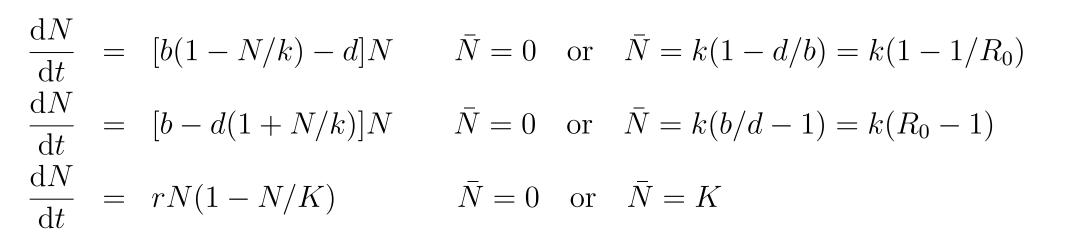
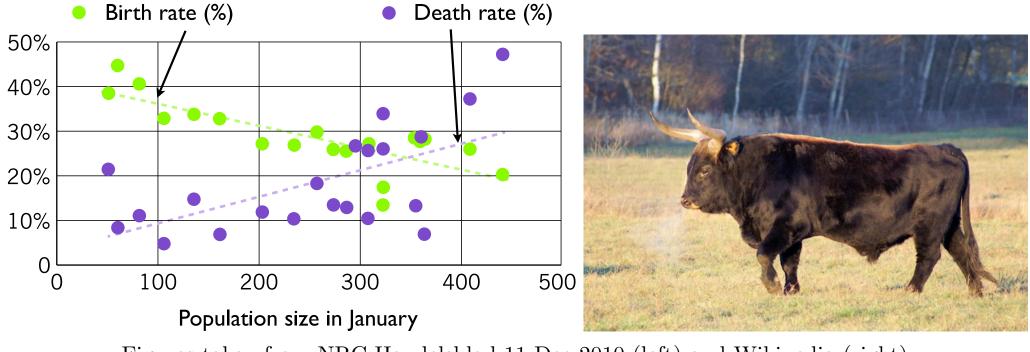
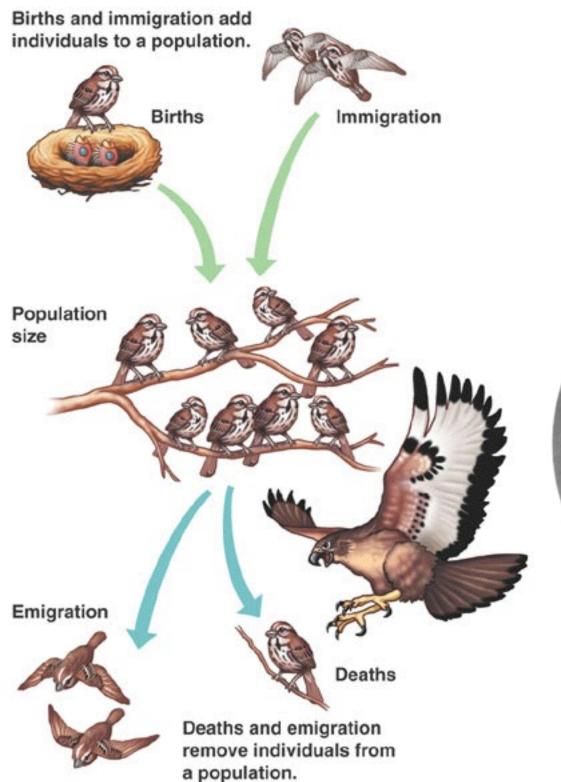
Last time





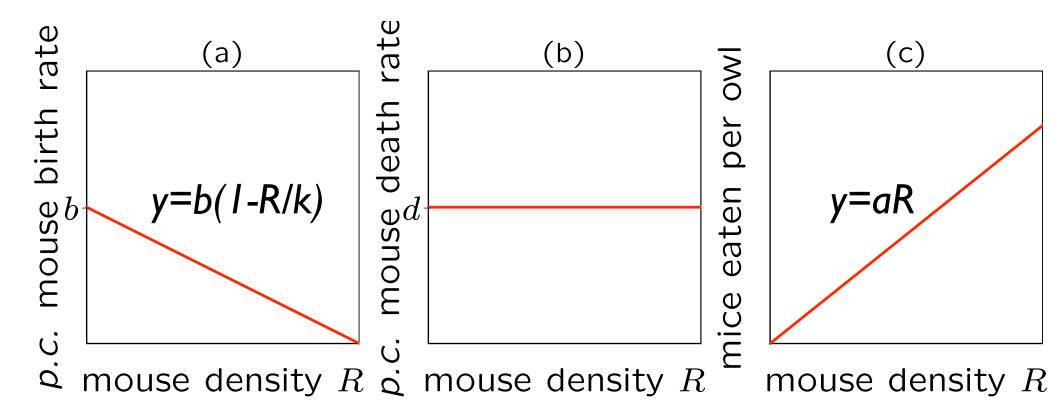
Figures taken from NRC Handelsblad 11 Dec 2010 (left) and Wikipedia (right).



Chapter 3 Lotka Volterra model

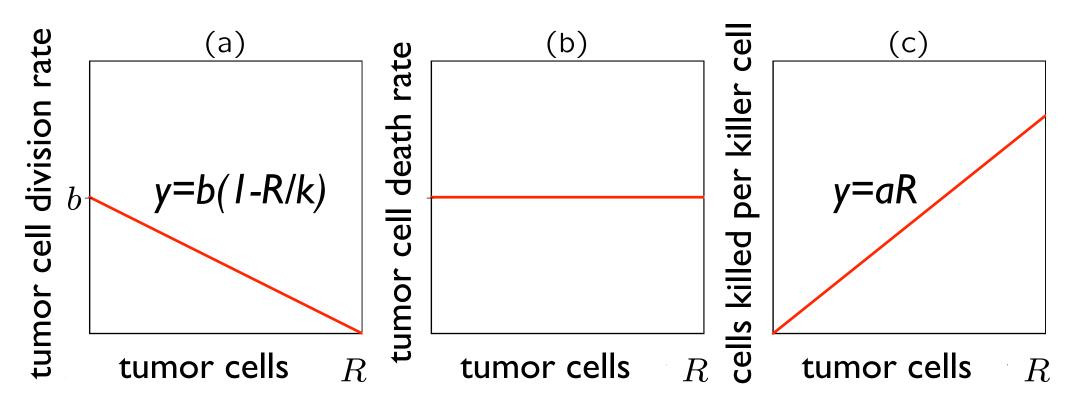
Theoretical Biology 2016

Suppose measurements for the prey

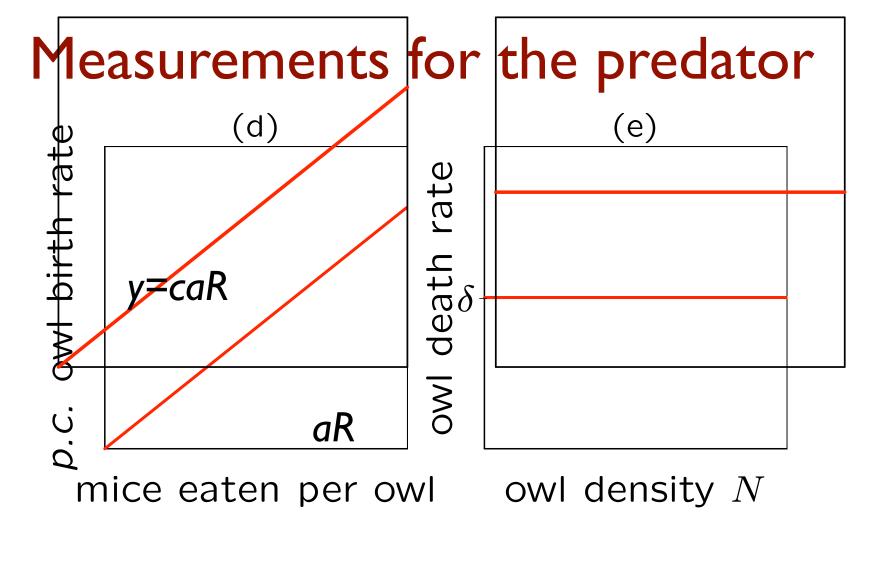


$$\frac{\mathrm{d}R}{\mathrm{d}t} = [bf(R) - d - aN]R \quad \text{where} \quad f(R) = 1 - R/k$$

Suppose measurements for the prey

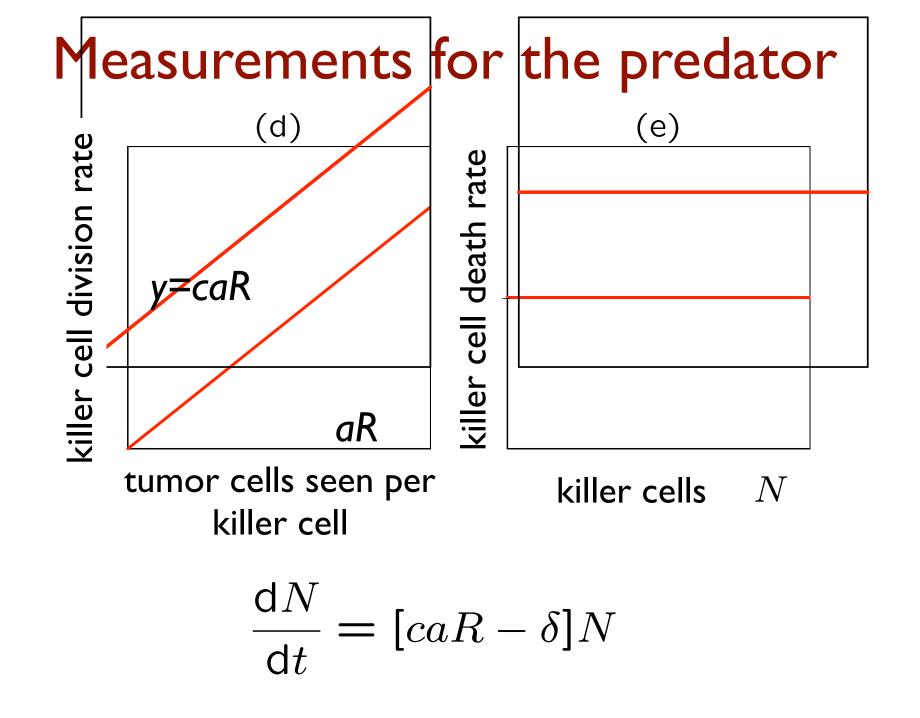


$$\frac{\mathrm{d}R}{\mathrm{d}t} = [bf(R) - d - aN]R \quad \text{where} \quad f(R) = 1 - R/k$$



$$\frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$$

where $1/\delta$ is the expected owl life span



where $1/\delta$ is the expected killer cell life span

$$\frac{\mathrm{d}R}{\mathrm{d}t} = [bf(R) - d - aN]R \quad \text{where} \quad f(R) = 1 - R/k$$

In the abscence of predators the carrying capacity is:

$$\bar{R} = k(1 - d/b) = k(1 - 1/R_0) = K$$

Number of predators:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$$

where $1/\delta$ is the expected life-span.

Steady states

Setting dR/dt = dN/dt = 0 yields

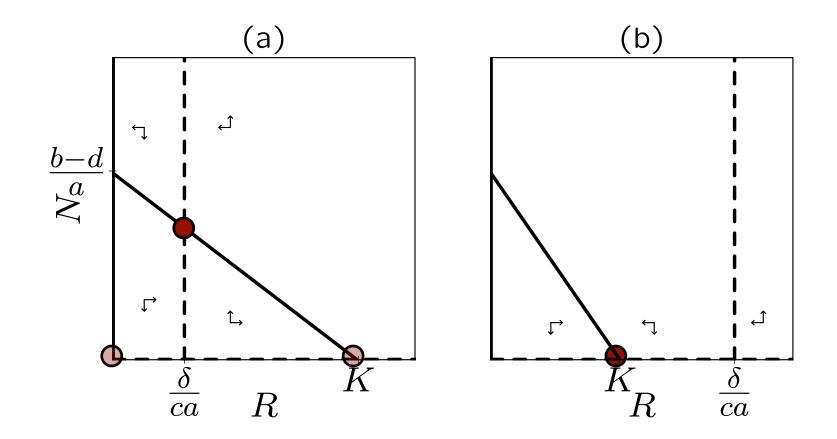
$$R = 0$$
 and $N = \frac{1}{a} [b(1 - R/k) - d]$
 $N = 0$ and $R = \frac{\delta}{ca}$

Trivial: $(\bar{R}, \bar{N}) = (0, 0)$ and $(\bar{R}, \bar{N}) = (K, 0)$.

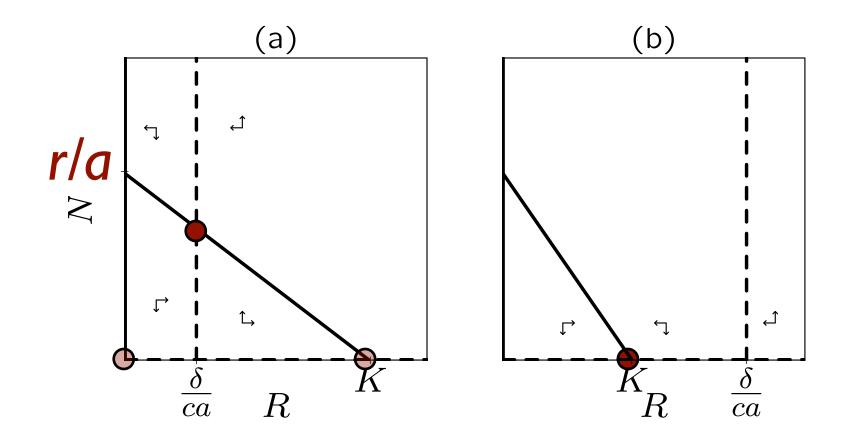
Non-trivial:

$$\bar{N} = \frac{1}{a} \left[b \left(1 - \frac{\delta}{cak} \right) - d \right]$$

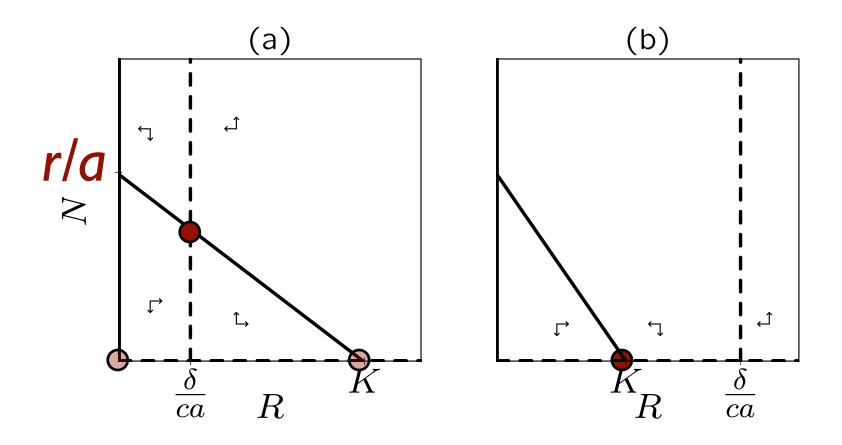
Nullclines in phase space



LV-model typically written with logistic growth

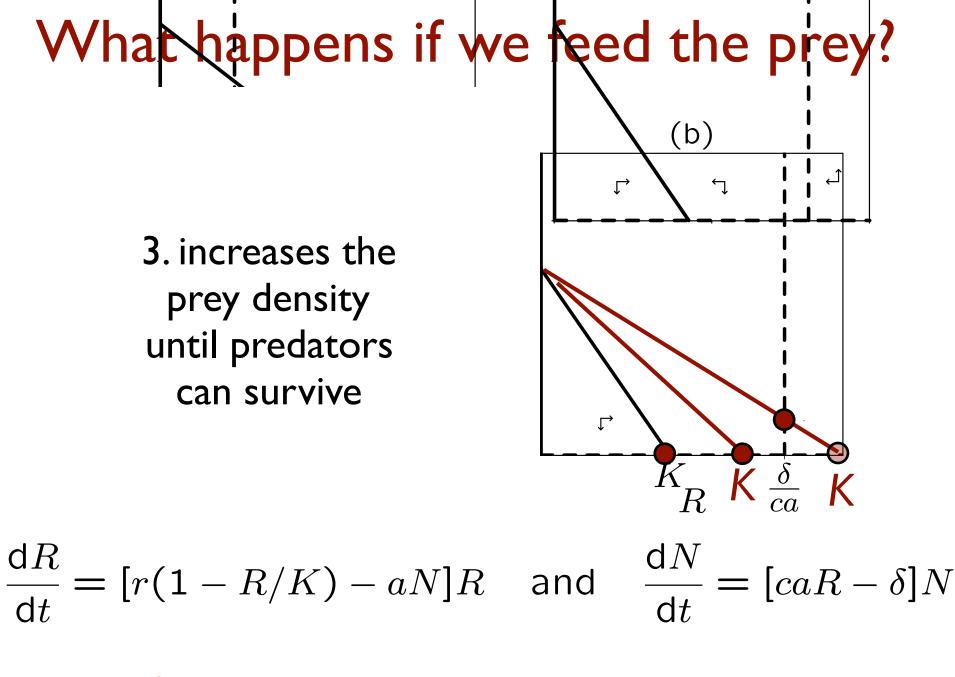


What happens if we feed the prey?



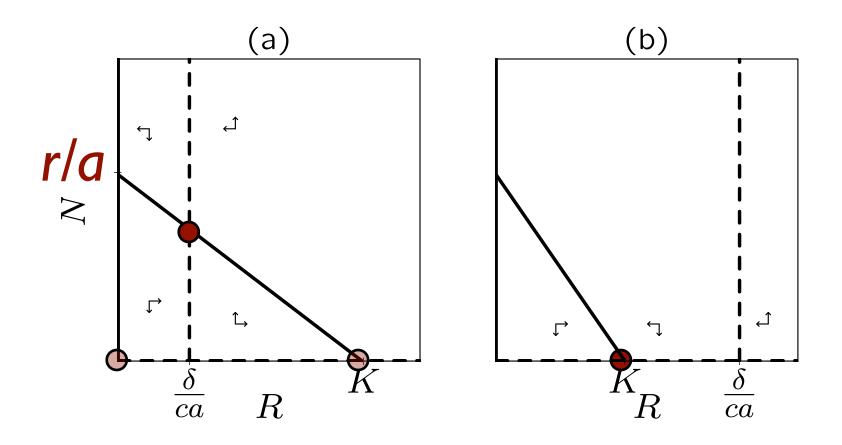
Increasing K in (b):

- I. increases the prey density
- 2. increases the predator density
- 3. increases the prey density until predators can survive



By feeding the prey we get predators

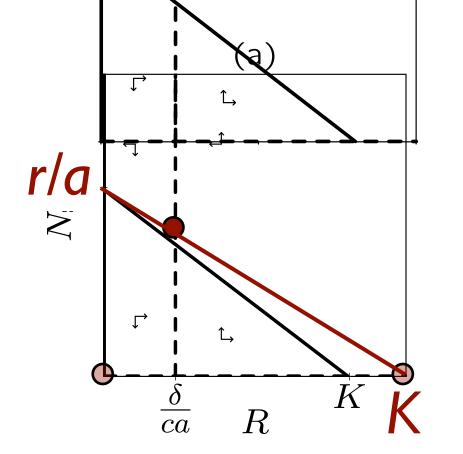
What happens if we feed the prey?



Increasing K in (a):

- I. increases the prey density and keeps predators the same
- 2. increases the predator density and keeps prey the same
- 3. increases both populations

What happens if we feed the prey?

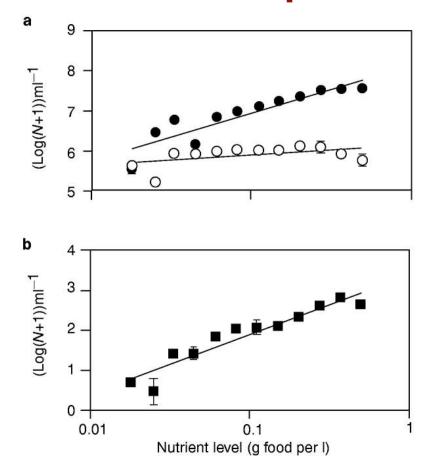


2. increases the predator density and keeps prey the same

 $\frac{\mathrm{d}R}{\mathrm{d}t} = [r(1 - R/K) - aN]R \quad \text{and} \quad \frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$

By feeding the prey we get more predators

Example: bacterial food chain



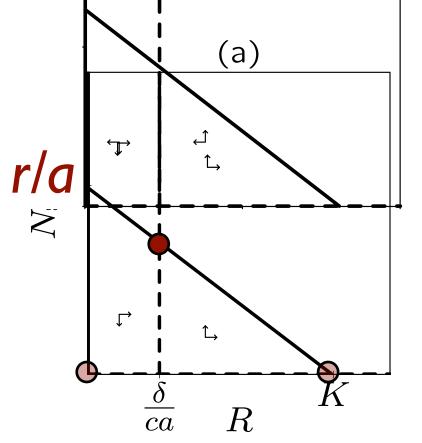
← Predator
Colpidium striatium
← Prey with predator

Serratia marcescens

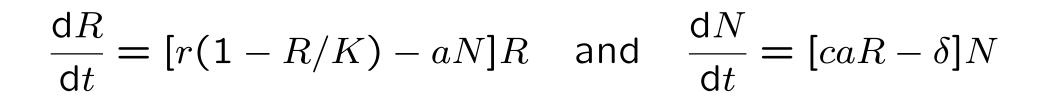
← Prey alone
Serratia marcescens

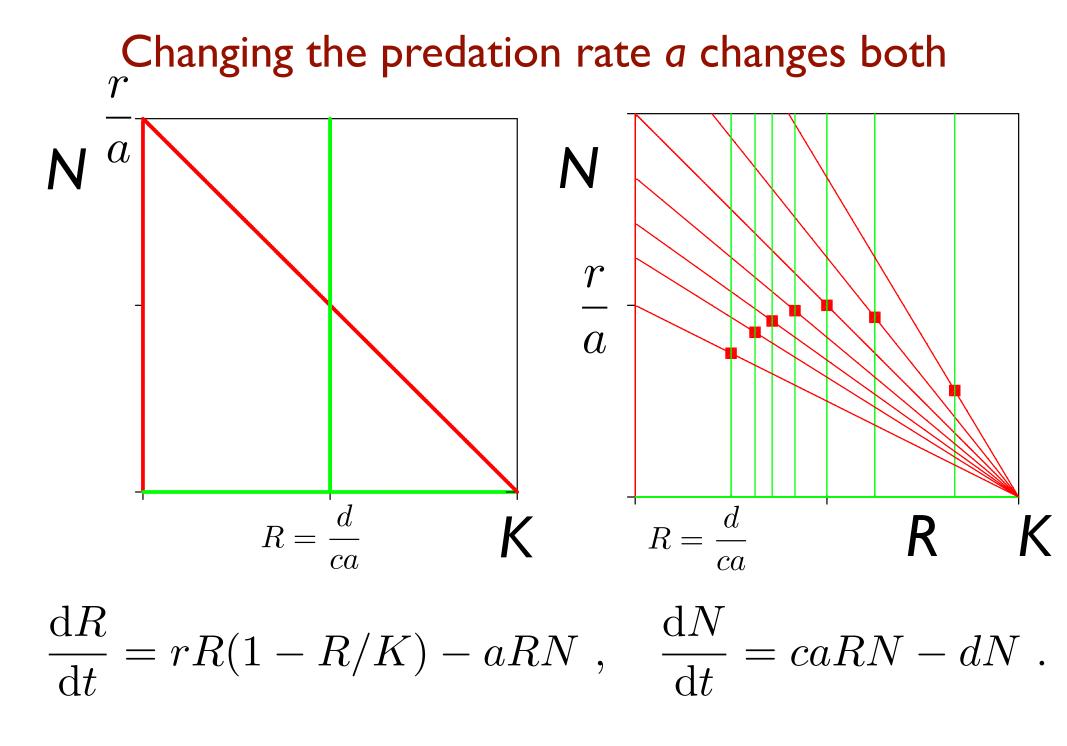
(b): The effect of nutrients on the density of prey (a): The same for prey (a: open circles) and a predator (a: closed circles). From: Kaunzinger et al. Nature 1998.

What happens if we change a?

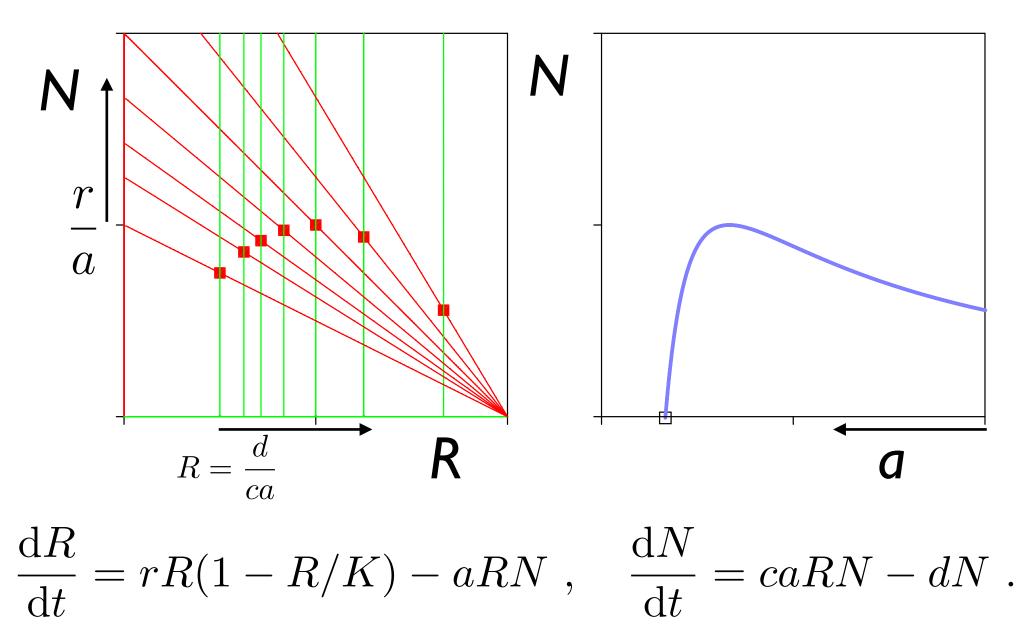


Prey: tumor cells Predator: killer cells a: drug changing the killing rate





Decreasing the predation rate increases the predator



Predators with larger a have higher fitness R_0

Fitness R₀

For the prey $R_0 = b/d$

For the predator $R_0 = \frac{caR}{\delta}$ which is not a constant.

Take the best possible circumstances, i.e., R = K and let $R_0 = \frac{caK}{\delta}$.

The prey equilibrium is at $R = \frac{\delta}{ca}$ or at $R = \frac{K}{R_0}$

This implies that a predator with an $R_0 = 2$ is expected to halve its prey population.

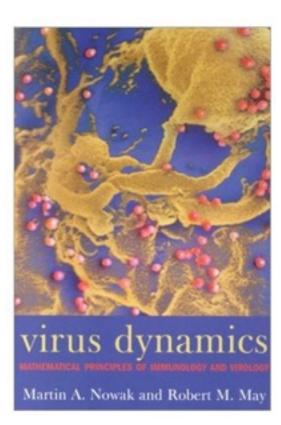
Lotka Volterra model is very general

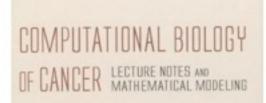
$$\frac{\mathrm{d}R}{\mathrm{d}t} = [r(1 - R/K) - aN]R \quad \text{and} \quad \frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$$

Predator-prey & host-parasite models

Seals in the Waddensea infected by virus Hepatocytes infected by hepatitis Cancer cells removed by killer cells Economics: interactions industries

Lotka Volterra model is very general





Convergednet Watering

Dominik Wodarz • Natalia L. Komarova

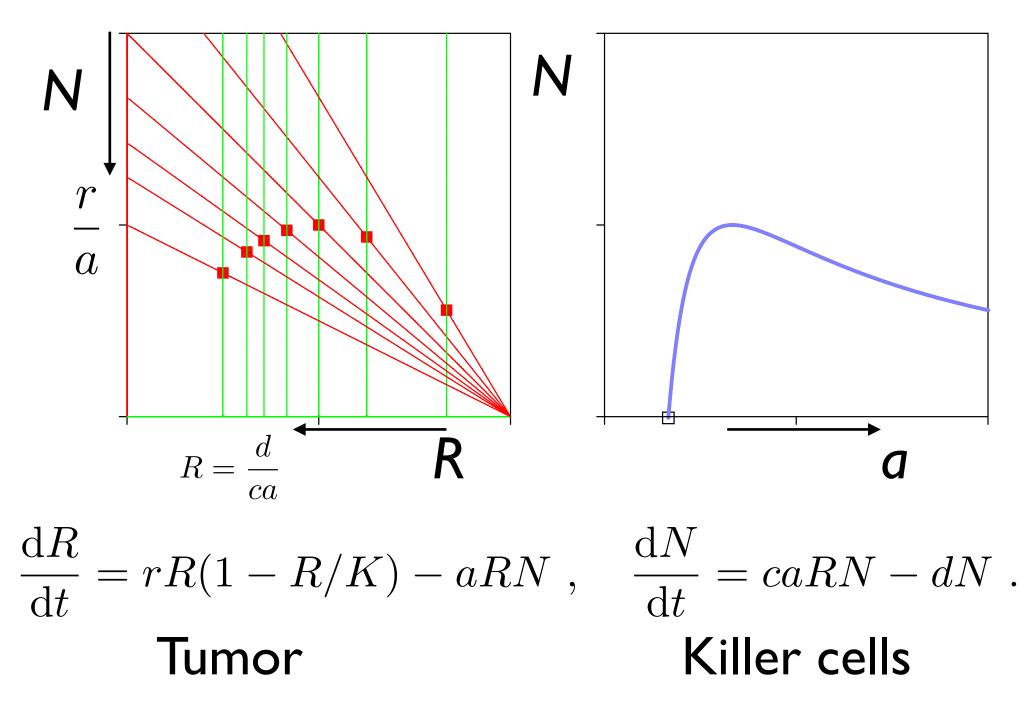
Killer Cell Dynamics Mathematical and Computational Approaches to Immunology

INTERDISCIPLINARY APPLIED WATHEWATICS

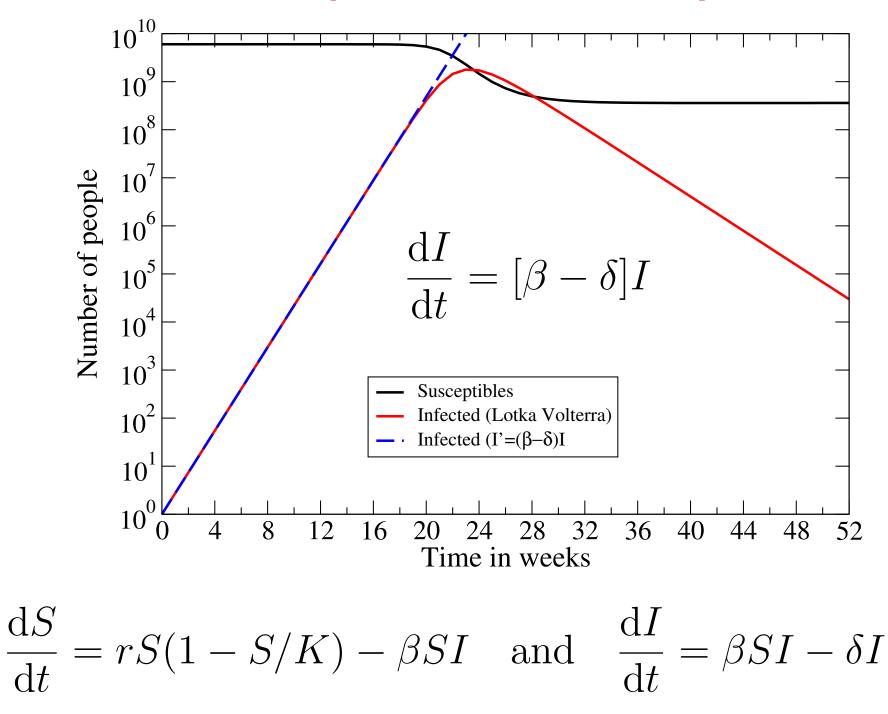
Dominik Wodarz

Many models use the Lotka Volterra equations

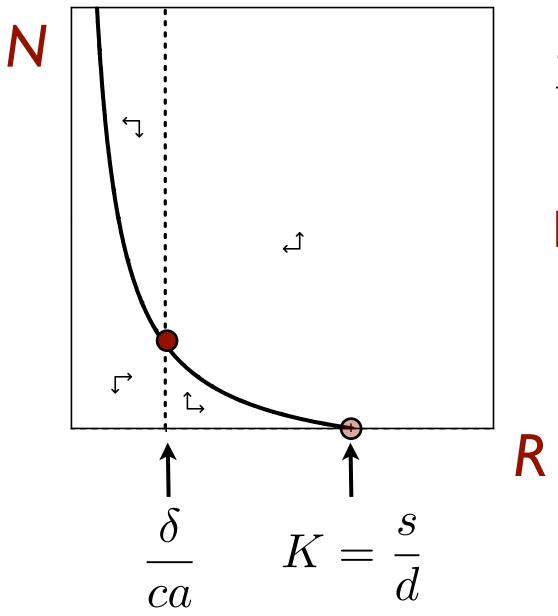
Increasing the killing rate decreases the killers



For example the SARS epidemic



Alternative: prey maintained by source



$$\frac{\mathrm{d}R}{\mathrm{d}t} = s - dN - aRN$$

predator remains:
$$\frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$$

Several Lotka Volterra like models

Lotka-Volterra model (with birth and death rates):

$$\frac{\mathrm{d}R}{\mathrm{d}t} = [b(1 - R/k) - d - aN]R \quad \text{and} \quad \frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$$

Lotka-Volterra model (with logistic growth):

$$\frac{\mathrm{d}R}{\mathrm{d}t} = [r(1 - R/K) - aN]R \quad \text{and} \quad \frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$$

Resource maintained by a source:

$$\frac{\mathrm{d}R}{\mathrm{d}t} = s - dR - aNR$$
 and $\frac{\mathrm{d}N}{\mathrm{d}t} = [caR - \delta]N$

Lotka-Volterra competition equations:

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = r_1 N_1 (1 - N_1 / K_1 - N_2 / c_1) \quad \text{and} \quad \frac{\mathrm{d}N_2}{\mathrm{d}t} = r_2 N_2 (1 - N_2 / K_2 - N_1 / c_2)$$

History from Wikipedia

The Lotka–Volterra predator–prey model was proposed by <u>Alfred J. Lotka</u> "in the theory of autocatalytic chemical reactions" in 1910. This was effectively the <u>logistic</u> <u>equation</u>, originally derived by <u>Pierre François Verhulst</u>.

In 1920 Lotka extended the model to "organic systems" using a plant species and a herbivorous animal species as an example, and in 1925 he utilised it to analyse predatorprey interactions in his book on <u>biomathematics</u> arriving at the equations that we know today.

Vito Volterra, who made a statistical analysis of fish catches in the Adriatic independently investigated the equations in 1926.