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2 is the better competitor for resource 2 but becomes limited by
resource 3, species 3 is the better competitor for resource 3 but
becomes limited by resource 1, and so on. The amplitude of the
species oscillations may range from small cycles (Fig. 1c) to large
oscillations (Fig. 1d), depending on the precise parameter settings.
We note that the oscillations are not generated by fluctuating
weather conditions or other sources of external variability. The
species oscillations are generated by the competition process itself.

Non-equilibrium conditions allow the coexistence of more
species than limiting resources5,12,20. Hence, it is conceivable that
the oscillations generated by competition create an opportunity to
increase species diversity. To test this idea, at t ¼ 1;000 we added a
fourth species to the model simulations (Fig. 1c). This fourth
species is able to coexist on the oscillations generated by the three
species already present. Also, a fifth species and a sixth species can be
sustained. The amplitudes of the oscillations in Fig. 1c are so small
that the oscillations would probably go unnoticed behind the noise
of any real-world data set. Yet even these small-amplitude oscilla-
tions are apparently sufficient for the coexistence of six species on
three resources. Similar results were obtained with large-amplitude
oscillations (Fig. 1d): in the end, a total of nine species coexist on
three resources.

Simulations revealed similar patterns with four limiting
resources. For certain species combinations, competition for four
resources generates oscillations. These oscillations allow the coex-
istence of many species on four resources (J.H. and F.J.W., unpub-
lished results).

With five resources, many simulations show irregular species
fluctuations (Fig. 2a). The pattern of species replacement never

repeats itself. Each time one species tries to become dominant, there
are several other species that invade. The species invade at different
rates, and, hence, the abundances of the species continuously
diverge. Yet all species abundances remain bounded because
resources are limited. The continuous divergence of trajectories
within a bounded region of phase space is a characteristic feature of
chaos (Fig. 2b). In fact, the species dynamics show sensitive
dependence on initial conditions. Extensive simulations reveal
that trajectories that start with almost identical species abundances
slowly diverge, and gradually become completely uncorrelated. The
chaotic ups and downs of the individual species abundances go
together with a near constancy of total community biomass (Fig.
2c). This supports the hypothesis25–27 that competition in high-
diversity ecosystems may increase the variability at the species level
while at the same time it may stabilize global ecosystem properties
like total community biomass.

The bifurcation diagram in Fig. 3 illustrates how the model
predictions depend on the parameter regime. We choose K41, the
half-saturation constant for resource 4 of species 1, as bifurcation
parameter. Resource 4 is the resource that most limits the growth
rate of species 1. If species 1 is a strong competitor for resource 4
(K41 ! 0:2), species 1 excludes all other species (Fig. 3). If species 1 is
a weak competitor for resource 4 (K41 " 0:4), competition leads to
mild oscillations or stable coexistence. Competitive chaos occurs in
the intermediate range, where species 1 is an ‘‘intermediate compe-
titor’’ (0:24 ! K41 ! 0:35). Given the relatively broad parameter
range that leads to chaos, it seems plausible that such competitors
indeed occur in real-world plankton communities. We ran numer-
ous additional simulations, with many parameter combinations

Figure 3 Bifurcation diagram, for five species competing for five resources. The graphs
show the local minima and maxima of species 1, plotted during the period from
t ¼ 2;000 to t ¼ 4;000 days, as a function of the half-saturation constant K41. Part of
a is magnified in b.
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Figure 4 Competitive chaos and the coexistence of 12 species on five resources. a, The
abundances of species 1–6; b, the abundances of species 7–12.
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Biodiversity has both fascinated and puzzled biologists.  A simple 
resource competition model can generate oscillations and chaos when 
species compete for three or more resources. These oscillations and 
chaotic fluctuations in species abundances allow the coexistence of 

many species on a handful of resources. [Huisman & Weissing, Nature, 1999]



Density dependent predation



Phage infection. The latent period l and burst size b were
estimated from one-step growth experiments [28]. A late-log
culture of wild-type S. thermophilus was mixed with an equal volume
of LM17Ca for a total volume of 0.9 ml and incubated at 42uC for
10 minutes, at which time 0.1 ml of a LM17Ca-diluted wild-type
lysate of 2972 was added. The cell concentration was approxi-
mately 26108 per ml while the phage titer was 106 phage per ml.
The culture was incubated for 15 minutes at 42uC and then
serially diluted in LM17Ca broth for cell densities and phage titers
of approximately (a) 26105 and 103, (b) 26104 and 102, and (c)
26103 and 101. At periodic intervals, 100 ml samples from (a), (b),
and (c) were each incubated with 1 ml of a late-log culture of wild
type S. thermophilus and the number of phage particles was
estimated from soft LM17Ca agar lawns. Based on this protocol,

the latent period ended between 25 and 30 minutes, thus l is
approximately 0.4 hour. Previous studies [7,32] estimated the
latent period of phage 2972 between 34 to 40 minutes. For the
burst size, we use the difference between the mean estimated
phage densities in the time intervals 15–25 minutes (before the
burst) and 40–60 minutes (after the burst). b was estimated to be
approximately 80 particles per infected cell. A previous study
estimated the burst size of phage 2972 at 190633 new virions per
infected cell [7]. Presumably these discrepancies can be attributed
to differences in the growth conditions, including media.

There are a variety of ways to obtain independent estimates of
the adsorption rate constant d, but it is usually through the decline
in the titers of free phages in bacterial cultures [28]. These
methods require separating plaque-forming units (which include
infected cells) from free phages. While we tried various protocols,
the results were variable, presumably due to the production of
exopolysaccharides by the strain DGCC7710 [33,34]. Moreover,
since relatively high densities of cells were required for these
estimates (which in theory could be made with BIMs as well as
sensitive cells), the physiological state of these bacteria may be
different from that of the rapidly growing cultures. Thus, instead of
independently estimating this parameter, we used the value of d
that visually provides a good fit for this model for short-term
bacterial growth and phage replication experiments with wild-type
phage and bacteria. For this fit, we use the above estimates of
maximum growth rate (v), latent period, and burst size. In this way,
d is the only fitted phage infection parameter (Figure 2).

While the observed and predicted dynamics of the decline in the
density of bacteria and the increase in phage titer during the first
two hours were similar, from the perspective of the longer-term
population dynamics, the most significant difference between the
observed and predicted dynamics was the re-ascent and persis-
tence of the bacterial population. In accordance with the model,
all of the bacteria should have been killed after two hours of
exposure to the phage. The results of the spot tests, made with WT
phage and cultures derived from single bacterial colonies
recovered from the above at 7–9 and 24–26 hours, showed that
these bacteria were still sensitive to the WT phage (more than 20
independent colonies from separate experiments). Stated another
way, there was no evidence for BIMs evolving and ascending to
dominance in these cultures. This qualitative deviation from what
was anticipated under the canonical perspective of the dynamics of
lytic phage infection and bacteria with CRISPR–cas immunity set
the stage for experiments described in the following.

Rate of BIM formation (spacer acquisition). The failure
of BIMs to ascend in the experiment depicted in Figure 2 could be
due to the rate of BIM formation being too low for these resistant
cells to be present in the WT population. Our results suggest this is
not the case. BIMs can be readily isolated from lawns initiated
with mixtures of 108 phage and 107 cells, and as we demonstrate
below. Even when BIMs resistant to the phage are present, they do
not ascend in populations dominated by bacteria sensitive to the
phage. The exact rate at which BIMs are generated is not clear
from our results.

On first consideration, it would seem straightforward to estimate
the probability that an infection of a sensitive bacterium with a
virulent phage would result in immunity (the acquisition of a
spacer) rather than a lytic infection (this probability is the
parameter m in the above model). Thus, by incubating a mixture
of WT cells and WT phage for a defined period, plating the
mixture and counting the number of colonies, from the estimated
P0, B0, and d, it should be possible to estimate m. When we did this
experiment, the number of surviving colonies varied with the
numbers of cells and phage plated, but not in a way anticipated

Figure 1. CRISPR–mediated arms race. Ellipses - bacteria;
Pentagons - phage; red and blue rectangles - acquired spacers; red
and blue circles, regions of the phage genome corresponding to the
acquired spacers (protospacers); stars, mutated protospacers generat-
ing CEMs. WT, Wild type bacteria and phage; BIMX and CEMX, bacteria
with spacers for acquired resistance to WT phage and the first-order
CRISPR Escape mutants (CEMX), respectively; BIMX2 and CEMX2,
bacteria with spacers for acquired resistance to CEMX and the
second-order CRISPR–escape mutants, respectively. Panel A: Infection
and phage replication relationships. Solid black lines, phage adsorption
and replication; broken red lines - phage adsorption and loss. Panel B:
Changes in state. BIMX are produced by WT phage infecting WT cells
and BIMX2 are produced by CEMX infecting BIMX. CEMX are produced
by P0 infecting and replicating on B0 and CEMX2 are produced by CEMX
infecting and replicating on BIMX.
doi:10.1371/journal.pgen.1003312.g001

CRISPR and the Population Dynamics of Phage

PLOS Genetics | www.plosgenetics.org 4 March 2013 | Volume 9 | Issue 3 | e1003312

in the PAM, one contained one mutation in the protospacer and
another in the PAM, and the last one had an insertion in the PAM.
Taken together, these sequencing data are consistent with previous
results indicating that CEMs are the product of mutations in the
protospacers and/or PAMs which enable these viruses to
circumvent CRISPR–cas acquired immunity [7,8].

Population dynamics
Optical density data and the criteria for resource- and

phage-limited cultures. Although we estimated cell and phage
densities for specific samples by serial dilution and plating, much
of our inference about the population dynamics of these bacteria
and phage comes from optical density (OD 600 nm) data. In these
experiments, we follow the changes in OD of cultures of bacteria
and phage with frequent sampling for 8 or so hours. To illustrate
how the changes in optical density are related to changes in cell
density and what we would anticipate for these changes in
resource- and phage-limited cultures, we inoculated 4 ml broth
with 40 ml of an overnight culture of WT cells (for a final
concentration of approximately 26106 cells per ml), with different
initial concentrations of phage, and without phage for the control.

As anticipated (intuitively as well as from the model), the time
before the bacterial density declines due to the phage is inversely
proportional to the initial density of these viruses (Figure S2). As
predicted by the model, the optical densities of the cultures with
phage converge to a level well below that of the phage-free control.
However, the times required for these convergences to occur in
our experiments are greater than predicted.

Phage and sensitive bacteria. To determine whether the
failure of BIMs to emerge when sensitive bacteria are confronted
with phage is a general result, we mixed 26106 WT cells, first-
order BIMs, and second-order BIMs with approximately 26106

WT phage, first-order CEMs, and second-order CEMs, respec-

tively, and followed the changes in OD for two transfers. The
results of these experiments are presented in Figure 5.

During the first transfers, the OD of the cultures with phage
initially rose and then declined. In the second transfer, these ODs
remained at least an order of magnitude less than those of the
phage-free controls. The initial densities of phage in the first
transfer cultures ranged from 1.26106 pfu/ml (BIM4) to
3.46107 pfu/ml (BIM10). With the exception of BIM1, the
estimated cell densities in these cultures with phage were between
6.06104 cfu/ml (BIM7) and 16107 cfu/ml (BIM6). In the
absence of phage, the average 24-hour density of wild type cells
and BIMs exceeded 26108 cfu/ml. This experiment was repeated
at least three times and, qualitatively, the same results were
obtained; the cultures with phage remained at optical densities in
the range we consider to be phage- rather than resource- limited.

To determine whether BIMs resistant to the phage in these
cultures emerged, a similar experiment was performed without
frequent sampling. Single colonies were taken from each of the
first- and second-order BIM-CEM cultures at end of the first
transfer. These colonies were re-streaked and grown up in liquid
culture and, as with the wild type bacteria, were spot tested for
resistance to the corresponding CEMs. While we can’t rule out
minority populations of BIMs resistant to these phages, all of the
colonies tested were sensitive to the phages.

Resource- or phage-limited densities. In the preceding,
we use the phrase ‘‘phage-limited’’ to describe situations where the
ODs of bacterial cultures with phage remain substantially less than
those they would achieve were the phage not there and the
bacteria limited by the availability of resources. Implicit in the
phrase ‘‘phage-limited’’ is the assumption that there is an
abundance of resources that could be used by the bacteria for
growth were their densities not limited by the phage or products of
phage replication. To test this phage-limited hypothesis, we

Figure 3. Graphical representation of spacers across the two CRISPR loci for S. thermophilus BIMs. Repeats are not included; only spacers
are represented. Each spacer is represented by a combination of one select character in a particular color, on a particular background color, as
previously described [36]. The color combination allows unique representation of a particular spacer. Similar color schemes (combination of character
color and background color) represent identical spacers, whereas different color combinations represent distinguishable spacers.
doi:10.1371/journal.pgen.1003312.g003
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CRISPR mediated immunity

Bacteria pick up DNA fragments from phages. They ‘store’ these fragments 
in their own genome to become immune to phages expressing these 

sequences [Levin et al. PLoS Genetics 2013]



Group formation and predator-prey dynamics

Lions living in groups have a lower food intake but have better stability. 
But is this an ESS? [Fryxell et al. Science, 2007]



We find that whereas the two separate, single host-single parasitoid
interactions are persistent, the three-species system with

the parasitoid attacking both hosts species (which are not allowed
to compete directly) is unstable. One of the host species is
eliminated owing to the effects of apparent competition.

Also study equal predation

Nature 1997



Competitive exclusion and parasitism
We studied the effect of a pathogen on winning species:

Sj
� = bNj(1�Nj/k)� djSj � �SjIj

Ij
� = �SjIj � (dj + ⇥)Ij

Janzen-Connell hypothesis: parasites evolve towards most 
dominant species (negative density dependence)

[Bagchi et al., Nature, 2014]

What is the effect of pathogens on co-existence?



Ontogenetic development for dummies, try to repeat these results with:

ters q and p, respectively, as it makes the mathematics
simpler and more intuitive. For a more mechanistic
handling of size-dependent competitive ability, see
Persson et al. (1998). For q ¼ 1 and p ¼ 1, the model is
identical to the Yodzis and Innes (1992) biomass model
and ontogenetic symmetry occurs, whereas ontogenetic
asymmetry is present when q 6¼ 1 and/or p 6¼ 1. As it
turns out, asymmetry in mortality has significantly less
effect than asymmetry in net biomass production
(Appendix: Fig. A1); see de Roos et al. (2013). We
therefore will focus on the case that juveniles and adults
only differ in net biomass production rate.

OVERCOMPENSATION IN BIOMASS AS A RESULT

OF ONTOGENETIC ASYMMETRY

Under ontogenetic symmetry, an increase in consumer
mortality in a consumer–resource system leads to a
monotonic decrease in biomass of both juveniles and
adults, whereas the juvenile/adult biomass ratio remains
constant (Fig. 1b). In other words, the population
structure is irrelevant for the system response. Con-
sumption by both juveniles and adults increases with
increased mortality as a result of increased resource
availability, leading to larger mass-specific growth rates
of juveniles and reproduction rates of adults. Still, these

FIG. 1. (a–c) Modeled biomass responses of juveniles (solid line) and adults (dashed line) to increased random mortality
(increasing mortality rate l) (a) when juveniles have a superior energy balance (ontogenetic asymmetry in net biomass production,
q¼ 0.65, p¼ 1.0, where q is a factor scaling juvenile and adult ingestion, and p is a factor scaling juvenile and adult mortality); (b)
when juveniles and adults have identical energetics (ontogenetic symmetry, q¼ 1.0, p¼ 1.0); and (c) when adults have a superior
energy balance (ontogenetic asymmetry in net biomass production, q ¼ 1.35, p ¼ 1.0). Feeding modules at the top of each panel
reflect approximate biomass densities of juveniles (J), adults (A), and resource (R), and development (dark gray solid arrows),
reproduction (black dashed arrows), and maintenance rates (open arrows) for conditions of low mortalities (left modules) and
intermediate mortalities (right modules). Light gray arrows represent food intakes. Other model parameter values are: Hc¼ 3.0, Mc

¼ 1.0, Tc¼ 0.1, rc¼ 0.5, z¼ 0.1, q¼ 0.1, and Rmax¼ 100, where Hc is ingestion half-saturation resource density, Mc is mass-specific
maximum ingestion rate, Tc is mass-specific maintenance rate, rc is conversion efficiency, z is newborn–adult consumer size ratio, q
is resource turnover rate, and Rmax is resource maximum biomass density. See the Appendix for model formulation. (d, e)
Experimental examples of stage-specific overcompensation are shown in either (d) juvenile biomass (reproduction control, Eurasian
perch) or (e) adult biomass (development control, soil mites). Note that adult biomass decreases with harvesting (no
overcompensation) in panel (d) and increases with harvesting (overcompensation) in panel (e). Data were generously provided by
T. Cameron and J. Ohlberger (Cameron and Benton 2004, Ohlberger et al. 2011).

LENNART PERSSON AND ANDRÉ M. DE ROOS1490 Ecology, Vol. 94, No. 7
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Symmetry breaking in ecological systems through 
different energy efficiencies of juveniles and adults

Persson & De Roos Ecology 2013; De Roos & Persson, Princeton UP, 2013 

R = K� c1J � c2A ,
dJ

dt
=

eAR

h2 + R
� mJR

h1 + R
�µd1J and

dA

dt
=

mJR

h1 + R
�µd2A

1



Long term effects of vaccination

The effect of elephants is through regular browsing and coppicing of trees, fire 
through episodic burns linked to fuel load, wildebeest after being released from 
the suppressing effects of endemic rinderpest (a morbillivirus of artiodactyls), 

and rain through its connections to all system components. 
Holdo et al. [2009] demonstrate that eradication of rinderpest is responsible for 

the Serengeti switch from a net source to net accumulator of carbon.

Getz, PLoS Biol 2009



Early-warning signals for critical transitions

Ecosystems can have tipping points at which a sudden shift to a 
contrasting dynamical regime may occur.  Although predicting such critical 
points is extremely difficult, generic early-warning signals may indicate that 

a critical threshold is approaching [Scheffer Nature 2009]

the unstable point relatively longer than it would on the opposite side
of the stable equilibrium. The skewness of the distribution of states is
expected to increase not only if the system approaches a catastrophic
bifurcation, but also if the system is driven closer to the basin bound-
ary by an increasing amplitude of perturbation28.

Another phenomenon that can be seen in the vicinity of a cata-
strophic bifurcation point is flickering. This happens if stochastic
forcing is strong enough to move the system back and forth between
the basins of attraction of two alternative attractors as the system
enters the bistable region before the bifurcation26,29. Such behaviour
is also considered an early warning, because the system may shift
permanently to the alternative state if the underlying slow change
in conditions persists, moving it eventually to a situation with only
one stable state. Flickering has been shown in models of lake eutro-
phication24 and trophic cascades30, for instance. Also, as discussed
below, data suggest that certain climatic shifts and epileptic seizures
may be presaged by flickering. Statistically, flickering can be observed
in the frequency distribution of states as increased variance and
skewness as well as bimodality (reflecting the two alternative
regimes)24.
Indicators in cyclic and chaotic systems. The principles discussed so
far apply to systems that may be stochastically forced but have an
underlying attractor that corresponds to a stable point (for example
the classic fold catastrophe illustrated in Box 1). Critical transitions in
cyclic and chaotic systems are less well studied from the point of view

Box 3 jThe relation between critical slowing down, increased
autocorrelation and increased variance

Critical slowing down will tend to lead to an increase in the
autocorrelation and variance of the fluctuations in a stochastically
forced system approaching a bifurcation at a threshold value of a
control parameter. The example described here illustrates why this is
so. We assume that there is a repeated disturbance of the state
variable after each period Dt (that is, additive noise). Between
disturbances, the return to equilibrium is approximately exponential
with a certain recovery speed, l. In a simple autoregressive model this
can be described as follows:

xnz1{!xx~elDt(xn {!xx)z sen

ynz1~elDtynz sen

Here yn is the deviation of the state variable x from the equilibrium, en is
a random number from a standard normal distribution and s is the
standard deviation.
If l and Dt are independent of yn, this model can also be written as a
first-order autoregressive (AR(1)) process:

ynz1~aynzsen

The autocorrelation a ; elDt is zero for white noise and close to one for
red (autocorrelated) noise. The expectation of an AR(1) process
ynz1~czaynzsen is18

E(ynz1)~E(c)zaE(yn)zE(sen)[m~czamz0[m~
c

1{a

For c 5 0, the mean equals zero and the variance is found to be

Var(ynz1)~E(y2
n){m2~

s2

1{a2

Close to the critical point, the return speed to equilibrium decreases,
implying that l approaches zero and the autocorrelation a tends to one.
Thus, the variance tends to infinity. These early-warning signals are the
result of critical slowing down near the threshold value of the control
parameter.

Box 2 jCritical slowing down: an example

To see why the rate of recovery rate after a small perturbation will be
reduced, and will approach zero when a system moves towards a
catastrophic bifurcation point, consider the following simple dynamical
system, where c is a positive scaling factor and a and b are parameters:

dx

dt
~c(x{a)(x{b) ð1Þ

It can easily be seen that this model has two equilibria, !xx1 5 a and
!xx2 5 b, of which one is stable and the other is unstable. If the value of
parameter a equals that of b, the equilibria collide and exchange
stability (in a transcritical bifurcation). Assuming that !xx1 is the stable
equilibrium, we can now study what happens if the state of the
equilibrium is perturbed slightly (x 5 !xx1 1 e):

d(!xx1ze)

dt
~f(!xx1ze)

Here f(x) is the right hand side of equation (1). Linearizing this equation
using a first-order Taylor expansion yields

d(!xx1ze)

dt
~f(!xx1ze)<f(!xx1)z

Lf

Lx

!!!!
!xx1

e

which simplifies to

f(!xx1)z
de

dt
~f(!xx1)z

Lf

Lx

!!!!
!xx1

e[ de

dt
~l1e ð2Þ

With eigenvalues l1 and l2 in this case, we have

l1~
Lf

Lx

!!!!
a

~{c(b{a) ð3Þ

and, for the other equilibrium

l2~
Lf

Lx

!!!!
b

~c(b{a) ð4Þ

If b . a then the first equilibrium has a negative eigenvalue, l1, and is
thus stable (as the perturbation goes exponentially to zero; see
equation (2)). It is easy to see from equations (3) and (4) that at the
bifurcation (b 5 a) the recovery rates l1 and l2 are both zero and
perturbations will not recover. Farther away from the bifurcation, the
recovery rate in this model is linearly dependent on the size of the basin
of attraction (b 2 a). For more realistic models, this is not necessarily
true but the relation is still monotonic and is often nearly linear16.
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Figure 2 | Early warning signals for a critical transition in a time series
generated by a model of a harvested population77 driven slowly across a
bifurcation. a, Biomass time series. b, c, d, Analysis of the filtered time series
(b) shows that the catastrophic transition is preceded by an increase both in
the amplitude of fluctuation, expressed as s.d. (c), and in slowness, estimated
as the lag-1 autoregression (AR(1)) coefficient (d), as predicted from theory.
The grey band in a identifies the transition phase. The horizontal dashed
arrow shows the width of the moving window used to compute the indicators
shown in c and d, and the red line is the trend used for filtering (see ref. 22 for
the methods used). The dashed curve and the points F1 and F2 represent the
equilibrium curve and bifurcation points as in Box 1 Figure c, d.
a.u., arbitrary units.
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Tilman’s competition model: famous 
1982 Princeton book, and PNAS 1997

What is the relation between diversity and productivity?
See also recent experimental tests:

Dybzinski & Tilman, American Naturalist 2007 & Adler et al. Science 2011



Tilman’s metapopulation model

Nature 1994
11.2 The Tilman model 81
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Figure 11.1: The nullclines (a) and the steady states (b) of the two superior species of the Tilman et al.
(1994) model.

where the critical damage D = 1 � m/c is the same as the fraction of habitats occupied by this
species in an undisturbed situation (where P = 1). To prevent the extinction of a “rare” species
occupying a small fraction ↵ = 1 � m/c of the suitable habitats, one should keep the level of
habitat destruction below the same D = ↵ (Nee & May, 1992; Tilman et al., 1994). This seems
a strange and unexpected result, but in retrospect one can see that this comes about by the
condition that rare species are poor colonizers, and therefore need many patches to survive.

11.2 The Tilman model

Nee & May (1992) and Tilman et al. (1994) extended the metapopulation model of Levins
(1969) with competition. Tilman et al. (1994) considered a large number of species competing
with each other in a particular kind of habitat, and recorded the presence or absence of each
species over a large number of habitats (or patches). The competition between the species was
incorporated in the model by ordering the species by their competitive ability. This is a clever
trick that keeps the model simple, and delivers surprising results when one studies the e↵ects of
habitat destruction in the model.

Eq. (11.1) was simply extended by writing that pi is the fraction of patches occupied by species
i, and because species are ordered by competitive ability one obtains

dpi
dt

= cipi
⇣
P �

iX

j=1

pj
⌘

� mipi �
i�1X

j=1

cjpipj , (11.6)

where the di↵erences with the original model are (1) the term between the brackets, which is the
“perceived” fraction of empty patches, and (2) the final colonization term, which is the chance
that a patch occupied by species i is colonized by species j. The sum terms in this model run
from j = 1 to j = i (and to i � 1 in the second term) because of the ordering by competitive
ability. For instance, the strongest competitor (for which i = 1), will perceive patches occupied
by other species as “empty”, and will itself never be colonized by other species. Hence, the sum
term between the brackets only contains the first species, and the colonization term at the end
is ignored. The second species, with i = 2, sums the first two between the brackets, and can be



Influenza strain replacement

CO2 from preindustrial levels will result in a
30% decrease in carbonate ion concentration
and a 60% increase in hydrogen ion concen-
tration. As the carbonate ion concentration
decreases, the Revelle factor increases and
the ocean’s ability to absorb more CO2 from
the atmosphere is diminished. The impact of
this acidification can already be observed
today and could have ramifications for the
biological feedbacks in the future (26). If
indeed the net feedbacks are primarily posi-
tive, the required socioeconomic strategies to
stabilize CO2 in the future will be much more
stringent than in the absence of such feed-
backs. Future studies of the carbon system in
the oceans should be designed to identify and
quantitatively assess these feedback mecha-
nisms to provide input to models that will
determine the ocean’s future role as a sink for
anthropogenic CO2.
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Mapping the Antigenic and Genetic
Evolution of Influenza Virus
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The antigenic evolution of influenza A (H3N2) virus was quantified and visualized
from its introduction into humans in 1968 to 2003. Although therewas remarkable
correspondence between antigenic and genetic evolution, significant differences
were observed: Antigenic evolution was more punctuated than genetic evolution,
and genetic change sometimes had a disproportionately large antigenic effect. The
method readily allows monitoring of antigenic differences among vaccine and
circulating strains and thus estimation of the effects of vaccination. Further, this
approach offers a route to predicting the relative success of emerging strains,which
could be achieved by quantifying the combined effects of population level immune
escape and viral fitness on strain evolution.

Much of the burden of infectious disease
today is caused by antigenically variable
pathogens that can escape from immunity
induced by prior infection or vaccination.
The degree to which immunity induced by
one strain is effective against another is most-
ly dependent on the antigenic difference be-
tween the strains; thus, the analysis of anti-
genic differences is critical for surveillance
and vaccine strain selection. These differenc-
es are measured in the laboratory in various
binding assays (1–3). Such assays give an
approximation of antigenic differences, but
are generally considered unsuitable for quan-
titative analyses. We present a method, based

on the fundamental ideas described by Lape-
des and Farber (4), that enables a reliable
quantitative interpretation of binding assay
data, increases the resolution at which anti-
genic differences can be determined, and fa-
cilitates visualization and interpretation of
antigenic data. We used this method to study
quantitatively the antigenic evolution of in-
fluenza A (H3N2) virus, revealing both sim-
ilarities to, and important differences from,
its genetic evolution.

Influenza viruses are classic examples of
antigenically variable pathogens and have a
seemingly endless capacity to evade the im-
mune response. Influenza epidemics in hu-
mans cause an estimated 500,000 deaths
worldwide per year (5). Antibodies against
the viral surface glycoprotein hemagglutinin
(HA) provide protective immunity to influen-
za virus infection, and this protein is therefore
the primary component of influenza vaccines.
However, the antigenic structure of HA has
changed significantly over time, a process
known as antigenic drift (6 ), and in most
years, the influenza vaccine has to be up-
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dated to ensure sufficient efficacy against
newly emerging variants (7, 8). The World
Health Organization coordinates a global
influenza surveillance network, currently
consisting of 112 national influenza centers
and four collaborating centers for reference
and research. This network routinely char-
acterizes the antigenic properties of influ-
enza viruses using a hemagglutination in-
hibition (HI) assay (1). The HI assay is a
binding assay based on the ability of influ-
enza viruses to agglutinate red blood cells
and the ability of animal antisera raised
against the same or related strains to block
this agglutination (9). Additional surveil-
lance information is provided by sequenc-
ing the immunogenic HA1 domain of the
HA gene for a subset of these strains. The
combined antigenic, epidemiological, and
genetic data are used to select strains for
use in the vaccine.

Retrospective quantitative analyses of the
genetic data have revealed important insights
into the evolution of influenza viruses (10–
13). However, the antigenic data are largely
unexplored quantitatively because of difficul-
ties in interpretation, even though antigenic-
ity is a primary criterion for vaccine strain
selection and is thought to be the main driv-
ing force of influenza virus evolution. When
antigenic data have been analyzed quantita-
tively, it has usually been with the methods
of, or methods equivalent to, numerical tax-
onomy (14–16). These methods have pro-
vided insights (15–19); however, they
sometimes give inconsistent results, do not
properly interpret data that are below the
sensitivity threshold of the assay, and approx-
imate antigenic distances between strains in
an indirect way [discussed by (4, 16, 18)].
Lapedes and Farber (4) solved these prob-
lems with a geometric interpretation of bind-
ing assay data, in which each antigen and
antiserum is assigned a point in an “antigenic
map” [based on the theoretical concept of
“shape space” (20–23)], such that the dis-
tance between an antigen and antiserum in
the map directly corresponds to the HI mea-
surement. Lapedes and Farber used ordinal
multidimensional scaling (MDS) (24) to po-
sition the antigens and antisera in the map.

The method used in this manuscript is
based on the fundamental ideas described
by Lapedes and Farber (4 ) and, in particu-
lar, takes advantage of their observation
that antigenic distance is linearly related to
the logarithm of the HI measurement. Ex-
ploiting this observation allowed us to cre-
ate a new method that is parametric yet still
handles HI measurements that are beyond
the sensitivity of the HI assay (9). We use
a modification of metric MDS (25 ) to po-
sition the antigens and antisera in the map
(9). This new approach offers computation-
al advantages over the ordinal approach,

including reduced running time and fewer
local minima, making it tractable to run on
datasets the size of the one used in this
manuscript, and on larger datasets.
Antigenic map of human influenza A

(H3N2) virus. We applied this method to
mapping the antigenic evolution of human
influenza A (H3N2) viruses, which became
widespread in humans during the 1968 Hong
Kong influenza pandemic and have been a
major cause of influenza epidemics ever
since. Antigenic data from 35 years of influ-
enza surveillance between 1968 and 2003
were combined into a single dataset. We se-
quenced the HA1 domain of a subset of these
virus isolates (26, 27) and restricted the an-
tigenic analysis to these sequenced isolates to
facilitate a direct comparison of antigenic and
genetic evolution. The resulting antigenic
dataset consisted of a table of 79 postinfec-
tion ferret antisera by 273 viral isolates, with
4215 individual HI measurements as entries
in the table. Ninety-four of the isolates were
from epidemics in the Netherlands, and 179
were from elsewhere in the world.

We constructed an antigenic map from
this dataset to determine the antigenic evolu-
tion of influenza A (H3N2) virus from 1968
to 2003 (Fig. 1). Because antigen-antiserum
distances in the map correspond to HI values,
it was possible to predict HI values that were
missing in the original dataset and subse-
quently to measure those values using the HI
assay, so as to determine the resolution of the
map. We predicted and then measured 481
such HI values with an average absolute pre-
diction error of 0.83 (SD 0.67) units (each
unit of antigenic distance corresponds to a
twofold dilution of antiserum in the HI assay)
and a correlation between predicted and mea-
sured values of 0.80 (p !! 0.01). The accu-
racy of these predictions indicates that the
map has resolution higher than that previous-
ly considered available from HI data and
higher than the resolution of the assay. The
resolution of the map can be greater than the
resolution of the assay because the location of
a point in the map is fixed by measurements
to multiple other points, thereby averaging
out errors (9).

The map reveals high-level features of the
antigenic evolution of influenza A (H3N2)
virus. The strains tend to group in clusters
rather than to form a continuous antigenic
lineage, and the order of clusters in the map is
mostly chronological; from the original Hong
Kong 1968 (HK68) cluster, to the most recent
Fujian 2002 (FU02) cluster. The antigenic
distance from the HK68 cluster, through con-
secutive cluster centers, to the FU02 cluster is
44.6 units, and the average antigenic distance
between the centers of consecutive clusters is
4.5 (SD 1.3) units. The influenza vaccine is
updated between influenza seasons when
there is an antigenic difference of at least 2

units between the vaccine strain and the
strains expected to circulate in the next sea-
son; thus, not unexpectedly, we find at least
one vaccine strain in each cluster.

The ability to define antigenic clusters
allows us to identify the amino acid substitu-
tions that characterize the difference between
clusters (Table 1, fig. S1). Some of these
“cluster-difference” substitutions (9) will
contribute to the antigenic difference between
clusters, some may be compensatory muta-

Fig. 1. Antigenic map of influenza A (H3N2)
virus from 1968 to 2003. The relative positions
of strains (colored shapes) and antisera (uncol-
ored open shapes) were adjusted such that the
distances between strains and antisera in the
map represent the corresponding HI measure-
ments with the least error (9). The periphery of
each shape denotes a 0.5-unit increase in the
total error; thus, size and shape represent a
confidence area in the placement of the strain
or antiserum. Strain color represents the anti-
genic cluster to which the strain belongs. Clus-
ters were identified by a k-means clustering
algorithm (9) and named after the first vaccine-
strain in the cluster—two letters refer to the
location of isolation (Hong Kong, England, Vic-
toria, Texas, Bangkok, Sichuan, Beijing, Wuhan,
Sydney, and Fujian) and two digits refer to year
of isolation. The vertical and horizontal axes
both represent antigenic distance, and, because
only the relative positions of antigens and an-
tisera can be determined, the orientation of the
map within these axes is free. The spacing
between grid lines is 1 unit of antigenic dis-
tance—corresponding to a twofold dilution of
antiserum in the HI assay. Two units corre-
spond to fourfold dilution, three units to eight-
fold dilution, and so on.
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Study strain replacement within a season, 
and how this depends on the vaccine 
coverage at the start of the season.


