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Individual and/or ecosystem based adaptation

Genome evolution

Course computational biology 2025; Paulien Hogeweg;

T heoretical Biology and Bioinformatics Grp Utrecht University
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Last time:

Eco-evolutionary dynamics of RNA -
sequence-structure-interaction: Coding strategies

e Symmetry breaking 4+ and - string
like in minimodels (— > not model artefact of mini model
— > not due to coding limitations of RNA)

e Coding evolves to to cope with high mutations rates

e Steep quasispecies with " functional” mutational NB
(vs Eigen: no functionality to be expected in quasispecies)

e individually coded but ecosystem based diversity evolves
and persists close to the Information Threshold”

e Lower mutation rates: speciation: replicators and parasites

e Coding adapted to evological 'role’

e BUT Very different coding of functional similar competing
replicators.



Mutational neighborhood of 2 functionally equivalent RNA'’s

A-catalyst:
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black replicator; yellow parasite; green helper; red staller

Takeuchi & Hogeweg 2008, Colizzi & Hogeweg 2014



Quasispecies based division of labour:
Antibiotic production is organized by division of labour in Streptocyces
Zheren Zhang...Daniel E Rozen,Science advances, 6(3) 2020.
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Genome structure and targeted mutations



TODAY:

What does ecology do for evolution to predefined target

Evolution of coding structure to cope with high mutation rates
- multiple coding

To cope with complex " target”
- sparse fitness evaluation
- ecosystem based " problem solving”

combatting parasites
- and in evolution of computation

Genome GRN evolution



Evolution of coding structure cont.
versatility of RNA structure: multiple coding

Evolve towards target == set of (25) RNA structures .
ALL other structures (Shapiro) TOXIC

define possible interaction of RNA's: — o
adaptors (=single hairpin) T ]
can bind to other RNA R ™ s
bound (modified) nucl not 'available’
for folding

fitness of cell: set of struct.
cells compete in space

replication of cells and RNA's coordinated ¢ g
mutations: point mutations; e nasiles X3/
dupdels of RNA’s and parts of RNA's
single bases; point mutations . . .

d IPIovv Pg) cope with high mutation rates?

How to cope with high mutation rates?

de Boer & H. PLOS-One 2012






high mutation rate - short genome - same functionality
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one adaptor used by all sequences

One
RNA-Adapter
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many adaptors used by 1 sequence

One
RNA-sequence
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Conclusion: multitple coding

RNA even more an “ideal evolvable molecule”

information threshold shapes coding structure
multiple coding arises and alleviates information threshold

information threshold does not (necessarily) limit functionality

(Similar effects seen with alternative (non-minimal energy) foldings)
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one-to-many
(suboptimal foldings)

Genome Size
[

Also in this case: .

local competition in space helps!
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Mutation rate (L

well mixed:



Conclusions

Coding structure adapts to mutation rate
Coding length, selection strength

Result:

Evolution converges to being

Close to Information Threshold



“Doing something” in spatial eco-evolutionary systems
Life as “function optimization”
individual vs ecosystem based problem solving

e NON 'trivial’ task (constructive evolution))
Problem solving (modeling trick)

e Local vs Global 'fitness’
sparse fitness evaluation

e Study longterm information integration

e competition and/or cooperation

Spatial pattern formation and speciation enable evolving complex problem

solving



Local Competition and Co-evolution as
Optimization Strategy (Hillis)

e Evolution of FAST sorter
e Coding:
Diploid Shuffles
e Fitness:
# of correctly sorted (side effect)
e FAST SORTERS



Green’s Sorter
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Function fitting as model for (complex) TODO
coevolution as optimization strategy
sparse fitness evaluation through co-evolving problems
cf Pagie and Hogeweg 1997

ISSUES

e How gets the 'complete’ problem solved
- Information integration
- generalizability (never 'seen’ cases)
e \What type of solution is generated
- complexity of solution
- mutational robustness
- generalizability
compare sparse vs complete fitness evaluation
in SPACE (local competition)



Individual based problem solving:
Information integration
sparse fithess evaluation more efficient
(< number of evaluations)

Linear model: bitstring match

Bit evaluations until correct solution
1o T T E: T T T T
10
E
10
10
10
10
target; 256 bits ] target; 512 hits
o —Zowe  mobo  mwon  mmo . @oio - emwao
population size population size



Individual problem solving Type of solution:
complexity, generalizability, mutational robustness

function: f=1/(1+z*)+1/(1+y %)

Genetic programming without minimum atom / function set

-> alternative solutions

co-evolved solutions and sampled points in space

compare sparse fitness evaluation:

(only some values (8) seen per lifetime) and coevolution

with 'complete’ fitness evaluation (many values seen (here 262))
fitness distance to target functions

sparse fithess evolution
better fit (distance)
“better fit (simpler function)
“better fit (more generalizable)
L OWER mutational robustness

Pagie and Hogeweg 1997
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Coevolving sparse fithess evaluation
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0.0 100.0 200.0 300.0 400.0 500.0
generations

Complete static fitness evaluation
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Figure 2. Fimess curves of the best-of-generation solution for coevolving (a) and complete static
problem evaluadon (b). Fitmess is based on the complete problem set that consists of 26 x 26 problems.
The fitness curves that drop below 1077 go to values between 107"* and 107", The horizontal dotted
lines give the value of the hit criterion (see text).



Looking at solutions

Figure 3. Three typical final solutions produced by coevelving fitness evaluation. The left plots are
based on 26 x 26 evaluated problems, the right plots on 100 x 100 evaluated problems. Two correct
solutions that approximate the target function are shown in (a) and (b); an incorrect solution is shown
in (c). All solutions generalize well on the 100 x 100 problems.



Static vs. sparse fitness evaluation (unseen data)

b

Figure 4. Two typical final solutions produced by static fitness evaluation. The left plots are based
on 26 x 26 evaluated problems, the right plots on 100 x 100 evaluated problems. Neither solution is
correct.



Mutational Stability
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Figure 5. Histogram of the number of one-point mutants having at least x number of hits.



Genome size

Evaluation Size of Success  Mean Number of Nodes
Scheme Problem Set  Rate in Final Program
Static 676 0% 68
Coevolving 0ot 676 45% 44




Spatial pattern formation and PARASITE speciation
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figure 5: parasite speciation in evaluating



Differentiation of host phenotypes:
“good at eating different prey”
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Spatial pattern formation and speciation vs red queen
evolution HOST ANCESTOR TRACE
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ligure 6: combined ancestor trace in well mixed system Figure 7: combined ancestor trace with pattern formation




conclusions

Evolutionary “setting” influences evolved structures at mul-
tiple levels even if identical ‘“target’.

Sparse fitnhess evaluation:

better results

mutational less robust

more generalisable
(=== more robust to changes in environment

smaller genome



Individual based vs ecosystem based “problem solving”

predator-prey-scavenger coevolution

FK de Boer, P Hogeweg 2010

Problem: solve “function” - fully digest all possible prey
prey 2 continuous properties:0 < X,Y < K
Fully eaten when predator calculates f(X,Y) correctly

Evolutionary Target Minimal Coding Example

Spat;

embedding

e.q fix, y) = x3 + y3 + 5x2 (+x*+x5X)X)FFEYyY)Y)

Fitness predator: how well it solves “its'’ prey
Fitness prey: how badly predator solves it
Fitness scavenger: How it solves “what is left”

do individual predators, or does the ecosystems solve it

si0jepaud

siobuaneds



Ecosystem based solution ’'easier’ to evolve
preceeds individual based solution

- S mEW ' ' ' bodoa b o
ED- '...- |

10 o

0.02 0.04 0.06 0.08 0.1 0.12 0.15
mutation rate U

Two predator populations specializing on X or Y

Two scavenger populations specializing on X or Y

Two prey populations with high X or high Y values

Self organize in spiral waves,

X predator and Y scavenger pairs together digest prey fully
(i.e. encode the target function correctly)

Predators Scavengers Prey Eaten Prey

@ 1(a)

ecosystem based:
M stable

| unstable
individual based:
M direct
M after ecosystem

M X-solver
I Y-solver
B Mutant




high mutation rates lead to ecosystem based solutions
(cf hypercycles, RNA model)

U 4 total simulations
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Conclusions

Ecosystem based solution feasible when mutation rate too
high for individual to “fit in”

Difference between generation and maintainance of individual
pbased solution

size of first solutions size of solutions t+200 efficacy
15 T T T T T T T T T T El]
T

o
g

Tire In genarations

-

S i I

om0 oos . A0F Bl Do

High mutation rates prevent After prolonged evolution genome inflation
large genomes streamlining of genomes facilitates evolvability

high mutation rate prevents genome expansion
and compromises evolvability



conclusion

“Cooperation” (getting something done together) through
spatial selforganization

Division of labor among predators
Coerces prey into certain types

See less — > can do more:
Cooperative solution of "“all” problems, by ‘seeing” only a
subset of problems

No direct or indirect fithness benefit for predators to give scav-
engers an eatable bite.

ecosystem based solution precedes individual based solution
ecosystem based solution stable at high mutation rates



conclusions

Individual information integration (smart individuals)
only if sparse fitness evaluation

however integrated on all neighbours

Host - parasite system

Collective problem solving: complex/smart ecosystems
selection for specialization

e.g only profit when relative to neighbours on which you are
better

Predator - prey

“generalized 'immune’ system’ vs “specialized predators”



Evolution of defense systems
“nothing in biology makes sense except in the light of parasites”
Hickinbotham et al 2021
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Evolve RNA-like computer programs(STRINGMOL).
Parasites emerge. kill system UNLESS in space

Programs evolve self-nonself recognition



Parasites mimic replicators, but are recognized again
After parasites are extinguished, simplication of replicators

New parasites emerge

No long-lived parasitic lineages:
directly derived from replicators

2 000 O

time
500000 1000000 1500000

0 1x10° 2x10°5 3x10° 4x10° 5x10°



Somewhat similar to experimental RNA evolution
Emergence and diversification of a host-parasite RNA ecosystem
through Darwinian evolution Taro Furubayashi ....Norikazu
Ichihashi 2020

A B

RNA - RMNA

Translation

- re-distribution u replication
: / : \ »
“0“ RNA Parasite RNA L\kf 1. Incubation \.l /
|
" "
A W

2. Partial
removal

Fresh cell-free
translation system

3. Dilution

One parasitic lineage; others arise by single deletion mutations from hosts,
to be less "recognisable’



A “@=Host  =f=Parasite-a <= Parasite-p  =@p= Parasite-y

B C
M-site stem-loop Host-115

Parasite-o
(~220 nt)

Parasite-f
(~1070 nt)

Parasite-y
(~510 nt)

Parasite-B99

Parasite-y115
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GENOME EVOLUTION: 3 (4) modeling frameworks
genome structure and genotype to phenotype/fitnessmap

AEVOL bit (nucleotide) level coding of genome allows evolution of new genes!
Yr*Phenotype”

A Environment
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Evolution of (observed) structure in
Gene Regulatory Networks (GRN)
role of mutational operators

Structural features of transcription regulation networks
powerlaw and FFL

e Characterizing topology of GRN
e What do we mean with *“over-representation of..."”

e Random mutations = / = randomization

Importance of coding structure



Observed properties of the GRN of Yeast

Frequency Nk}

“ Number of connections per node K

Network Nodes Edges Neeal Nrand ESD Zscore | Mreal Mrand = 5P Z. score
Gene regulation X Feed- ). 4 I Bi-fan
(transeription) V forward
Y loop
V Z w
Z
E. coli 424 519 40 73 10 203 47+12 13
S. cerevisine® 685 1,052 170 11+4 14 1812 30040 41

(also many other networks: neural networks, computer networks, (but not Eco-networks))

Milo & Alon 2002



Genomic encoding of GRN
Modeling Mutational Dynamics

bag of genes with binding sites (BS)

ACHHE» => [—mP» | ¢
BS deletion 8x103

S EOEe . EROED
BS duplication 8x10-3 e B
Bs mutation 8x10—*4 C.. M. = ..
Gene deletion 1x1073 o CHHE-» =>
Whole gene duplication 1z10~3 e CHOHE-D => %
Protein divergence/innovation 5x10-3 * -~ = -

Parameters loosly chosen from literature, NOT FITTED.

Feed-Forward Loop Circuits as a Side Effect of Genome Evolution

Otto X. Cordero, Paulien Hogeweg MBE 2006



mutational dynamics WITHOUT selection leads to
Powerlaw distribution of connections
with similar v as Yeast GRN
for similar number of genes and TF (2000, 100)
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== simulation
@ yeastp <0.001

+ target genes

frequency




Toy model: Visualization of network restructuring
during neutral evolution (hierarchical) structured
network for free!

» Visualization of the network evolution (toy example):
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During evolution Sudden increase of FFL motifs:
FFL as mutational signature

» Results of mutational dynamics at the microlevel:

number of FFL circuits

0 500 1000 1500



large increase of FFL motifs:
Originate through duplication of hub
+ new connection

» Mechanics of massive FFL formation:

1000

500

number of FFL circults

time



Over-representation of FFL motifs in Yeast:
Duplication 4+ connection of Hub genes

» Evidence in the yeast network:




random mutations vs randomization

Randomization tests: keep everything the same EXCEPT feature to be
tested

here: keep degree distribution
— test for FFL

BUT random mutations
do not conserve degree distribution

» Randomization test: swapping connections.

— average Indegree Number of FFLS In Randomized Enssmbls
— g Hm me ' !
average In-degraa regulxtors (n-dagres = 0)
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discussion/conclusions
Assessing relevance of observed evolved network structure
in models or “real” life

Random mutations lead to non-random structure
With or without selection of “something”

Random mutations as stochastic dynamical system
goes to attractor

A
Example: Modularity in evolved GRN model | -
Drosophila segmentation/differentiation 0.4 e aneous

frequency

Q values

average Q value for
modular networks

ten Tusscher & Hogeweg 2011: Evolution of Networks for Body Plan Patterning;
Interplay of Modularity, Robustness and Evolvability

random networks as null model?



