

high mutation rate prevents genome expansion
and compromises evolvability



conclusion

“Cooperation” (getting something done together) through
spatial selforganization

Division of labor among predators

Coerces prey into certain types

See less − > can do more:
Cooperative solution of “all” problems, by “seeing” only a
subset of problems

No direct or indirect fitness benefit for predators to give scav-
engers an eatable bite.

ecosystem based solution precedes individual based solution

ecosystem based solution stable at high mutation rates



conclusions

Individual information integration (smart individuals)

only if sparse fitness evaluation

however integrated on all neighbours

Host - parasite system

Collective problem solving: complex/smart ecosystems

selection for specialization

e.g only profit when relative to neighbours on which you are

better

Predator - prey

“generalized ’immune’ system” vs “specialized predators”



Evolution of defense systems

“nothing in biology makes sense except in the light of parasites”

Hickinbotham et al 2021

Evolve RNA-like computer programs(STRINGMOL).

Parasites emerge. kill system UNLESS in space

Programs evolve self-nonself recognition



Parasites mimic replicators, but are recognized again

After parasites are extinguished, simplication of replicators

New parasites emerge

No long-lived parasitic lineages:

directly derived from replicators



Somewhat similar to experimental RNA evolution
Emergence and diversification of a host-parasite RNA ecosystem

through Darwinian evolution Taro Furubayashi ....Norikazu
Ichihashi 2020

One parasitic lineage; others arise by single deletion mutations from hosts,
to be less ”recognisable’







GENOME EVOLUTION: 3 (4) modeling frameworks
genome structure and genotype to phenotype/fitnessmap

AEVOL bit (nucleotide) level coding of genome allows evolution of new genes!

PoaS course grained genome allows multilevel (evolving) GPf mapping

PoaS + metabolism (Virtual cell) allows indirect sensing environment



Evolution of (observed) structure in

Gene Regulatory Networks (GRN)

role of mutational operators

Structural features of transcription regulation networks

powerlaw and FFL

• Characterizing topology of GRN

• What do we mean with “over-representation of...”

• Random mutations = / = randomization

Importance of coding structure



Observed properties of the GRN of Yeast

(also many other networks: neural networks, computer networks, (but not Eco-networks))

Milo & Alon 2002



Genomic encoding of GRN

Modeling Mutational Dynamics

bag of genes with binding sites (BS)

BS deletion 8x10−3

BS duplication 8x10−3

Bs mutation 8x10−4

Gene deletion 1x10−3

Whole gene duplication 1x10−3

Protein divergence/innovation 5x10−3

Parameters loosly chosen from literature, NOT FITTED.

Feed-Forward Loop Circuits as a Side Effect of Genome Evolution

Otto X. Cordero, Paulien Hogeweg MBE 2006



mutational dynamics WITHOUT selection leads to

Powerlaw distribution of connections

with similar γ as Yeast GRN

for similar number of genes and TF (2000, 100)



Toy model: Visualization of network restructuring

during neutral evolution (hierarchical) structured

network for free!



During evolution Sudden increase of FFL motifs:

FFL as mutational signature



large increase of FFL motifs:

Originate through duplication of hub

+ new connection



Over-representation of FFL motifs in Yeast:
Duplication + connection of Hub genes



random mutations vs randomization

Randomization tests: keep everything the same EXCEPT feature to be
tested

here: keep degree distribution
— test for FFL

BUT random mutations

do not conserve degree distribution



discussion/conclusions
Assessing relevance of observed evolved network structure

in models or “real” life

Random mutations lead to non-random structure
With or without selection of “something”

Random mutations as stochastic dynamical system
goes to attractor

Example: Modularity in evolved GRN model for
Drosophila segmentation/differentiation

ten Tusscher & Hogeweg 2011: Evolution of Networks for Body Plan Patterning;

Interplay of Modularity, Robustness and Evolvability

random networks as null model?


