
Theoretical 
Biology 2016

Chapter 7
Gene regulation



Transcription factors

bind DNA
to block or enhance

transcription
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DNA makes RNA makes protein

DNA makes RNA makes protein

From: Golding et al: Cell 2005.
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Figure 1. Measuring mRNA Levels in Living Cells
(A) Genetic components of the detection system. The tagging protein consists of a fused dimer of MS2 coat protein fused to GFP. Protein production is reg-

ulated by the PLtetO promoter (Lutz and Bujard, 1997), and inducible by anhydrotetracycline (aTc). This construct is on a ColE1 plasmid. The RNA target con-

sists of the coding region for mRFP1, a monomeric red fluorescence protein (Campbell et al., 2002), followed by a tandem array of 96 MS2 binding sites. This

message is under the control of a Plac/ara promoter (Lutz and Bujard, 1997), which is repressed by LacI and activated by AraC, therefore inducible by isopro-

pylthio-b-D-galactoside (IPTG) and arabinose. This construct is on an F plasmid, with a single copy per bacterial chromosome. Both plasmids were cotrans-

formed into E. coli DH5a-PRO, a constitutive producer of LacR and TetR repressors. For construction of the components, see Experimental Procedures.

(B) Detection of mRNA and protein in living cells. The picture is a false-colored overlay of the green and red channels. Scale bar, 1 mm.

(C) Kinetics of mRNA (green) and protein (red) levels after addition of IPTG. Cells were grown and induced as described in Experimental Procedures. At dif-

ferent times after induction,!100 cells were imaged. The images were then automatically processed (see Experimental Procedures) to identify individual cells

and within them the location of green particles. The average green signal (CIGD) is the average over all cells at one time point of the total photon flux from all green

foci in the cell, from which the cell background green fluorescence was subtracted. The red signal (CIRD) is the average over all cells at one time point of total cell

red fluorescence. Bars denote standard error of the sample over the population.

(D) Distribution of estimated mRNA copy numbers among different cells in two typical samples. The estimated copy number n is equal to IG normalized by the

intensity of a single tagged mRNA molecule.

(E) Gene expression levels at various levels of induction, obtained by varying the levels of IPTG and arabinose. Green: estimation of mRNA levels (molecules/

cell) at steady state, using our fluorescence-based method. Markers (O, +) are results of two separate experiments (>300 cells in each); lines connect the

averages. Blue: mRNA levels measured by QPCR. Shown are the average and standard error of message levels in two separate experiments. Red: red fluo-

rescence levels of the induced cells in arbitrary units. Data are from the same experiments as the estimated mRNA levels (same markers). Black: luciferase

levels measured from the Plac/ara promoter (in arbitrary units). Data from Lutz and Bujard [1997].
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mRNA formation occurs in bursts

Number of mRNA transcripts in individual cells over time. 
Red: data, blue: daughter cells, drops: cell division.

Figure 3. Induction Kinetics in Individual Cells
(A) Estimated number of transcripts per cell n, as a function of time t, in typical cells. Cells were grown and induced for MS2-GFP, and at time t = 0 a few ml of

cell culture was placed under a thin LB-agarose slab with IPTG (1 mM) and aTc (100 ng/ml). Fluorescent images were taken for 2 hr, at 2 frames/min. Red

dots, raw data. Green line, data smoothed by taking the maximum value in a six-sample running window. Black lines are fit by eye to a piecewise linear

function. This fit describes periods of transcriptional inactivity (constant n), separated by transcriptional events, in which RNA is produced at a rate of 1

transcript per 2.5 min. This rate corresponds to a chain elongation rate of!25 nucleotides/sec, in close agreement with our earlier measurements (Golding

and Cox, 2004), as well as with the known rate of chain elongation in E. coli at 22ºC (Mathews et al., 2000; Ryals et al., 1982). Cyan spots are measurements

made in the sister cell after cell division, demonstrating the randomness of RNA partitioning (D). Also marked in the figures are the measured jumps Dn in

RNA level following transcription, as well as negative changes in n following cell division.

(B) Distribution of inactivity periods (DtOFF, squares) and activity periods (DtON, triangles). Data is from 20 cells and 77 transcription events. Line is a fit to an

exponential distribution. Mean DtOFF is z37 min; mean DtON is z 6 min. Note that DtON is equal to Dn times the duration of transcribing 1 message, 2.5

min—see below.

(C) Distribution of RNA ‘‘jumps’’ (Dn). Squares are data, cyan line is a fit to an exponential distribution. Same data set as (B). The mean Dn is z 2.2.
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Mathematical model: mRNA & protein
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Now with negative feedback on transcription

Messenger Protein model Two
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Figure 5.1: The nullclines of Eq. (5.1) in Panel (a) and Eq. (5.2) in Panel (b). In both cases there is
only one possible phase space with one stable steady state.

declining Hill function 1/(1 + x) (see Chapter 13):

dM

dt
=

c

1 + P/h
� dM and

dP

dt
= lM � �P , (5.2)

where c now is the maximum transcription rate (molecules per hour), and l remains the trans-
lation rate. When P = 0 the gene is “on”, and the transcription rate is maximal (c). When
P ! 1 the gene is “o↵” and the transcription rate approaches zero. When P = h molecules,
the actual transcription rate is c/2 molecules per hour, which is half-maximal. To analyze this
slightly more complicated model we again draw nullclines. Setting dM/dt = 0 the simplest
function to obtain is M = c/d

1+P/h

, which is an inverse Hill function with maximum c/d when
P = 0 (see Fig. 5.1b). Solving dP/dt = 0 for M yields the same straight line M = (�/l)P as
above (see Fig. 5.1b). The nullclines again intersect in only one steady state. The vector field
around the steady state shows that the point remains stable in the presence of this negative
feedback on the transcription rate.

5.2 Separation of time scales

One often simplifies models by distinguishing slow and rapid time scales. This is a very important
technique. For fast variables one can do a “quasi steady state” (QSS) approximation. This means
that the QSS variable is in steady state with the rest of the system, i.e., with the slow part of the
system. When the slow part changes the QSS variable walks along. By a QSS approximation
one basically replaces a di↵erential equation with an algebraic equation. A simple example of
a QSS approximation would be the position of a fast fighter jet that is following a slow Boeing
747. If the pilot of the fighter jet has the order to tail the Boeing, one can describe the location
of the fighter jet as a short distance behind the Boeing. Whenever the Boeing changes course,
the rapid fighter jet will immediately follow. If the fighter jet were a slow plane, this would
not be a valid assumption. This story was originally told by Lee Segel from Israel. He was the
“father of the quasi steady state assumption” (Segel, 1988; Borghans et al., 1996), and a great
story teller.

Conversely, variables that are much slower than the other variables of a model can be approx-
imated by constants that do not change at all on the time scale of interest. One example will



Quasi steady state assumption

Suppose turnover of protein much faster than that of mRNA
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Figure 5.2: The lac operon: regulated synthesis of inducible enzymes. From: Campbell & Reece (2008).

be the assumption that the immune response is not changing during anti-retroviral therapy in
Chapter 6. In this course we will use both techniques in order to obtain natural simplifications
of our models.

For instance, assuming that proteins are degraded rapidly, i.e., assuming that the turnover of
proteins is much faster than the turnover of mRNA molecules, the protein concentration will
typically be close to its steady state value given the concentration of its mRNA. The quasi
steady state of Eq. (5.2)b is obtained by solving P from dP/dt = 0, giving P = (l/�)M . In
this simple case, the QSS assumption boils down to assuming that the protein concentration is
proportional to the concentration of its mRNA (Golding et al., 2005). Substituting P = (l/�)M
into dM/dt yields the simplified quasi steady state model

dM

dt
=

c

1 + (l/�)M/h
� dM =

c

1 +M/h0
� dM , (5.3)

where h0 = h�/l is the new saturation constant. If this quasi steady state is a fair assumption,
the behavior of the simplified model should be very similar to that of the full model.

5.3 Lac-operon

Bacteria can use several external substrates for cellular growth and switch the corresponding
intracellular pathways on and o↵ depending on the available resources. One of the possible
substrates is the sugar lactose, and the regulation of the “Lac-operon” was one of the first
circuits of gene regulation that was revealed (Jacob & Monod, 1961). Regulation of the Lac-
operon involves a positive feedback because the sugar allolactose, A, activates gene expression
by deactivating a repressive transcription factor, R. Allolactose is an isomer of lactose that is
formed in small amounts from lactose. The intracellular lactose concentration is determined by
an enzyme permease that is produced by this gene complex. The gene complex also codes for the
enzyme �-galactosidase that hydrolyzes the disaccharide allolactose into glucose and galactose.
Making the same quasi steady state assumption as we did above in Eq. (5.3), i.e., assuming

with h’ = hδ/l
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Bivalent ligand binding a monovalent receptor

C: free ligand (C > NRT), 
R: free receptors,

RT: total receptors,
C1: single bound ligand,
C2: double bound ligand:

RT = R + C1 + 2C2

How does C2, and hence the 
growth rate, depend on C?
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Towards a 
phenomenological 

mathematical model

Repressor is modeled as a declining sigmoid Hill function.
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Complete mathematical model
R: repressor, M: messenger & A: allolactose:

c0: basal transcription rate, 
c0+c: transcription rate when operon is “on”,

d and δ are decay rates of mRNA and allolactose,
ML is the permease mediated influx 

-vMA term: B-galactosidase hydrolizes allolactose.

R=0: operon “on”
R=1: operon “off”

TR = �1

�

SARS epidemic:

dI

dt

= [� � �]I

with R0 = 3, and � = 1.5 and � = 0.5 per week

dS

dt

= rS(1� S/K)� �SI and

dI

dt

= �SI � �I

y = atx and t = T � by gives y =

aTx

1 + abx

y =

aTx

1 + abx

=

(T/b)x

1/(ab) + x

=

↵x

h + x

R =

h

5

h

5
+ A

5
=

1

1 + (A/h)

5

Lac-operon

R =

1

1 + A

n
,

dM

dt

= c0 + c(1�R)� dM = c0 +

cA

n

1 + A

n
� dM ,

dA

dt

= ML� �A� vMA ,

M =

c0

d

+

(c/d)A

n

1 + A

n
(2)

M (L� vA) = �A or M =

�A

L� vA

(3)



Nullclines

Nullclines

0 2 4A
0

0.6

1.2

M

(a)

A

M
c0
d

c0+c
d

M =
c0
d

+
(c/d)An

1 + An
and M =

�A

L� vA
h+A

From your reader
67

TR = �1

�

SARS epidemic:

dI

dt

= [� � �]I

with R0 = 3, and � = 1.5 and � = 0.5 per week

dS

dt

= rS(1� S/K)� �SI and

dI

dt

= �SI � �I

y = atx and t = T � by gives y =

aTx

1 + abx

y =

aTx

1 + abx

=

(T/b)x

1/(ab) + x

=

↵x

h + x

R =

h

5

h

5
+ A

5
=

1

1 + (A/h)

5

Lac-operon

R =

1

1 + A

n
,

dM

dt

= c0 + c(1�R)� dM = c0 +

cA

n

1 + A

n
� dM ,

dA

dt

= ML� �A� vMA ,

M =

c0

d

+

(c/d)A

n

1 + A

n
(2)

M (L� vA) = �A or M =

�A

L� vA

(3)

TR = �1

�

SARS epidemic:

dI

dt

= [� � �]I

with R0 = 3, and � = 1.5 and � = 0.5 per week

dS

dt

= rS(1� S/K)� �SI and

dI

dt

= �SI � �I

y = atx and t = T � by gives y =

aTx

1 + abx

y =

aTx

1 + abx

=

(T/b)x

1/(ab) + x

=

↵x

h + x

R =

h

5

h

5
+ A

5
=

1

1 + (A/h)

5

Lac-operon

R =

1

1 + A

n
,

dM

dt

= c0 + c(1�R)� dM = c0 +

cA

n

1 + A

n
� dM ,

dA

dt

= ML� �A� vMA ,

M =

c0

d

+

(c/d)A

n

1 + A

n
(2)

M (L� vA) = �A or M =

�A

L� vA

(3)

A’=0:

M’=0:

sigmoid Hill function

Origin:  M = (δ/L)A



Quasi steady state dM/dt = 0

Quasi Steady state dM/dt = 0 Nullcline

0 1 2L
0

2

4

A

(b)

L

Ā
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Observed bi-stability in E. coli

Green: E. coli with high expression of lac operon
From: Ozbudak et al. Nature, 2004 (see the reader) 



Bi-stability in growth of E. coli

The Innate Growth Bistability and 

Fitness Landscapes of Antibiotic-

Resistant Bacteria

J. Barrett Deris, Minsu Kim, Zhongge Zhang, Hiroyuki Okano, Rutger Hermsen, 
Alexander Groisman, Terence Hwa*

Introduction: Understanding how bacteria harboring antibiotic resistance grow in the presence 
of antibiotics is critical for predicting the spread and evolution of drug resistance. Because drugs 
inhibit cell growth and a cell’s growth state globally infl uences its gene expression, the expression 
of drug resistance is subject to an innate, growth-mediated feedback, leading to complex behaviors 
that affect both the characterization and the prevention of antibiotic resistance. We characterized 
the consequences of this feedback for the growth of antibiotic-resistant bacteria.

Methods: We studied the growth of Escherichia coli strains expressing resistance to translation-inhib-
iting antibiotics, by using both bulk and single-cell techniques. The growth of each strain was quanti-
fi ed in a broad range of drug concentrations by using time-lapse microscopy (to track the responses of 
individual cells to antibiotics inside a microfl uidic chemostat) and by the enrichment of batch cultures 
for nongrowing cells. We formulated a quantitative phenomenological model to predict the growth 
rates of drug-resistant strains in the presence of drugs, based on the well-characterized biochemistry 
of drug and drug-resistance interactions and on bacterial growth laws that dictate relations between 
cell growth and gene expression. We tested the model predictions for various drugs and resistance 
mechanisms by constructing strains that constitutively express varying degrees of drug resistance.

Results: In strains expressing a moderate degree of drug resistance, growth rates dropped abruptly 
above a critical drug concentration, the minimum inhibitory concentration (MIC), whose value increased 
linearly with the basal level of resistance expression (see fi gure below, panel A). Cells exhibited growth 
bistability over a broad range of drug concentrations below the MIC: Isogenic cells expressing drug 
resistance coexisted in growing and nongrowing states in a homogeneous environment (panel B). Our 
model accurately predicted the range of drug concentrations in which growth bistability occurred, as 
well as the growth rates of the growing subpopulation, without any ad hoc fi tting parameters. These 
fi ndings reveal a plateau-like fi tness landscape (panel A), which can be used to study the evolution of 
drug resistance in environments with varying drug concentrations.

Discussion: The broad occurrence of growth bistability in drug-resistant bacteria challenges the 
common notions and measures of drug effi cacy and resistance. And because growth bistability can 
arise without complex regulation when gene expression is coupled to the state of cell growth, similar 
physiological links may underlie the growth bistability implicated in causing bacterial persistence. 
The availability of quantitative, predictive models will facilitate the formulation of strategies to limit 
the effi cacy and evolvability of drug resistance.
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Fig. 1. Heterogeneous response of 
Cm-resistant cells.

Fig. 2. Drug-induced growth bistability.

Fig. 3. Growth-mediated feedback.

Fig. 4. Growth rate predictions and phase 
diagram.

Fig. 5. Fitness landscapes of drug resistance.
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Fitness landscape and growth bistability. (A) This 
fitness landscape describes the fitness, or growth 
rates, of bacterial strains exposed to antibiotics (col-
ored lines indicate the fi tness of four example strains). 
Fitness drops abruptly at high drug concentrations. 
The shaded area shows a broad region of growth bista-
bility, throughout which we observe that genetically 
identical cells possessing drug resistance are split into 
subpopulations of growing and nongrowing cells in 
response to antibiotics (B, top).
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The Innate Growth Bistability
and Fitness Landscapes of
Antibiotic-Resistant Bacteria
J. Barrett Deris,1,2* Minsu Kim,1*† Zhongge Zhang,3 Hiroyuki Okano,1 Rutger Hermsen,1,2‡
Alexander Groisman,1 Terence Hwa1,2,3§

To predict the emergence of antibiotic resistance, quantitative relations must be established
between the fitness of drug-resistant organisms and the molecular mechanisms conferring
resistance. These relations are often unknown and may depend on the state of bacterial growth.
To bridge this gap, we have investigated Escherichia coli strains expressing resistance to
translation-inhibiting antibiotics. We show that resistance expression and drug inhibition are linked
in a positive feedback loop arising from an innate, global effect of drug-inhibited growth on
gene expression. A quantitative model of bacterial growth based on this innate feedback accurately
predicts the rich phenomena observed: a plateau-shaped fitness landscape, with an abrupt
drop in the growth rates of cultures at a threshold drug concentration, and the coexistence of
growing and nongrowing populations, that is, growth bistability, below the threshold.

The appearance of bacterial strains with
broad antibiotic resistance is becoming an
alarming global health concern. The rapid-

ity with which drug resistance has emerged over
the past 30 years, for both natural and synthetic
antibiotics, exposes a glaring lack of understand-
ing of drug-bacteria interaction and its evolution
(1, 2). Although thousands of genetic adaptations
that enable drug resistance have been identified,
this knowledge has not yet revealed how andwhen
these adaptations will arise, that is, the underlying
principles that determine the evolutionary pathways
to drug resistance (3–5).

Although the success of a particular drug-
resistant strain might depend on many factors,

one of the most basic factors to consider is the
nature of bacterial growth during antibiotic treat-
ment. This is especially critical for resistance
mechanisms evolved de novo, during early stages
of evolution when drug resistance emerges in in-
cremental steps (3, 6, 7). It is desirable to char-
acterize the interaction between drug and drug
resistance in exponentially growing cells because,
during an infection, the number of bacteria can
increase exponentially for many days (8, 9);
indeed, even as the host’s immune response re-
duces the overall number of bacteria, individual
bacteria that have yet to be killed are still esti-
mated to grow at typical in vitro rates, doubling
up to once or twice per hour for some pathogens

(10, 11). However, elucidating this interaction in
growing cells is challenging because the expres-
sion of drug resistance genes, like the expression
of any other gene, is often intimately coupled to
the growth status of the bacteria (12–18).

In particular, translation-inhibiting antibiotics
have been shown to reduce the expression of
both regulated and constitutively expressed genes
because of growth-mediated global effects (16, 17).
If one of these gene products provides some de-
gree of antibiotic resistance, then growth inhibition
can reduce expression of resistance; the dimin-
ished resistance can in turn allow the drug to
further inhibit growth in a positive feedback loop
(fig. S1), driving the cell into a stable nongrowing
state after a transient slowdown in cell growth.
Frequently, gene regulatory systemswith positive
feedback exhibit a switchlike behavior when,
for example, intrinsic fluctuations in gene ex-
pression exceed some threshold (19, 20). This
is often accompanied by bifurcation of a genet-
ically homogeneous culture into two subpopula-
tions with distinct phenotypes, which is called
bistability (19, 20). In the context of antibiotic
resistance, this would be manifested as a “growth
bistability,” that is, growing and nongrowing cells
coexisting in a homogeneous environment.
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Fig. 1. Heterogeneous response of Cm-resistant
cells. E. coli cells were diluted from log-phase batch
cultures lacking Cm and were spread onto LB agar at
densities of several hundred cells per plate before over-

night incubation at 37°C. (A) Typical plate images of Cm-resistant Cat1 (top row) and Cm-sensitive wild-type (bottom row) cells, with Cm concentration
indicated below each plate and also given above as approximate fraction of the empirically determined MICplate for each strain (figs. S2A and S3A). (B)
Percentage of viable cells grown on Cm-LB plates, CAT-expressing cells (Cat1, green), and wild-type cells (EQ4, blue). Error bars estimate SD of CFU, assuming
Poisson-distributed colony appearance.
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effect does not require any molecular coopera-
tivity (40).

Growth Rate–Dependent Expression of Constitutive
(Unregulated) Genes
Figure 3C shows that, under translation-limited
growth, the expression levels (that is, protein con-
centrations) of unregulated genes decrease linearly
with decreasing growth rate l (16, 42). This trend
contradicts the commonly held expectation that
protein concentration should decrease with increas-
ing growth rates, owing to a growth-mediated dilu-
tion effect. Instead, the proportionality between
expression level and growth rate follows from bac-
terial growth laws (16) and can be understood as
a generic consequence of the up-regulation of ri-
bosome synthesis upon translational inhibition, at
the expense of the expression of nonribosomal genes
(fig. S9). The behavior is shown for translation-
inhibited growth in Fig. 3C, with CAT activity

(Vmax) of cells constitutively expressing CAT
(open green circles) and LacZ activity of cells
constitutively expressing LacZ (open black sym-
bols). This result is described by Eq. 3 in Fig. 3C,
expressed relative to the CATactivity and growth
rate in cells not exposed to drugs (denoted by V0
and l0, respectively). We note that some drug re-
sistance genes are not usually expressed constitu-
tively, but require induction by the target antibiotic
(25–27). However, regulated gene expression is
still subject to growth-mediated feedback (17, 43)
and may suffer substantial reduction upon
increasing the drug concentration. This has been
observed for the native Tc-inducible promoter
that controls Tc resistance, for growth under sub-
lethal doses of Tc (fig. S10).

Effect of Translation Inhibition on Cell Growth
For exponentially growing cells subjected to sub-
inhibitory doses of Cm, the relative doubling

time (l0/l) is expected to increase linearly with
internal drug concentration [Cm]int; see Eq. 4 in
Fig. 3D. This relation is a consequence of the
characterized effects of Cm on translation (22)
together with bacterial growth laws, which dic-
tate that the cell’s growth rate depends linearly
on the translation rate of the ribosomes (fig. S9)
(16, 44). Growth data in Fig. 3D verify this quan-
titatively for wild-type cells. The lone parameter
in this relation, the half-inhibition concentra-
tion I50, is governed by the Cm-ribosome affinity
(eq. S6), and its empirical value is well accounted
for by the known biochemistry (22) (table S2).

Comparing Model Predictions to
Experimental Observations
The Value of the MIC
The model based on the above three components
contains three parameters: Km, I50, and V0/k. The
first two are known or measured in this work (ta-
ble S2), whereas the last one, reflecting the basal
CAT activity level (V0), is construct-specific. The
model predicts a precipitous drop of growth rate
across a threshold Cm concentration, which we
identify as the theoretical MIC, whose value de-
pends linearly on V0/k as given by eq. S28. Em-
pirically, an abrupt drop in growth rate is indeed
apparent in the batch culture (fig. S11), yielding
anMIC value (0.9 to 1.0mM) that agrees well with
those determined in microfluidics and plate as-
says. Comparing this empiricalMIC valuewith the
predicted dependence of MIC on V0/k (eq. S28)
fixes this lone unknown parameter to a value com-
patible with an independent estimate, on the basis
of the measured CAT activity V0 and indirect es-
timates of the permeability value k (table S2).

Dependence on Drug Concentration
With V0/k fixed, the model predicts Cm-dependent
growth rates for this strain without any additional
parameters (black lines, Fig. 4A). The upper branch
of the prediction is in quantitative agreement with
the growth rates of Cat1 measured in batch cul-
ture [Fig. 4A (solid circles) and fig. S11]. Addi-
tionally, when we challenged Tc-resistant strain
Ta1 with either Tc or the Tc analog minocycline
(Mn) (39), the observed growth rates also agreed
quantitatively with the upper branch of the respec-
tive model predictions (fig. S12). Note also that
in the absence of drug resistance or efflux, Eq. 4
predicts a smoothly decreasing growth rate with
increasing drug concentration, which we observed
for the growth of wild-type cells over a broad range
of concentrations (figs. S8C and S12C).

The model also predicts a lower branch with
very low growth rates and a range of Cm concen-
trations below MIC where the upper and lower
branches coexist (Fig. 4A, shaded area). We iden-
tify the lower edge of this band as the theoretical
MCC because a uniformly growing population is
predicted for Cm concentrations below this value.
Indeed, the occurrence of nongrowing cells for
strain Cat1 (Fig. 4A, open diamonds) coincided
with the shaded area. Likewise for strain Ta1, re-
spective microfluidic and Amp enrichment experi-

Fig. 3. Growth-mediated feedback. (A) Components of interactions defining the feedback model. Each
link describes a relation substantiated in (B) to (D) (clockwise). (B) The relationship between the internal and
external Cm concentrations ([Cm]int and [Cm]ext, respectively), described by the red line, is obtained by
balancing the passive influx of Cm into the cell ( Jinflux, Eq. 1) with the rate of Cmmodification by CAT ( JCAT, Eq. 2).
This nonlinear relation is characterized by an approximate threshold-linear form, with a “threshold” Cm
concentration, [Cm]ext

threshold (red arrow), below which [Cm]int is kept low as the capacity for clearance by CAT well
exceeds the Cm influx (eq. S12). For [Cm]ext > [Cm]ext

threshold, CAT is saturated and Jinflux ≈ Vmax (dashed gray line).
(C) The expression levels of constitutively expressed CAT (green) and LacZ (black) reporters [reported here in units
of activity per OD (42)] are proportional to the growth rate with subinhibitory doses of Tc and Cm, respectively.
(D) The doubling time (blue circles) of wild-type (EQ4) cells grown in minimal medium with various concentra-
tions of Cm increases linearly with [Cm] (Eq. 4). I50 (dashed vertical line) gives the Cm concentration at which cell
growth is reduced by 50%.Here, [Cm]int≈ [Cm]ext because of the absence of endogenous Cmefflux for wild-type
cells in minimal medium (41) (see also eq. S9). Each point represents a single experiment; error bars of the
doubling times are SEs of inverse slope in linear regression of log(OD600) versus time.
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bi-stability in algal densities in lakes

Supplementary Fig. 7) indicate that these findings are robust. The
declines in skewness and autocorrelation suggest that the increased
variance cannot be explained by critical slowing down of a system close
to equilibrium19. With strong evidence for exogenous drivers, we can
reject an alternative explanation for increasing variance in terms of
internal noise generated solely by endogenic changes19. Thus, the
rising variance is most likely to represent the interaction of multiple
exogenous drivers and the crossing of internal thresholds that magnify
system responses and induce flickering between alternative attrac-
tors12,17. In large data sets, flickering can be detected by distinct pro-
bability distributions of system states given by potential analysis23,24.
Our data are too sparse to carry out a full potential analysis, but evidence
of flickering at Erhai Lake exists in the form of observed eutrophication
events and algal blooms between 1980 and 2000 (Supplementary
Information) and in the increased variance in the diatom indices
(Fig. 3c). Flickering is also supported by the apparent bimodality17 in
the frequency distribution of states (Fig. 2a). Overall, the system
dynamics changed on a multi-decadal timescale, and the critical
transition, in about 2001, was presaged by signals of rising variance
caused by flickering that started 10–30 years previously (Fig. 3c and
Supplementary Fig. 7i), a similar timescale to that found in mathemat-
ical models of lake regime shifts4,17.

We checked whether the observed changes in autocorrelation, vari-
ance and skewness are consistent with flickering over a bistable region,
by comparing the behaviour of these metrics to metrics estimated in

simulated time series from a simple model22 that describes the trans-
ition of a lake to eutrophic conditions (Supplementary Information).
In this model, a positive feedback between phosphorus concentra-
tion and phosphorus recycling from the sediment causes alternative
stable states (Fig. 4a). Under the strong noise regime that we impose, the
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Figure 3 | Potential early warning signals of the regime shift in the lake
trophic state for DCA (blue) and HDI (orange) time series. a, Interpolated
one-dimensional gradients for sediment diatom composition (derived from
Fig. 1a). b, Positive and negative residuals from a, with grey horizontal lines
showing zero values. c, Variance of b using s.d. d, Skewness of b. e, Lag 1
autocorrelation of b. (c–e, Plots were calculated using a 59-year (half time
series) sliding window through the period 1883–2001 and are plotted to the
right of the window.) The dashed vertical line denotes 2001.
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Flickering gives early warning signals of a critical
transition to a eutrophic lake state
Rong Wang1,2, John A. Dearing1, Peter G. Langdon1, Enlou Zhang2, Xiangdong Yang2, Vasilis Dakos3,4 & Marten Scheffer3

There is a recognized need to anticipate tipping points, or critical
transitions, in social–ecological systems1,2. Studies of mathemat-
ical3–5 and experimental6–9 systems have shown that systems may
‘wobble’ before a critical transition. Such early warning signals10

may be due to the phenomenon of critical slowing down, which
causes a system to recover slowly from small impacts, or to a
flickering phenomenon, which causes a system to switch back
and forth between alternative states in response to relatively large
impacts. Such signals for transitions in social–ecological systems
have rarely been observed11, not the least because high-resolution
time series are normally required. Here we combine empirical data
from a lake-catchment system with a mathematical model and
show that flickering can be detected from sparse data. We show
how rising variance coupled to decreasing autocorrelation and
skewness started 10–30 years before the transition to eutrophic
lake conditions in both the empirical records and the model out-
put, a finding that is consistent with flickering rather than critical
slowing down4,12. Our results suggest that if environmental
regimes are sufficiently affected by large external impacts that
flickering is induced, then early warning signals of transitions in
modern social–ecological systems may be stronger, and hence
easier to identify, than previously thought.

The concern that global social–ecological systems are adversely affec-
ted by the cumulative impact of multiple interacting drivers13 has
spurred efforts to anticipate abrupt, nonlinear changes1,2,14–16. As a result,
there are increasing efforts to use system dynamical theory to identify
early warning signals of critical transitions10,11. For example, close to
tipping points, the recovery rate from small perturbations becomes very
slow10. In the natural fluctuations of a system, such critical slowing down
may be signalled by rising levels of variance and autocorrelation3,4,10,17.
In addition, deformation of the basin of attraction before a critical trans-
ition may be detected from increasing skewness5. Such theoretical
predictions are supported by studies of past climate change15,18 and
manipulated lake ecosystems6 and by laboratory experiments with
zooplankton7, phytoplankton8 and fungi9. But other studies of palaeo-
climate records19 and ecological models20 are less conclusive. One pro-
blem is that, typically, long time series of high-resolution data are needed.
In addition, in stochastic systems with high levels of noise, shifts between
alternative basins of attraction may occur far from the classical tipping
points at which critical slowing down can be observed. Such situations
can give rise to another phenomenon known as flickering, in which the
system starts jumping back and forth between alternative basins of
attraction10,11,21. Here we use a multi-decadal time series from a lake
together with model simulations and show that flickering is reflected
in relatively low-resolution time series as bimodality and increasing
variance, coupled to a decrease in autocorrelation and skewness.

We reconstruct and analyse historical changes in the Erhai Lake-
catchment system in Yunnan, China (Supplementary Fig. 1). Monitoring
data and official socio-economic statistics provide historical trends for
lake water quality and lake water level, population density, land use

and climate from the 1950s to 2009 (Supplementary Information).
Longer records of the lake ecosystem are based on laboratory analyses
of three lake sediment cores, each of which contains the contemporary
mud–water interface. Microscopic counts of fossil diatoms (siliceous
algae) and chironomid (non-biting midge) head capsules give multi-
decadal proxy records of the aquatic ecosystem to ,125 years ago, and
in one core to ,750 years ago (Supplementary Information). Other
sediment analyses give information about sediment provenance,
organic matter and water chemistry. The timescales for the cores were
obtained from a combination of 14C, 210Pb and 137Cs radionuclide
determinations (Supplementary Information). We also use a simple
model22 (Supplementary Information) to simulate phosphorus
dynamics in a lake approaching eutrophication under a regime of
strong external perturbations. The model is defined as follows:

dP~ a{sPzr
Pn

Pnz1n

! "
dtzsPdW ð1Þ

where P is phosphorus concentration, a is phosphorus input rate (the
control parameter), r is the maximum recycling rate (r 5 1), s is the
phosphorus loss rate (s 5 1), n is the strength of the recycling response
to phosphorus concentrations (n 5 8) and t is time. White noise is
added through a Wiener process dW with scaling factor s (s 5 0.25).
We increased the phosphorus input rate, a, linearly in 2,000 time steps
from 0.1 to 0.7, crossing the threshold at which the transition to
eutrophication occurs at time step 1,848, when a 5 0.6619.

Microfossil and geochemical records (Fig. 1a–d) from dated lake
sediment cores (Supplementary Figs 2 and 3) were used to reconstruct
the trends in the state of lake diatom communities and water quality
back to the 1880s, and these records seem to reproduce the abrupt
change in algal states observed in recent monitored data, between
2001 and 2005 (Supplementary Fig. 4). From the combined monitored
and lake sediment data, it seems that a profound transition in the algal
community occurred around 2001. Historical records (Fig. 1e, f) of
exogenous drivers (from 1950) strongly suggest that altered trends in
algal community composition, starting in the 1960s, track with nutrient
loading of the lake driven by agricultural intensification (Supplementary
Information). Superimposed on nutrient loading, which is a ‘slow’ dri-
ving variable on a multi-decadal timescale, are the influences of ‘fast’
driving variables on annual and sub-annual timescales: these fast vari-
ables are short-lived changes in water volumes as a result of lake water-
level regulation and low rainfall between 1980 and 2000, which together
triggered temporary eutrophication events (Supplementary Informa-
tion). We surmise that as aquatic productivity grew in response to
increased nutrient concentrations (Fig. 1c, d), positive-feedback mecha-
nisms (Supplementary Fig. 5) gradually strengthened the eutrophication
process: oxygen depletion led to hypolimnetic anoxia (Fig. 1b) and to the
recycling of biologically available phosphorus22 from the upper sediments
(Fig. 1c). Despite a return to higher water levels in 2004–05 (Fig. 1e), the
strengthened positive feedback (Supplementary Information) prevented
recovery of the diatom communities as late as 2009.

1Palaeoecological Laboratory, Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK. 2State Key Laboratory of Lake Science & Environment, Nanjing Institute of Geography
& Limnology, Chinese Academy of Sciences, Nanjing 210008, China. 3Department of Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47, NL-6700 AA Wageningen, The
Netherlands. 4Integrative Ecology Group, Estación Biológica de Doñana, CSIC, C/Américo Vespucio S/N, E-41092 Seville, Spain.
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excitatory synapses). This biophysical mechanism is consistent with
an increase in long-range spatial correlations in brain electrical
activity, perhaps reflecting a self-organizing process for seizure
termination that drives large neuronal networks into a hypo-ex-
citable state (1, 8). In this case, an activity-dependent process (i.e.,
the excitatory synaptic strength changing as a function of neural
activity) leads to seizure termination. Important model extensions
would incorporate realistic activity-dependent processes directly
into the dynamics (38) to systematically explore the biophysical
mechanisms of seizure termination.Although themodelmimics the
dynamics of seizure termination, the specific mechanism in this
model is not unique; we propose that other pathways are possible
(Fig. 6) involving different bifurcations (39) and biophysical mech-
anisms consistent with the generic dynamical principle of a critical
transition. Moreover, different seizure types may involve different
biological and dynamical mechanisms, for example, the role of a
hyperpolarization-activated cation conductance (7) in terminating

generalized absence seizures as simulated through activity-de-
pendent transitions in a bistable neural model (38). Refining a
general dynamical understanding at the macroscopic spatial scale
to specific biophysical and dynamical processes governing seizure
termination at themicroscopic spatial scale remains a crucial issue
and will require both detailed computational models (6, 40) and
experiments (41).

Status Epilepticus: Failure to Cross the Critical Transition. Status
epilepticus—when a seizure fails to spontaneously self-termi-
nate—is a life-threatening condition requiring immediate medical
attention. To understand the dynamical mechanisms of status epi-
lepticus, we consider the mean-field model used above to charac-
terize seizures with spontaneous self-termination (Fig. 5). In this
model, a seizure fails to self-terminate if it approaches the critical
transition, but does not cross it and instead retreats back to the ictal
attractor (Fig. 7A). Approaching and retreating from the critical
transition produces characteristic dynamical traits in the mean-
field model: approaching the critical transition, the frequency of
mean power decreases and the autocorrelation increases (Fig. 5B),
as observed for self-terminating seizures (examples in Fig. 7B);
retreating from the critical transition produces an opposite effect
(i.e., an increase in the frequency of mean power and a decrease in
the autocorrelation). These model results motivate the hypothesis
that voltage recordings from the human brain during status epi-
lepticus exhibit similar behaviors. To test this, we analyzed 600 s of
scalp EEG (n = 4) and surface ECoG (n = 1) data during status
epilepticus (SI Appendix, Patient Information and Analysis and
Modeling Methods). The model and in vivo data exhibit qualita-
tively similar changes in the frequency of mean power and mean
autocorrelation (example in Fig. 7C). To characterize the associ-
ation between these two measures, we compute their cross-cor-
relation; the cross-correlation is negative at zero lag (illustrated in
Fig. 7D as one example) both for the patients with status epileptics
and for the patients with self-terminating seizures (Fig. 7E).
However, all patients with status epilepticus exhibit periodicity at
positive and negative lags (example in Fig. 7D and in SI Appendix,
Fig. S7) in the cross-correlation, indicating repeatability of the
behavior not observed in self-terminating seizures. Analysis of
synthetic data simulating repeated intervals of reduced frequency
of mean power produce a strong positive correlation between the
two measures, which suggests that the in vivo results are not an
artifact of the analysis (SI Appendix, Fig. S7). We propose that
during status epilepticus the system repeatedly approaches the
critical transition, but never quite reaches it, and instead retreats to
the ictal attractor. In this case, the seizure fails to spontaneously
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Fig. 5. Computational model of seizure termination mimics the observed
dynamics. (A) Cartoon illustration of the transition from ictal to postictal in
the mean-field model. At low connection strength (A, i), all dynamics (black)
approach the ictal attractor (red). Bistability precedes the discontinuous
critical transition (A, ii); dynamics outside the separatrix (gray) approach the
ictal attractor, and dynamics inside the separatrix approach the postictal
attractor (green). After the critical transition (A, iii), only the postictal
attractor remains. (Lower) Simulated voltage traces illustrate the model dy-
namics in each case. During the interval of bistability (A, ii), flickering occurs
between the ictal (red shading) and postictal (green shading) states. (B) Fits to
the slope of the frequency of mean power, mean temporal correlations, and
mean spatial correlations for a population of field oscillators as connectivity
strength increases. In all cases, the values differ significantly from zero. Sur-
rogate data do not yield notable spatial correlations in the model. (C) Bi-
furcation diagram of the self-connected mean-field model (SI Appendix,
Mean Field Model) reveals a region of bistability. One model variable, the
main observable he, is plotted versus the bifurcation parameter C, the con-
nection strength. At weaker connection strengths, the only attractor consists
of stable limit cycles (l.c.), which correspond to large-amplitude oscillations
characteristic of the ictal state (shaded light red). Increased connection
strength (“C” on the x axis) induces bistability (yellow interval) in which an-
other attractor appears, a branch of stable fixed points (f.p.). At the critical
transition (blue circles) the bistability is lost and the only stable attractor
becomes the branch of fixed points (shaded green). (D) Proportion of vari-
ance vectors classified as preictal (gray), ictal (red), and postictal (green) in an
intermediate-connectivity (mid-seizure) and high-connectivity (pre-
termination) state for the population of mean-field oscillators. Flickering
manifests in the pre-termination interval as significant changes in the pro-
portions of ictal and postictal classifications.
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Why seizures spontaneously terminate remains an unanswered
fundamental question of epileptology. Here we present evidence
that seizures self-terminate via a discontinuous critical transition
or bifurcation. We show that human brain electrical activity at
various spatial scales exhibits common dynamical signatures of an
impending critical transition—slowing, increased correlation, and
flickering—in the approach to seizure termination. In contrast, pro-
longed seizures (status epilepticus) repeatedly approach, but do
not cross, the critical transition. To support these results, we imple-
ment a computationalmodel that demonstrates that alternative sta-
ble attractors, representing the ictal andpostictal states, emulate the
observed dynamics. These results suggest that self-terminating seiz-
ures end through a common dynamical mechanism. This description
constrains the specific biophysical mechanisms underlying seizure
termination, suggests a dynamical understanding of status epilepti-
cus, anddemonstrates an accessible system for studying critical tran-
sitions in nature.

critical slowing down | epilepsy | electrocorticogram | local field potential

Although extensive observations and research have elucidated
some mechanism of seizure initiation and maintenance, how

seizures spontaneously terminate remains one of the most im-
portant, but still unanswered, questions in epileptology (1). Some
of the potential mechanisms of seizure termination (2) include
glutamate depletion (3), dynamic changes in ion concentrations
(4–6), persistent activation of a hyperpolarization-activated cation
conductance (7), changing synaptic effectiveness (5, 8), modula-
tory effects from subcortical structures and the cerebellum (9), and
reduced pH (10). Together, these studies suggest distinct pathways
to seizure termination through specific biophysical mechanisms.
We propose here a dynamical understanding of seizure termi-

nation that encompasses and constrains these and other hypoth-
esized biophysical mechanisms. Specifically, we propose that focal
seizures with secondary generalization terminate in a manner
consistent with crossing a critical transition or bifurcation in which
the system traverses a critical threshold and shifts suddenly to an
alternative, attracting dynamical regime (11). Such regime shifts
between alternative stable states have been described in many
real-world systems (12–14) and exhibit a repertoire of early
warning indicators (15–17). The seizing brain provides a unique
living system for studying the signatures of an impending critical
transition as well as one in which interventions can have profound
practical import.
We characterize the features of seizure termination in both multi-

scale in vivo data from patients with epilepsy and a computational
model of cortical field activity. We show that population electrical
activity—observed at macroscopic spatial scales—exhibits numerous
signatures of an impending critical transition, whereas spatially lo-
calized recordings of neural spiking activity possess different dy-
namics. These insights offer a generic dynamical understanding

of seizure termination emergent in organized neural population
activity, with significant implications for understanding status epi-
lepticus and therapeutic advances.Moreover, these observations link
seizure termination to critical transitions in diverse natural and
synthetic complex systems and demonstrate a biological system for
exploring the utility of early warning signals preceding and predicting
critical transitions.

Results
Signatures of a Critical Transition in Multiscale Brain Voltage Recordings.
We consider brain electrical activity frommultiple spatial scales in
patients with different epilepsy etiologies: noninvasive scalp elec-
troencephalogram (EEG) recordings (8 seizures from eight
patients), invasive electrocorticogram(ECoG) recordings from the
cortical surface (15 seizures from five patients) and deep brain
structures (11 seizures from three patients), and local field po-
tential (LFP) recordings and multiunit activity (MUA) from high-
density microelectrode arrays implanted in the cortex (10 seizures
from three patients) (Materials and Methods and SI Appendix,
Table S1). In all cases, we selected seizures that began focally and
then spread to become generalized (i.e., spread throughout the
brain). Voltage recordings during the seizures display well-known
stereotypical dynamics (Fig. 1). At all spatial scales, individual
electrodes exhibit a characteristic slowing of rhythmic activity during
the seizure [i.e., a brain chirp (18)], followed by an abrupt reduction
in overall activity apparent through visual inspection of seizure
termination (Fig. 1).
To characterize the approach to seizure termination, four early

warning measures indicative of an impending critical transition
were used: slowing, increased temporal and spatial correlations,
and flickering (16). Theory and observations across disciplines
suggest that, in the approach to a critical transition, dynamical
systems move toward a bifurcation at which the dominant real ei-
genvalue approaches zero. Therefore, the system recovers more
slowly from small perturbations, resulting in slower activity and
increased temporal and spatial correlations (13, 14, 19–21). The
power spectrum (example for one seizure observed in a surface
ECoG recording in Fig. 2A, i) reveals how the activity changes
during the seizure: the dominant frequency of the oscillation
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symptomatology, but not with a classical disease model that
postulates the existence of a common cause (21). Third, when
asked how MDD symptoms are related, clinical experts report
a dense set of causal relations between them (9, 22). Fourth,
using recently developed self-report methods, it has been shown
that individuals with elevated symptom levels typically report
causal interactions between their symptoms, including those of
MDD (23, 24).
Thus, there is ample evidence to support the thesis that MDD

is characterized by causal interactions between its “symptoms.”
From dynamical systems theory, it is known that positive-feed-
back loops among such causal interactions can cause a system to
have alternative stable states (25). This has profound implications
for the way a system responds to change. For example, gradually
changing external conditions may cause a system to approach
a tipping point. Close to such a point, the system typically loses
resilience, that is, increasingly small perturbations may suffice to
cause a shift to an alternative stable state (25). In the mood
system, characterized by the “mood state” of an individual that
may range from normal to severe depression, stressful conditions
may bring the system to such a fragile state (26). For example,
a chronically unpleasant working situation may reduce resilience
of the “normal state” by precipitating insomnia and other related
symptoms. Then, only a slight additional perturbation (e.g., an
unpleasant phone call with mother-in-law) may be enough to
trigger a chain of symptoms that causes the system to shift from
a stable normal state into an alternative “depressed state.”
In this paper, we analyze time series of four emotions as the

observed variables of the mood system in healthy persons and
depressed patients providing support for the view that the mood
system can have tipping points. Specifically, we show indicators of
critical slowing down (27), which have recently been shown to be
linked to tipping points in a range of complex systems (28–30).
These indicators can be used as early warning signals that can help
assess the likelihood that an individual will go through a major
transition in mood. Before moving to the empirical evidence, we

briefly introduce the generic phenomenon of critical slowing
down, using a simple model of the mood system as an illustration.

Results and Discussion
Theory of Critical Slowing Down. Marked transitions from one
dynamical regime to a contrasting one are observed in complex
systems ranging from oceans, the climate, and lake ecosystems,
to financial markets. Such “regime shifts” (31) can simply be the
result of a massive external shock, or stepwise change in the
conditions. However, it is also possible that a slight perturbation
can invoke a massive shift to a contrasting and lasting state. It is
intuitively clear that this can happen to an object such as a chair
or a ship when it is close to a tipping point, but complex systems
such as the climate or ecosystems can also have tipping points
(25). The term tipping point in such systems is informally used to
refer to a family of catastrophic bifurcations in mathematical
models (32), which in turn are simplifications of what charac-
terizes the stability properties of real complex systems (25).
As tipping points can have large consequences, there is much

interest in finding ways to know whether a catastrophic bifurcation
is near. In principle, this could be computed if one has a reliable
mechanistic model. However, we have little hope of having suffi-
ciently accurate models for complex systems such as lakes or the
climate, let alone psychiatric disorders. A recent alternative ap-
proach is to look for indicators of the proximity of tipping points
that are generic in the sense that they do not depend on the
particular mechanism that causes the tipping point. A possibility
that has attracted much attention is that, across complex systems,
the vicinity of a tipping point may be detected on the basis of
a phenomenon known as “critical slowing down” (32, 33). Spe-
cifically, critical slowing down happens as the dominant eigen-
value, characterizing the return rate to equilibrium upon small
perturbations, goes to zero in tipping points related to zero-ei-
genvalue bifurcations. On an intuitive level, this can be understood
from a ball-in-a-cup diagram (Fig. 1 A and B). As the slope rep-
resents the rate of change, close to the tipping point where the
basin of attraction becomes shallower, return to equilibrium upon
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Fig. 1. Model simulations illustrating generic indica-
tors of proximity to a tipping point from a normal to
a depressed state. The stability of a healthy person may
become more fragile close to a transition toward de-
pression, which can intuitively be understood from
a ball-in-a-cup diagram (B versus A). This fragility would
lead to critical slowing down in a system with tipping
points between alternative stable states, illustrated by
model simulations. Under a permanent regime of sto-
chastic perturbations on the strength of each emotion
(C and D), slowing down near the tipping point results
in higher variance (SD = standard deviation) in emotion
strength (G versus E), higher temporal autocorrelation
[AR(1) = lag-1 autoregression coefficient] in emotion
strength (H versus F), and stronger correlation (ρ =
Pearson correlation coefficient) between emotion
strength of emotions with the same valence (K versus I),
and between emotions with different valence (L versus
J). Positive emotions are represented by x1 and x2,
and negative emotions by x3 and x4. Parameters:
(Left) r3 = r4 = 0.5, (Right) r3 = r4 = 1.18.
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About 17% of humanity goes through an episode of major depres-
sion at some point in their lifetime. Despite the enormous societal
costs of this incapacitating disorder, it is largely unknown how the
likelihood of falling into a depressive episode can be assessed. Here,
we show for a large group of healthy individuals and patients that
the probability of an upcoming shift between a depressed and a
normal state is related to elevated temporal autocorrelation, variance,
and correlation between emotions in fluctuations of autorecorded
emotions. These are indicators of the general phenomenon of critical
slowing down, which is expected to occur when a system approaches
a tipping point. Our results support the hypothesis that mood may
have alternative stable states separated by tipping points, and
suggest an approach for assessing the likelihood of transitions into
and out of depression.

early warning signals | experience sampling method | critical transitions |
positive feedback

Depression is one of the main mental health hazards of our
time. It can be viewed as a continuum with an absence of

depressive symptoms at the low endpoint and severe and de-
bilitating complaints at the high end (1). (Throughout this man-
uscript, the term “depression” refers to this continuum of
depressive symptoms.) The diagnosis major depressive disorder
(MDD) defines individuals at the high end of this continuum.
Approximately 10–20% (2) of the general population will expe-
rience at least one episode of MDD during their lives, but even
subclinical levels of depression may considerably reduce quality of
life and work productivity (3). Depressive symptoms are therefore
associated with substantial personal and societal costs (4, 5). The
onset of MDD in an individual can be quite abrupt, and similarly
rapid shifts from depression into a remitted state, so-called sudden
gains, are common (6). However, despite the high prevalence and
associated societal costs of depression, we have little insight into
how such critical transitions from health to depression (and vice
versa) in individuals might be foreseen. Traditionally, the broad
array of correlated symptoms found in depressed people (e.g.,
depressed mood, insomnia, fatigue, concentration problems, loss
of interest, suicidal ideation, etc.) was thought to stem from some
common cause, much as a lung tumor is the common cause of
symptoms such as shortness of breath, chest pain, and coughing up
blood. Recently, however, this common-cause view has been
challenged (7–9). The alternative view is that the correlated
symptoms should be regarded as the result of interactions of
components of a complex dynamical system (7, 10–12). Conse-
quently, new models of the etiology of depression involve a

network of interactions between components, such as emotions,
cognitions, and behaviors (8, 9). This implies, for instance, that a
person may become depressed through a causal chain of feelings and
experiences, such as the following: stress → negative emotions →
sleep problems → anhedonia (9, 13–15). However, the network
view also implies that there can be positive feedback mechanisms
between symptoms, such as the following: worrying → feeling
down → more worrying or feeling down → engaging less in social
life→ feeling more down (16). It is easy to imagine that such vicious
circles could cause a person to become trapped in a depressed state.
The plausibility of this theoretical framework with regard to

MDD is supported in at least four ways. First, intraindividual
analyses of multivariate time series of variables related to MDD
symptomatology show clear interactions between these variables
(15–17). Second, MDD symptoms display distinct responses
to different life events (18, 19) and are differently related to
other external variables and disorders (20), which is consistent
with a network view of interacting variables related to MDD

Significance

As complex systems such as the climate or ecosystems ap-
proach a tipping point, their dynamics tend to become domi-
nated by a phenomenon known as critical slowing down. Using
time series of autorecorded mood, we show that indicators of
slowing down are also predictive of future transitions in de-
pression. Specifically, in persons who are more likely to have
a future transition, mood dynamics are slower and different
aspects of mood are more correlated. This supports the view
that the mood system may have tipping points where rein-
forcing feedbacks among a web of symptoms can propagate
a person into a disorder. Our findings suggest the possibility of
early warning systems for psychiatric disorders, using smart-
phone-based mood monitoring.
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