Cell migration in the immune system

Rob J de Boer, Utrecht University

Theoreticians: Joost Beltman (UU, LU), Ioana Niculescu (UU), Johannes Textor (UU) & Stan Marée (Norwich).

Experimental collaborators: Jennifer Lynch & Mark Miller (St Louis) Sarah Henrickson & Ulrich Von Andrian (Harvard) Silvia Ariotti & Ton Schumacher (NKI, Amsterdam)

Immune responses develop in draining lymph nodes

Dendritic cells (DC) scan peripheral tissues, and migrate to draining lymph nodes to present their antigens.

Millions of different naive T cells migrate through lymph nodes, and bind these DC.

Only 1:100000 T cells will become activated, expand, and emigrate as effector cells that move back to the inflamed tissues.

Needle in a haystack problem: how long would it take to initiate an immune response?

Von Andrian & Mackay, NEJM, 2000

Two photon microscopy: 2PM

Cahalan et al. Curr Op Immunol (2003)

Sumen et al. Immunity (2003)

Label cells with fluorescent marker, inject, wait until they arrive in lymph node Use different colors for T cells and dendritic cells Use tracking software to translate videos into cellular trajectories Delivers rich data sets that are difficult to quantify

Vivid movies of migrating cells in LT

Henrickson et al. Nat. Imm (2008)

Green: Ag specific CD8 T cells, Blue control cells, and Red DC Small volume and short time period: tracks are biased samples

Software tracks the cells "automatically"

k	Time-	C	е	
	point	×	Y	Z
	1	127.1	62.8	4.4
	2	124.2	59.3	3.8
	3	122.2	60.7	3.1
	4	119.2	63.3	3.6
	5	116.8	63.2	4.4
	6	114.1	63.1	3.1
	7	113.7	60.5	3.4
	8	114.9	60.4	2.1
	9	115.1	62.5	1.5
	5	112.3	95.4	2.4
	6	112.5	93.5	1.4

Quantify cell migration by: plot tracks record speeds angles of migration mean square displacement plot

Mean square displacement suggests a random walk

Mere imaging in a small volume gives a bias

At large time intervals the displacement plot will be biased towards slow cells that tend to stay in the box. This looks like confined migration

T cells migrate randomly in the absence of antigen

Maximum intensity projection giving a top-view Random walk, irregular velocities, speed one cell diameter min⁻¹ no overall directionality, no collective motion stop-and-go movement: peak in Fourier spectrum at ~ 1 min Miller et al. PNAS (2003)

Cellular Potts Model: in silico movie where we "labeled" a small subset of the cells

Red: T cells Green: Dendritic cells (DC) Similar maximum intensity projection Beltman et al. J Exp Med (2007)

Cellular Potts Model: grid based

Surface energies: Hamiltonian

System minimizes its energy

 ΔH determines probability of copying (Boltzmann distribution)

0	0	3	3	3	3	3
0	0	0	3	3	3	3
0	0	0	5	3	3	3
0	5	5	5	5	5	3
5	5	5	5	5	5	5

0	0	3	3	3	3	3
0	0	0	3	3	3	3
0	0	0	5	3	3	3
0	5	5	5	5	5	3
5	5	5	5	5	5	5

0	0	3	3	3	3	3
0	0	0	3	3	3	3
0	0	0	5	3	3	3
0	5	5	5	5	5	3
5	5	5	5	5	5	5

0	0	3	3	3	3	3
0	0	0	3	3	3	3
0	0	0	3	3	3	3
0	5	5	5	5	5	3
5	5	5	5	5	5	5

0	0	3	3	3	3	3
0	0	0	3	3	3	3
0	0	0	3	3	3	3
0	5	5	5	5	5	3
5	5	5	5	5	5	5

To move T cells have a target direction $\Delta H = -\mu \cos(\alpha)$

Target direction is adjusted according to recent displacement (directional persistence)

New "actin inspired" model:

http://tbb.bio.uu.nl/ioana/cpm/

T cell area in lymph nodes has a static reticular network

I pixel = I μ m³ T cell: I 50 μ m³, DC: 2200 μ m³ torus: I 00 μ m x I 00 μ m x I 00 μ m reticular network: randomly oriented rods

Cell populations in the CPM

cross-section:

These were all the rules of the game (all assumptions) We have tuned the adhesion parameters model is phenomenological!

normal X-ray view and true 3D view

Grey: reticular net, Blue: T cells, Green/Yellow: DCs

Because we now see all the cells we appreciate much better that this is a densely packed environment!

Beltman et al. J Exp Med (2007)

T cell tracks in the model: automatic

Very similar persistent motion in short term. Very similar irregular velocities. But no stop-and-go encoded in the model?

Stop-and-go just due to collisions

Longer time series

Autocorrelation on first 64 data points

Autocorrelation on all data points

Beltman JEM 2007

HSV infection in skin epidermis

Infect epidermis with Herpes Simplex Virus (HSV-I) Visualize infected skin + effector T cells

Silvia Ariotti & Ton Schumacher (NKI, Amsterdam)

Patches of HSV infection

Immunohistochemistry staining with anti-HSV antibody

Black line: basal membrane

Confocal microscopy

Silvia Ariotti & Ton Schumacher (NKI, Amsterdam)

specific T cellHSV (virus)

≈100 min 440x440x30µm

other T cell

≈60 min 440x440x35µm

How do T cells reach microlesions?

By random or directed migration? Differences close to/far away from infection? Differences by presence of matching antigen? Not apparent from visual inspection.

Quantitative analysis on tracked cells is required

Calculate for each movement step:

I. speed

4. displacement towards infection

Project movement step onto vector toward infection

Antigen specific arrest

There is a small preference for all cells to migrate towards the microlesions

There is a small preference to travel towards the microlesions

This is not antigen specific. Difficult to appreciate in videos. Is such a small preference relevant? Model of cell migration to construct long tracks and estimate impact on arrival

Bootstrap the experimental data

Choose speed + 'angle to infection' combinations Accept according to turning angle distribution Combination depends on distance to infection

In silico 2D tracks (also 3D)

Random tracks: use random 'angles to infection' but maintain speed+persistence

Directionality strongly contributes to arriving at microlesions

Conclusions

Stop-and-Go just due to collisions (not encoded)

Effector T cells are attracted towards microlesions independent of antigen specificity.

Small directionality allows a much larger fraction of cells to arrive faster at the site of infection.

Utrecht Center for Quantitative Immunology

Lymphocyte dynamics (modeling deuterium labeling) life spans of naive and memory T cells

Lymphocyte migration (quantifying 2PM videos) http://2ptrack.net/: open analysis tool

Epitope identification (NetMHCpan) predict pMHC complexes of HIV and cancers

T cell repertoire sequencing (diversity) RTCR: flexible pipeline with better recall than MiTCR

Universiteit Utrecht

<u>http://tbb.bio.uu.nl/ucqi</u>

Universitair Medisch Centrum Utrecht