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modeling biotic systems as multilevel systems

Previously:

EMERGENT MESOSCALE ENTITIES:
- discovery and description

- modeling these entities

-variable number of 'entities,

- mean field approximation

Now:

PREDEFINED MULTIPLE LEVEL

- e.g. predefined cells as mesoscale
- multiple timescales of information transfer
- multiple scales of interaction

example of cell movement



How to represent a cell?

cell basic unit in single celled and multi-cellular organisms

e cell as a dimensionless point: PDE
e cell as occupation of a patch of space: CA
NB particle conservation!
e cell as a "homunculus” IBM
e cell as a ball being moved by external forces (finite element
models)
® Cells are deformable highly viscuous objects,
behaviour determined by internal state (gen expression)
and external interactions operating in subcellular scale

How to model? Multilevel model formalism (CPM)



Glazier-Graner 2-Scale CA model
CPM

A 'biotic’ cell consists of many lattice sites in same 'state’ (= cell

identity)
Cells have a type 7, volume v (and...)
Between cells: free energy bod J;; where i and j are the types of the

cells
dynamics: Free energy minimization with volume conservation:

J..
H=Y% 4% Jim+ Mv—V)?
Copy state of neighbouring cell with probability:
Pj=1 iff AH< - ; Pj=e BHEO/M 4¢f AH> -3



Initial configuration

Cell Sorting

thite,whiie = Jgrey.grey < thice.grey

Cell Mixing

me‘:e,wmu = Jgfcy,grcy > thitcgrsy

Engulfment

tht’te,grey < thitg,medﬁum

qucr.t,medium < thiteimedium

No cell cell adhesion

Joall.call > 2Jcall madium

Table 2.2: A list of cell sorting behaviours in the Glazier and Graner mode:



from cells to tissues (and beyond)

e cell sorting by differential adhesion
e Individual cells 'wiggle’ through cell mass
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e Same chemotaxis to the right for all cells

e Individual cells can 'move against the flow’
e.g. by being larger; being in the minority, adhesion
here: same size Jy=5J3=3 J3u =3

Kafer, Hogeweg & Marée 2006



Cells can reverse direction due to clumping

forming larger

““pseudocell”
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Why? Due to emergent pressure forces and cell shapes

chemotaxis o
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Cell movement in Lymphnode: e
stop and go ( Beltman et al 2007) "*‘?\/é
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in vitro (Miller et al) in silico (Beltman et al)



Cell movement in emty Lymphnode
Beltman et al 2007 e

Cell track of individual lone cell Cell track of' 5 cells in an environment with many cells




Chemotaxis in lymphnodes?
beware of modeling artifacts

Weak chemotaxis hard to detect by cell tracking. Augment by modeling:
what would the effect of chemotoxis be?

2 models: opposite conclusions

Riggs et al JTB 2008:" A comparison of random vs. chemotaxis-driven
contacts of T cells with dendritic cells during repertoire scanning” .

Our [CA modeling results] suggest that, within a LN T-zone, a random
search strategy is optimal for a rare cognate T cell to find its DC match
and maximize production of activated T cells *“

Vroomans et al 2012: “Chemotactic Migration of T Cells towards Den-
dritic Cells Promotes the Detection of Rare Antigens”

Our [CPM)] simulations show that chemoattraction of T cells enhances
the DC scanning efficiency, leading to an increased probability that rare
antigen-specific T cells find DCs carrying cognate antigen.

Models incorporate very similar biological assumptions
Difference in modeling formalism



CA model of Riggs et al CPM model of Vroomans et al
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Vroomans: sensitive T cells (blue), insensitive T cells (yellow), DCs (red), reticular



network (green)



Evolution of multicellularity (Colizzi et al 2020)
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Adhesion defined by complementary matching of receptor and
ligand.

Chemoattractant diffuses from food resource;

Location of foodsource changes periodically (1)



Reproduction chance dependent on distance to food at end
of season
mutations of receptor and ligand.



Spatial modeling formalisms

space / time / var.

formalism

ccc (ddc)

partial differential equations (PDE)
reaction diffusion systems

ddc map lattices
ddd CA
ccd individual oriented models
off lattice particle systems / event-based
dcc meta-population models
c/dc (d+4c) hybrid models

note: translations




