

Chapter 4 Functional Response

Theoretical Biology 2016

What will your learn today?

To work with a saturated functional response.

The humped prey nullcline.

To understand the nature of oscillations.

A new R_0 of the predator.

Number of prey eaten per predator

At some prey density the predator should become satiated, and/or become limited by the time to handle all the prey

LV-model has a linear functional response

Holling's secretary: handling sand paper discs

verages ± 2 S.E. of 8 replicates.)

y = atx and t = T - by gives $y = \frac{aTx}{1 - bx}$

Holling's secretary: handling sand paper discs

Monod functional response (type II)

Predatory stinkbug (*Podisus maculiventris*) in the lab feeding on larvae of Mexican bean beetle.

Fitted to: $y = \frac{aTR}{1+aT_hR}$ where *a* is attack rate, T = 14 h is total time, and $T_h = 0.9$ h is handling time.

Linear functional response (type I)

Simplest type I response, y = ax + b, where b is due to other prey (mosses).

Brown lemmings (*Lemmus sibericus*) foraging monocot in artic tundra.

From: Batzli et al., Oikos, 1981, 37: 112-116.

From: Wiedenmann & O'Neil, Environ. Entomol., 1991, 20: 610-614.

Holling's functional responses

Copyright @ 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Holling's functional responses

European kestrel on *Microtis* vole (a), weasels on rodents in forests in Poland (b), and warblers on spruce budworm larvae (c).

> From: Smith & Smith Elements of Ecology

Today: three formal functional responses

Plotting the number of prey eaten per predator as a function of the prey density R.

$$f(R) = aR$$
, $f(R) = \frac{aR}{h+R}$ and $f(R) = \frac{aR^2}{h^2 + R^2}$

Monod predator prey model $\frac{\mathrm{d}R}{\mathrm{d}t} = rR(1 - R/K) - \frac{aNR}{h+R}$ $\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{caNR}{h+R} - dN$

No R_0 of the prey. For the predator we take $R_0 = ca/d$, which is realized at large prey densities. (instead of $R_0 = caK/[d(h+K)]$)

Nullclines

To sketch the nullclines we write dR/dt = 0 to find

$$R = 0$$
 and $N = (r/a)(h + R)(1 - R/K)$

where the latter describes a parabola that equals zero when R = -h and R = K.

For the predator nullcline we write dN/dt = 0 to find

$$N = 0$$
 or $R = \frac{h}{ac/d - 1}$

which are horizontal and vertical lines in the phase space.

Nullclines

Predator nullcline on the right slope of parabola: Stable steady state

Nullclines

Predator nullcline on the left slope of parabola: Unstable steady state & stable limit cycle

Paradox of enrichment

Increasing the prey's carrying capacity increases the predator's steady state level

Paradox of enrichment: bacterial food chain

← Predator
Colpidium striatium ← Prey with predator
Serratia marcescens

← Prey alone Serratia marcescens

(b): The effect of nutrients on the density of prey (a): The same for prey (a: open circles) and a predator (a: closed circles). From: Kaunzinger et al. Nature 1998.

Enrichment leads to destabilization

Steady state goes from stable spiral to unstable spiral Hopf bifurcation

Population cycles: periodic behavior

Daphnia (blue triangles) and their edible algal prey (green squares) in four nutrient-rich systems. From: McCauley et al, Nature, 1999

Oscillations in continuous culture populations of Streptococcus pneumoniae: population dynamics and the evolution of clonal suicide

Omar E. Cornejo¹, Daniel E. Rozen^{1,2}, Robert M. May³ and Bruce R. Levin^{1,*}

Resource flows in and out by chemostat, Bacteria consume resource by a Monod function, and have an autocatalytic production of a toxin. See question 4.3 (and the GRIND files toxin.grd and toxin.txt)

Circadian rhythm: rodent running

(a) 12 hr light-12 hr dark cycle (b) Constant darkness Light Dark Light Dark 1 5 Days of experiment ... 10 From:YouTube 15 20 12 12 12 16 20 24 16 20 24 12 8 Time of day (hr) Time of day (hr)

Entrainment to external light

From: Campbell

Belousov Zhabotinsky reaction

Potassium bromate, cerium (IV) sulfate, propanedioic acid and citric acid in dilute sulfuric acid. The ratio of the cerium (IV) and cerium (III) ions oscillates, causing the color of the solution to oscillate between yellow colorless.

Various biological rhythms

Rhythm	Period
Neurons	0.01 to 10 sec
Heart	l sec
Cell division	10 min to hours
Circadian	24 hours
Ovulation cycle	28 days
Ecology	years

From:YouTube

Sigmoid predator prey model $\frac{\mathrm{d}R}{\mathrm{d}t} = rR(1 - R/K) - \frac{aNR^2}{h^2 + R^2}$

