
1

Graphics

• R has built-in functions to automatically plot many standard statistical
graphics. Histograms and box plots may be generated with hist() and
boxplot(), respectively.

• Here’s an example. To start with let’s make a simple plot of the number of
hare that you used before. plot() function takes to vectors and uses them for
the x and y values:

> plot(x=lynx_hare$year, y=lynx_hare$hare, main = "Number of Hare ",
type="l")

main = "..." sets the title of the plot.
#type="l" allows for plotting with lines. If you want to plot with points, use type

="p"

Hopefully, you should be able to see this output:

1860 1880 1900 1920

0
50

00
0

10
00

00
15

00
00

Number of Hare

lynx_hare$year

ly
nx

_h
ar

e$
ha

re

• Once you’ve created a graphic that you’re happy with, you can copy the entire
thing. In the graphic window, click on export. You have three choices: save
as image, save as PDF, and copy to clipboard. Image and PDF allow you to
save the graph in a portable file. Copy to clipboard allows you to copy and
paste the graph, e.g. into Ms Word. Simply click on copy to clipboard and on
copy plot. Then paste it into Word and adjust its size.

Try it: save the plot you created above to a PDF file!

• Often, your data set contains various groups, and you would like to make a
box plot for each group. Using boxplot, that is easy. Here’s an example.

2

Let us load a new data set from Black Board on the CO2 levels measured in
different years and per month. This data set is in the file CO2_scripps.csv.
Read the file and inspect what kind of data you have:

>co2<-read.table("CO2_scripps.csv", header=TRUE, sep=";", check.names
= FALSE)

head(co2)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 1959 315.62 316.38 316.71 317.72 318.29 318.15 316.54 314.80 313.84 313.26
314.80 315.58

2 1960 316.43 316.97 317.58 319.02 320.03 319.59 318.18 315.91 314.16 313.83
315.00 316.19

3 1961 316.93 317.70 318.54 319.48 320.58 319.77 318.57 316.79 314.81 315.38
316.10 317.01

4 1962 317.94 318.55 319.68 320.63 321.01 320.55 319.57 317.40 316.25 315.42
316.69 317.70

5 1963 318.74 319.07 319.86 321.39 322.25 321.48 319.74 317.77 316.21 315.99
317.12 318.31

6 1964 319.57 320.00 320.75 321.83 322.25 321.89 320.44 318.70 316.70 316.79
317.79 318.71

Annual Average 1 315.97 2 316.91 3 317.64 4 318.45 5 318.99 6 319.62

Let us make a boxplot to compare the CO2 levels in four seasons:

> boxplot(co2$Jan, co2$Oct, names=c("Jan", "Oct"), col = c("red", "
blue"))

#names assigns the values to use on the x axis, and the colors give the colors to
use.

Suprisingly, there is not much of a difference between the two:

3

Jan Oct

32
0

34
0

36
0

38
0

40
0

Maybe the amount of CO2 is increasing in time. Let’s plot three different
years:

> boxplot(unlist(co2[co2$Year=="1959",2:13]), unlist(co2[co2$Year=="
1990",2:13]), names=c("1959", "1990"), col = c("red", "blue"))

#here unlist makes a vector from one row of co2 dataframe

Indeed, there is a large increase in the amount of CO2 in the years between
1959 and 1990:

1959 1990

32
0

33
0

34
0

35
0

4

• Scatter plots are plots of to numeric variables. For example, using the lynx_
hare data set, we can make a scatter plot of the number of hare versus number
of lynx:

> plot(x=lynx_hare$lynx, y=lynx_hare$hare, main = "Hare vs. Lynx ",
col="blue",
xlab = "Lynx", ylab = "Hare", bg="blue", pch=22)

#I use pch=22 and bg="blue" to get filled symbols in color blue.

0 2000 4000 6000 8000

0
50

00
0

10
00

00
15

00
00

Hare vs. Lynx

Lynx

H
ar

e

R Packages

One of the strengths of R is that the system can easily be extended. The system
allows you to write new functions and share those functions with other users through
a so-called “R package”. Other users can then download the package and install
the collection of functions as a “library”. The R package may also contain other R
objects, for example data sets or documentation. There is a lively R user community
and many R packages have been written and made available on CRAN for other
users. Just a few examples: there are packages for drawing maps, drawing graphics,
exporting objects to HTML, and the list goes on and on. When you download R, a
number of packages (around 30) are downloaded by default.

• To use a function from an R package, that package has to be attached to your
system. When you start R, not all of the downloaded packages are attached;
only seven are by default. To attach (load) another package, use the library()
function. For instance, to load the package "ggplot2", run:

> library(ggplot2) # Attach or "load" a library.

• Use the function search() to see a list of packages that are currently attached
to the system:

5

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:datasets" "package:utils"
[7] "package:methods" "Autoloads" "package:base"

This list is also called the search path. The first element of the output is
".GlobalEnv", which is the current workspace of the user.

• You will occasionally need a package that is not yet installed on your computer.
If you have a connection to the internet then a package that is available on
CRAN can be installed very easily using the function install.packages().
For instance, to install the "binom" package, run the following command:

Install the binom package; the quotes ’...’ or "..." are required.
> install.packages("binom", dependencies = TRUE)

Because we specified dependencies = TRUE, if the package binom uses (“depends
on”) yet other packages, these are installed as well. After the installation, you
still need to attach the package to your current R session to start using it:

> library(binom) # Attach or "load" the binom library.

• Another example: The library “MASS” provides an object called shoes. To
access this object, run the following commands:

.

> install.packages("MASS", dependencies = TRUE) # Install the package, if
you don’t have it yet

> library(MASS) # Attach/load the library.
> data(shoes) # this makes available a data frame called "shoes"
on some systems, you have to add quotes, like this:
> data("shoes")
Print the object "shoes":
> shoes

$A
[1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
$B
[1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

We stress that, as with all software, you need to download and install packages
only once on a given computer (using install.packages()). But you need to
load it (using library()) in every R session in which you wish to use it.

• The function library() can also be used to list all the available libraries on
your system with a short description. Run the function without any arguments.

