
Last timeLogistic growth:

dN

dt

= [b(1�N/k)� d]N

¯

N = 0 or

¯

N = k(1� d/b) = k(1� 1/R0)

dN

dt

= [b� d(1 + N/k)]N

¯

N = 0 or

¯

N = k(b/d� 1) = k(R0 � 1)

dN

dt

= rN(1�N/K)

¯

N = 0 or

¯

N = K

Lotka-Volterra model (with birth and death rates):

dR

dt

= [b(1�R/k)� d� aN ]R and

dN

dt

= [caR� �]N

Lotka-Volterra model (with logistic growth):

dR

dt

= [r(1�R/K)� aN ]R and

dN

dt

= [caR� �]N

Resource maintained by a source:

dR

dt

= s� dR� aNR and

dN

dt

= [caR� �]N

Lotka-Volterra competition equations:

dN1

dt

= r1N1(1�N1/K1 �N2/c1) and

dN2

dt

= r2N2(1�N2/K2 �N1/c2)

Return time:

dN

dt

= f(N) = rN(1�N/K) @Nf(N) = r � 2rN/K (1)

¯

N = K ! @Nf(N) = � = �r

¯

N = 0 ! @Nf(N) = � = r

2.7 Exercises 13

homeostasis]). A steady state is stable if the local derivative of the growth function is negative.
The steeper this derivative, the shorter the return time. The fitness, R0, of a population is
the expected number of o�spring of one individual over one generation, under the best possible
circumstances.

2.7 Exercises

Question 2.1. Heck cattle
Heck cattle have been introduced to the ‘Oostvaardersplassen’ in the Netherlands as a semi-
natural population of grazers to prevent the outgrowth of trees and shrubs in this open wet
landscape harboring many di�erent bird species. The population was started with a small
group of animals in 1983, and after approximately 20 years the density approached it carrying
capacity of 300–400 cattle. People have measured birth and death rates over the years (see the
Figure taken from an article in NRC Handelsblad on 11 December 2010):

Figures taken from NRC Handelsblad 11 Dec 2010 (left) and Wikipedia (right).

Because so many animals are dying from starvation every year, there have been vigorous debates
in the public arguing that these animals are su�ering too much. One solution would be to shoot
animals to lower the population size, and hence the death by competition for resources. Please
read the NRC article on the website of the course (see the essays webpage).
a. How would you estimate the carrying capacity from the Figure, and what would it be?
b. Define simple functions for the density dependent birth and death rates from the Figure.
c. Incorporate these functions into a mathematical model, and compute the carrying capacity

from your model.
d. What fraction (or percentage) of the animals is dying every year when the population is at

carrying capacity? How many dead animals is that?
e. Suppose one where to shoot a fraction s animals per year. Add this to you model and compute

how large a fraction of animals one would have to shoot to half the brutal natural death rate
in this population. Would you be in favor of this ‘solution’?

f. If you have not already done so, change all numbers in your model to free parameters like a
birth and death rate b and d, and critical density k. How general is your conclusion on the
fraction s of animals that one would have to shoot every year?

g. Does this population have an R0? Why? Would you call this a logistic growth model?
h. Simulate this model at the GRIND computer practical to see if the population growth re-

sembles the data.
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dt
= [bf(R)� d� aN ]R where f(R) = 1�R/k

with maximum birth rate b, death rate d, and a predation
term aRN .
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Measurements for the predator

where 1/δ is the expected owl life span

and for the owls
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where 1/� is the expected life-span.
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Measurements for the predator

where 1/δ is the expected killer cell life span
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Lotka-Volterra predator-prey model

Prey (Resource):

dR

dt
= [bf(R)� d� aN ]R where f(R) = 1�R/k

with maximum birth rate b, death rate d, and a predation
term aRN .

In the abscence of predators the carrying capacity is:

R̄ = k(1� d/b) = k(1� 1/R0) = K

Number of predators:

dN

dt
= [caR� �]N

where 1/� is the expected life-span.
32



Steady states
Steady states

Setting dR/dt = dN/dt = 0 yields

R = 0 and N =
1

a
[b(1�R/k)� d]

N = 0 and R =
�

ca

Trivial: (R̄, N̄) = (0,0) and (R̄, N̄) = (K,0).

Non-trivial:

N̄ =
1

a

⇤
b

�
1�

�

cak

⇥
� d

⌅
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Nullclines in phase spaceNullclines in phase space
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LV-model typically written with logistic growthNullclines in phase space
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34

r/a



Nullclines in phase space
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What happens if we feed the prey?

Increasing K in (b):
1. increases the prey density
2. increases the predator density
3. increases the prey density until predators can survive
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Nullclines in phase space
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What happens if we feed the prey?

Increasing K in (a):
1. increases the prey density and keeps predators the same
2. increases the predator density and keeps prey the same
3. increases both populations
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Example: bacterial food chainExperimental food chain of bacteria

� Prey alone

� Prey with predator

� Predator

The e�ect of nutrients on the density of the prey Serratia marcescens

growing on its own (b: filled squares); and on that of the prey Serratia

(a: open circles) growing with a predator Colpidium striatium (a: closed

circles). From: Kaunzinger.n98.

50

(b): The effect of nutrients on the density of prey 
(a): The same for prey (a: open circles) and a predator (a: closed circles). 

From: Kaunzinger et al. Nature 1998.

Serratia marcescens

Serratia marcescens

Colpidium striatium
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What happens if we change a?

Prey: tumor cells
Predator: killer cells
a: drug changing the 

killing rate
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Figure 5.3: The phase space of the “robust” Lotka Volterra model (a,b) and that of the Lotka Volterra
model without a carrying capacity of the prey (c).

food density required by the predator is larger than the carrying capacity of the prey (see Fig.
5.2b). In that case one can see from the local vector field that the steady state (R̄, N̄) = (K, 0)
is a stable node. In terms of algae and zooplankton this would correspond to a lake that has so
little nutrients that the maximum algae density of the lake is too small to maintain a zooplankton
population.

Finally, for the situation of a non-replicating resource, e.g., shrimps being washed onto a beach,
one would rewrite Eq. (5.2) into the simple

dR

dt
= s� dR� cRN , (5.8)

where d is the rate at which shrimps die or are washed back into the sea. It is a good exercise
to sketch the nullclines of this model with Eq. (5.5) for the predator population.

5.1 Lotka Volterra model

The oldest and most famous predator prey model is the Lotka Volterra model proposed inde-
pendently by Lotka (1913) and Volterra (1926). The model is much simpler than the model
developed above because (a) it lumps prey birth and death rates into one logistic growth term,
and (b) it assumes that the predator birth rate remains a linear function of their per capita
consumption. Thus, the equations are

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
= caRN � dN . (5.9)

The dN/dt = 0 isocline is given by N = 0 and R = d/(ca), and the dR/dt = 0 isocline is
R = 0 and N = (r/a)(1 � R/K), which again reflects the shape of the per capita growth
function. Depicted in a phase space with N on the vertical axis and R on the horizontal axis,
the predator nullcline is a vertical line at R = d/(ca). The prey nullcine is a declining straight
line, intersecting the vertical axis at N = r/a and the horizontal axis at R = K (see Fig. 5.3a).
The model has three steady states: (0, 0), (K, 0) and (d/(ca), (r/a)[1 � d/(caK)]). The latter
non-trivial equilibrium will only exist if d/(ca) < K; if it exists the two (trivial) equilibria on
the axes are saddle points.
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Figure 5.3: The phase space of the “robust” Lotka Volterra model (a,b) and that of the Lotka Volterra
model without a carrying capacity of the prey (c).

food density required by the predator is larger than the carrying capacity of the prey (see Fig.
5.2b). In that case one can see from the local vector field that the steady state (R̄, N̄) = (K, 0)
is a stable node. In terms of algae and zooplankton this would correspond to a lake that has so
little nutrients that the maximum algae density of the lake is too small to maintain a zooplankton
population.

Finally, for the situation of a non-replicating resource, e.g., shrimps being washed onto a beach,
one would rewrite Eq. (5.2) into the simple

dR

dt
= s� dR� cRN , (5.8)

where d is the rate at which shrimps die or are washed back into the sea. It is a good exercise
to sketch the nullclines of this model with Eq. (5.5) for the predator population.

5.1 Lotka Volterra model

The oldest and most famous predator prey model is the Lotka Volterra model proposed inde-
pendently by Lotka (1913) and Volterra (1926). The model is much simpler than the model
developed above because (a) it lumps prey birth and death rates into one logistic growth term,
and (b) it assumes that the predator birth rate remains a linear function of their per capita
consumption. Thus, the equations are

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
= caRN � dN . (5.9)

The dN/dt = 0 isocline is given by N = 0 and R = d/(ca), and the dR/dt = 0 isocline is
R = 0 and N = (r/a)(1 � R/K), which again reflects the shape of the per capita growth
function. Depicted in a phase space with N on the vertical axis and R on the horizontal axis,
the predator nullcline is a vertical line at R = d/(ca). The prey nullcine is a declining straight
line, intersecting the vertical axis at N = r/a and the horizontal axis at R = K (see Fig. 5.3a).
The model has three steady states: (0, 0), (K, 0) and (d/(ca), (r/a)[1 � d/(caK)]). The latter
non-trivial equilibrium will only exist if d/(ca) < K; if it exists the two (trivial) equilibria on
the axes are saddle points.
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Fitness R0
R0

For the prey R0 = b/d

For the predator R0 = caR
� which is not a constant.

Take the best possible circumstances, i.e., R = K and let
R0 = caK

� .

The prey equilibrium is at R = �
ca or at R = K

R0

This implies that a predator with an R0 = 2 is expected to
halve its prey population.

35



Lotka Volterra model is very general

Predator-prey & host-parasite models

Seals in the Waddensea infected by virus
Hepatocytes infected by hepatitis

Cancer cells removed by killer cells
Economics: interactions industries

Lotka-Volterra model (with birth and death rates):

dR

dt
= [b(1�R/k)� d� aN ]R and

dN

dt
= [caR� �]N

Lotka-Volterra model (with logistic growth):

dR

dt
= [r(1�R/K)� aN ]R and

dN

dt
= [caR� �]N

Resource maintained by a source:

dR

dt
= s� dR� aNR and

dN

dt
= [caR� �]N

Lotka-Volterra competition equations:

dN1

dt
= r1N1(1�N1/K1 �N2/c1) and

dN2

dt
= r2N2(1�N2/K2 �N1/c2)

SARS epidemic:

dI

dt
= [� � �]I

with R0 = 3, and � = 1.5 and � = 0.5 per week

dS

dt
= rS(1� S/K)� �SI and

dI

dt
= �SI � �I

1



Lotka Volterra model is very general

Many models use the Lotka Volterra equations
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food density required by the predator is larger than the carrying capacity of the prey (see Fig.
5.2b). In that case one can see from the local vector field that the steady state (R̄, N̄) = (K, 0)
is a stable node. In terms of algae and zooplankton this would correspond to a lake that has so
little nutrients that the maximum algae density of the lake is too small to maintain a zooplankton
population.

Finally, for the situation of a non-replicating resource, e.g., shrimps being washed onto a beach,
one would rewrite Eq. (5.2) into the simple

dR

dt
= s� dR� cRN , (5.8)

where d is the rate at which shrimps die or are washed back into the sea. It is a good exercise
to sketch the nullclines of this model with Eq. (5.5) for the predator population.

5.1 Lotka Volterra model

The oldest and most famous predator prey model is the Lotka Volterra model proposed inde-
pendently by Lotka (1913) and Volterra (1926). The model is much simpler than the model
developed above because (a) it lumps prey birth and death rates into one logistic growth term,
and (b) it assumes that the predator birth rate remains a linear function of their per capita
consumption. Thus, the equations are

dR

dt
= rR(1�R/K)� aRN ,

dN

dt
= caRN � dN . (5.9)

The dN/dt = 0 isocline is given by N = 0 and R = d/(ca), and the dR/dt = 0 isocline is
R = 0 and N = (r/a)(1 � R/K), which again reflects the shape of the per capita growth
function. Depicted in a phase space with N on the vertical axis and R on the horizontal axis,
the predator nullcline is a vertical line at R = d/(ca). The prey nullcine is a declining straight
line, intersecting the vertical axis at N = r/a and the horizontal axis at R = K (see Fig. 5.3a).
The model has three steady states: (0, 0), (K, 0) and (d/(ca), (r/a)[1 � d/(caK)]). The latter
non-trivial equilibrium will only exist if d/(ca) < K; if it exists the two (trivial) equilibria on
the axes are saddle points.
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For example the SARS epidemic

Lotka-Volterra model (with birth and death rates):

dR

dt
= [b(1�R/k)� d� aN ]R and

dN

dt
= [caR� �]N

Lotka-Volterra model (with logistic growth):

dR

dt
= [r(1�R/K)� aN ]R and

dN

dt
= [caR� �]N

Resource maintained by a source:

dR

dt
= s� dR� aNR and

dN

dt
= [caR� �]N

Lotka-Volterra competition equations:

dN1

dt
= r1N1(1�N1/K1 �N2/c1) and

dN2

dt
= r2N2(1�N2/K2 �N1/c2)

SARS epidemic:

dI

dt
= [� � �]I

with R0 = 3, and � = 1.5 and � = 0.5 per week

dS

dt
= rS(1� S/K)� �SI and

dI

dt
= �SI � �I
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Lotka-Volterra model (with birth and death rates):

dR

dt
= [b(1�R/k)� d� aN ]R and

dN

dt
= [caR� �]N

Lotka-Volterra model (with logistic growth):

dR

dt
= [r(1�R/K)� aN ]R and

dN

dt
= [caR� �]N

Resource maintained by a source:

dR

dt
= s� dR� aNR and

dN

dt
= [caR� �]N

Lotka-Volterra competition equations:

dN1

dt
= r1N1(1�N1/K1 �N2/c1) and

dN2

dt
= r2N2(1�N2/K2 �N1/c2)

SARS epidemic:

dI

dt
= [� � �]I

with R0 = 3, and � = 1.5 and � = 0.5 per week

dS

dt
= rS(1� S/K)� �SI and

dI

dt
= �SI � �I

1
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Alternative: prey maintained by source

104 Answers to the exercises

e. Now S can only be solved from dI/dt, giving S = ⌅/⇥
f. Not changed: b⇥ is not influencing S = ⌅/⇥
g. The situation with a chronic infection is sketched in Panel (a). These are the Lotka-Volterra

nullclines: stability is the same as in the Lotka-Volterra model.
h. The nullclines in the presence and absence of PCBs are sketched in Panel (b).

Question 3.3. Solving the steady state
First find the equation from which one can solve B most easily. This is dC/dt = 0 = eBC � fC
yielding B̄ = f/e.

Question 3.4. Density dependent birth
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a. The predator nullcline stays the same; the prey nullcline
now is R = 0 and N = b/a

1+R/k �d/a. The latter has a horizontal
asymptote at N = �d/a, and a vertical asymptote at R = �k.
The intersect with the vertical N -axis is N = (b � d)/a. The
intersect with the horizontal axis is R = k(b/d� 1) = K.
b. The carrying capacity is R = K = k(b/d� 1) = k(R0 � 1)
c. The fitness of the predator remains R⇥

0 = caK
� and the preda-

tor nullcline is located at R = K/R⇥
0.

d. (0, 0) unstable (saddle), (K, 0) unstable. The non-trivial

steady state is stable because J =
�
�� �⇥
⇤ 0

⇥
so trJ = �� < 0

and det J = ⇥⇤ > 0.
e. No, the only (minor) di�erence is that the nullcline has a curvature.

Question 3.5. Malaria
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a. The dI/dt = 0 nullcline is I = 0 and B = ⌅/a. The
dB/dt = 0 nullcline is I = ⇥

aB �
d
a . This has the I-axis as

a vertical asymptote. For B ⇥⇤ the nullcline approaches the
horizontal asymptote I = �d/a.
b. K = ⇧/d
c. B̄ = ⌅/a
d. Because R0 = aK/⌅ one obtains B̄ = K/R0. This is a
famous result from epidemiology: the depletion of the suscep-
tibles is proportional to the R0 of the epidemic.
e. (K, 0): unstable; non-trivial is stable because J =�
�� �⇥
⇤ 0

⇥
so trJ = �� < 0 and detJ = ⇥⇤ > 0.

f. There is a carrying capacity in the absence of density dependence. The origin (0, 0) is not a
steady state.

Question 3.6. Algae and zooplankton
A possible good answer has the following sketches:

dR

dt
= s� dN � aRN

dN

dt
= [caR� �]N

K =
s

d

R

N

predator remains:

�

ca



Several Lotka Volterra like models
Lotka-Volterra model (with birth and death rates):

dR

dt
= [b(1�R/k)� d� aN ]R and

dN

dt
= [caR� �]N

Lotka-Volterra model (with logistic growth):

dR

dt
= [r(1�R/K)� aN ]R and

dN

dt
= [caR� �]N

Resource maintained by a source:

dR

dt
= s� dR� aNR and

dN

dt
= [caR� �]N

Lotka-Volterra competition equations:

dN1

dt
= r1N1(1�N1/K1 �N2/c1) and

dN2

dt
= r2N2(1�N2/K2 �N1/c2)

SARS epidemic:

dS

dt
= rS(1� S/K)� �SI and

dI

dt
= �SI � �I

1



History from Wikipedia

The Lotka–Volterra predator–prey model was proposed by 
Alfred J. Lotka “in the theory of autocatalytic chemical 

reactions” in 1910. This was effectively the logistic 
equation, originally derived by Pierre François Verhulst.  

In 1920 Lotka extended the model to "organic systems" 
using a plant species and a herbivorous animal species as 
an example, and in 1925 he utilised it to analyse predator-
prey interactions in his book on biomathematics arriving at 

the equations that we know today. 

 Vito Volterra, who made a statistical analysis of fish 
catches in the Adriatic independently investigated the 

equations in 1926.

http://en.wikipedia.org/wiki/Alfred_J._Lotka
http://en.wikipedia.org/wiki/Logistic_function#In_ecology:_modeling_population_growth
http://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
http://en.wikipedia.org/wiki/Biomathematics
http://en.wikipedia.org/wiki/Vito_Volterra

