Multiscale-cell based modeling formalism CPM

Course Computational Biology 2025; Paulien Hogeweg; Theoretical Biology and Bioinformatics Grp Utrecht University

modeling biotic systems as multilevel systems

Previously:

EMERGENT MESOSCALE ENTITIES:

- discovery and description
- modeling these entities
- -variable number of 'entities,
- mean field approximation

Now:

PREDEFINED MULTIPLE LEVEL

- e.g. predefined cells as mesoscale
- multiple timescales of information transfer
- multiple scales of interaction

example of cell movement

cell basic unit in single celled and multi-cellular organisms

- cell as a dimensionless point: PDE
- cell as occupation of a patch of space: CA *NB particle conservation!*
- cell as a "homunculus" IBM
- cell as a ball being moved by external forces (finite element models)
- Cells are deformable highly viscuous objects, behaviour determined by internal state (gen expression) and external interactions operating in subcellular scale

How to model? Multilevel model formalism (CPM)

Glazier-Graner 2-Scale CA model CPM

- A 'biotic' cell consists of many lattice sites in same 'state' (= cell identity)
- Cells have a type τ , volume v (and...)
- Between cells: free energy bod J_{ij} where i and j are the types of the cells
- *dynamics*: Free energy minimization with volume conservation:

$$H = \sum \frac{J_{ij}}{2} + \sum J_{im} + \lambda (v - V)^2$$

• Copy state of neighbouring cell with probability:

$$P_{i \to j} = 1$$
 iff $\Delta H < -\beta$; $P_{i \to j} = e^{-(\Delta H + \beta)/M}$ iff $\Delta H \ge -\beta$

Table 2.2: A list of cell sorting behaviours in the Glazier and Graner model

- cell sorting by differential adhesion
- Individual cells 'wiggle' through cell mass

- Same chemotaxis to the right for all cells
- Individual cells can 'move against the flow' e.g. by being larger; being in the minority, adhesion here: same size $J_{ll} = 5 J_{dl} = 3 J_{dd} = 3$

Käfer, Hogeweg & Marée 2006

Cells can reverse direction due to clumping forming larger "pseudocell"

Why? Due to emergent pressure forces and cell shapes

Cell movement in Lymphnode: stop and go (Beltman et al 2007)

in vitro (Miller et al)

in silico (Beltman et al)

persistency vector

Cell movement in emty Lymphnode Beltman et al 2007

Weak chemotaxis hard to detect by cell tracking. Augment by modeling: what would the effect of chemotoxis be?

2 models: opposite conclusions

Riggs et al JTB 2008:"A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning".

Our [CA modeling results] suggest that, within a LN T-zone, a random search strategy is optimal for a rare cognate T cell to find its DC match and maximize production of activated T cells "

Vroomans et al 2012: "Chemotactic Migration of T Cells towards Dendritic Cells Promotes the Detection of Rare Antigens"

Our [CPM] simulations show that chemoattraction of T cells enhances the DC scanning efficiency, leading to an increased probability that rare antigen-specific T cells find DCs carrying cognate antigen.

Models incorporate very similar biological assumptions Difference in modeling formalism

Vroomans: sensitive T cells (blue), insensitive T cells (yellow), DCs (red), reticular

network (green)

Evolution of multicellularity (Colizzi et al 2020)

Adhesion defined by complementary matching of receptor and ligand.

Chemoattractant diffuses from food resource;

Location of foodsource changes periodically (τ)

Reproduction chance dependent on distance to food at end of season mutations of receptor and ligand.

Spatial modeling formalisms

space / time / var.	formalism
ccc (ddc)	partial differential equations (PDE)
	reaction diffusion systems
ddc	map lattices
ddd	CA
ccd	individual oriented models
	off lattice particle systems / event-based
dcc	meta-population models
c/dc (d+c)	hybrid models

note: translations