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modeling biotic systems as multilevel systems

Previously:

EMERGENT MESOSCALE ENTITIES:
- discovery and description
- modeling these entities
-variable number of ’entities,
- mean field approximation

Now:

PREDEFINED MULTIPLE LEVEL

- e.g. predefined cells as mesoscale
- multiple timescales of information transfer
- multiple scales of interaction

example of cell movement



How to represent a cell?

cell basic unit in single celled and multi-cellular organisms

• cell as a dimensionless point: PDE

• cell as occupation of a patch of space: CA

NB particle conservation!

• cell as a “homunculus” IBM

• cell as a ball being moved by external forces (finite element

models)

• Cells are deformable highly viscuous objects,

behaviour determined by internal state (gen expression)

and external interactions operating in subcellular scale

How to model? Multilevel model formalism (CPM)



Glazier-Graner 2-Scale CA model

CPM

• A ’biotic’ cell consists of many lattice sites in same ’state’ (= cell

identity)
• Cells have a type τ , volume v (and...)
• Between cells: free energy bod Jij where i and j are the types of the

cells
• dynamics: Free energy minimization with volume conservation:

H =
∑ Jij

2 +
∑

Jim + λ(v − V )2

• Copy state of neighbouring cell with probability:

Pi→j = 1 iff ∆H < −β ; Pi→j = e−(∆H+β)/M iff ∆H ≥ −β





from cells to tissues (and beyond)

• cell sorting by differential adhesion

• Individual cells ’wiggle’ through cell mass

• Same chemotaxis to the right for all cells

• Individual cells can ’move against the flow’

e.g. by being larger; being in the minority, adhesion

here: same size Jll = 5 Jdl = 3 Jdd = 3

Käfer, Hogeweg & Marée 2006



Cells can reverse direction due to clumping

forming larger “pseudocell”

Jll = 5 Jdl = 8 Jdd = 2 −−−− > chemotaxis

v



Why? Due to emergent pressure forces and cell shapes

Jll = 5 (intersection)



Cell movement in Lymphnode:

stop and go ( Beltman et al 2007)

in vitro (Miller et al) in silico (Beltman et al)



Cell movement in emty Lymphnode

Beltman et al 2007



Chemotaxis in lymphnodes?
beware of modeling artifacts

Weak chemotaxis hard to detect by cell tracking. Augment by modeling:
what would the effect of chemotoxis be?

2 models: opposite conclusions

Riggs et al JTB 2008:”A comparison of random vs. chemotaxis-driven
contacts of T cells with dendritic cells during repertoire scanning”.

Our [CA modeling results] suggest that, within a LN T-zone, a random
search strategy is optimal for a rare cognate T cell to find its DC match
and maximize production of activated T cells “

Vroomans et al 2012: “Chemotactic Migration of T Cells towards Den-
dritic Cells Promotes the Detection of Rare Antigens”

Our [CPM] simulations show that chemoattraction of T cells enhances
the DC scanning efficiency, leading to an increased probability that rare
antigen-specific T cells find DCs carrying cognate antigen.

Models incorporate very similar biological assumptions
Difference in modeling formalism



CA model of Riggs et al CPM model of Vroomans et al

RANDOM CHEMOTAXIS
(3D) (2D)

Vroomans: sensitive T cells (blue), insensitive T cells (yellow), DCs (red), reticular



network (green)



Evolution of multicellularity (Colizzi et al 2020)

Adhesion defined by complementary matching of receptor and

ligand.

Chemoattractant diffuses from food resource;

Location of foodsource changes periodically (τ)



Reproduction chance dependent on distance to food at end

of season

mutations of receptor and ligand.



Spatial modeling formalisms

space / time / var. formalism
ccc (ddc) partial differential equations (PDE)

reaction diffusion systems
ddc map lattices
ddd CA
ccd individual oriented models

off lattice particle systems / event-based
dcc meta-population models
c/dc (d+c) hybrid models

note: translations


