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The Lotka Volterra model can be written as

dx

dt
= rx

(
1− x

k

)
− axy and

dy

dt
= axy − dy , (1)

where x could be a prey and y its predator, or x could be tumor and y an immune response, or
x could susceptible individuals in a population and y infected individuals, or x could be target
cells and y a virus infecting these target cells. Indeed, this model is used in many areas of
biology. At low densities of x and y the population x grows exponentially (at rate r), and in
the absence of y the x population approaches the steady state x̄ = k (which in ecology is called
the carrying capacity). dx/dt = rx(1− x/k) is called logistic growth. The parameter a is the
interaction parameter of the mass action term, and d is the death rate of y.

Setting dy/dt = 0 and dx/dt = 0 gives

x̄ =
d

a
and y(x) =

r

a

(
1− x

k

)
, respectively, and hence ȳ =

r

a

(
1− d

ak

)
, (2)

where x̄ was solved from dy/dt = 0, which implies that the steady state of x is completely
determined by the parameters of y. Since changing r or k fails to affect the steady of x, we
observe that decreasing the growth rate of a tumor, x, e.g., by chemotherapy, or increasing the
carrying capacity of a prey, x, e.g., by feeding, does not have any effect on x̄, and only changes
ȳ. This simple toy model comes with unexpected predictions.

We study the model further by phase plane analysis. The “nullcline” or “zero-isocline” dx/dt =
0 is given by Eq. (2)b, and since this is a function of x we sketch a space having x on the
horizontal and y on the vertical axis. The x-nullcline is a straigth line from (x = 0, y = r/a)
to (x = k, y = 0). The y-nullcline is given by Eq. (2)a and is a vertical line at x = d/a:
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The vector field indicated by the arrows can be obtained by considered extreme values in the
phase plane. When x → 0 and y → 0 we see that dx/dt ' rx > 0 and dy/dt ' −dy < 0.
When x ≥ k we see that dx/dt < 0 and dy/dt/y = ak − d ,which will be positive whenever
the maximum birth rate, ak, is larger than the death rate d. Trajectories in the phase plane
intersect the nullclines horizontally or vertically. There are three steady states in this phase
plane: the origin, (0, 0), is a saddle point because there is an unstable horizontal direction, x
at carrying capacity, (k, 0), is also a saddle point but with an unstable vertical direction, and
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the non-trivial state (x̄, ȳ) as defined in Eq. (2). The stability of the non-trivial steady state
can be seen from the trajectories.

One can also linearize the model around the steady state by writing dx/dt = f(x, y) and
dy/dt = g(x, y) and taking the partial derivatives to write the Jacobian matrix

J =

(
∂xf ∂yf
∂xg ∂yg

)
=

(
r − 2rx̄/k − aȳ −ax̄

aȳ ax̄− d

)
=

(
−rd/a −d
aȳ 0

)
or Js =

(
− −
+ 0

)
, (3)

where Js is a qualitative Jacobian giving the signs of the full Jacobi matrix. J has a negative
trace, tr = −rd/a < 0, and positive determinant, det = adȳ > 0, implying that both eigenvalues
are negative, and that the steady state is stable. Note that the signs of this Jacobian matrix
can also be read from the vector field around the steady state.

There is another unexpected outcome of the Lotka Volterra model because ȳ depends non-
monotonically on a (see Fig. 1c, 1d, and Eq. (2)c). Increasing a in the phase plane moves the
vertical x-nullcline to the left, and rotates the y-nullcline down (Fig. 1c), which has a non-
monotonic effect on ȳ (Fig. d). Strangely this means that decreasing rate at which a virus, y,
infects target cells or hosts, x, can increase the amount of virus ȳ. Or, that increasing the rate
at which a predator, y, kills its prey, x, decreases the predator density.

Finally one can add another level to the Lotka Volterra model and make a 3-dimensional food
chain:

dx

dt
= rx

(
1− x

k

)
− axy ,

dy

dt
= axy − dyy − byz and

dz

dt
= byz − dzz , (4)

and observe that ȳ = dz/b is now solved from dz/dt = 0 and hence that x̄ is solved from
dx/dt = 0. This implies that x̄ will now dependent on its replication rate, r, and carrying
capacity, k. Generally, x̄ will only depend on its own parameters, r and k, when the food chain
has an odd length.

Saturated interaction. Since the interaction between x and y need not be linear the Lotka-
Volterra model can be extended with a saturated interaction term:

dx

dt
= rx

(
1− x

k

)
− axy

h + x
and

dy

dt
=

axy

h + x
− dy , (5)

where a is the maximum effect of y on x, and h is the density of x where this effect is half
maximal (at x = h the interaction term is (a/2)y). This is similar to the classical Michaelis
Menten function.

We study this model by phase plane analysis. The two nullclines are given by

y(x) =
r

a

(
h + x

)(
1− x

k

)
and x =

dh

a− d
. (6)

Since the x-nullcline is a function of x we again sketch a plane having x on the horizontal and y
on the vertical axis, and observe that the x-nullcline is a parabola crossing the horizontal axis
at x = −h and x = k. Note that the left side of the nullcline is unstable (horizontal arrows
pointing away from it), and it is stable on the right hand side of the maximum:
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When the vertical y-nullcline intersects the parabola in its stable region the local vector field
around the non-trivial steady resembles that of the Lotka Volterra model, which indeed gives
the same signs in the Jacobian, Js =

(− −
+ 0

)
(Fig. 2a). Hence the steady state is stable and all

trajectories approach it (Fig. 2b). When it intersects on the unstable left side, the horizontal
vector field points away from the steady state, giving Js =

(
+ −
+ 0

)
. Since the trace is now positive

the steady state is unstable, and we see trajectories approaching a stable limit cycle (Fig. 2c).
Thus, the global attractor is periodic behavior of x and y.

The change in stability of the non-trivial steady state is called a Hopf bifurcation. One may
visualize this by changing a single parameter of the system, e.g., k, and changing the steady
state from stable spiral point (heavy blue lines in Fig. 3b and 3c) to an unstable spiral point
(light black lines). At the Hopf bifurcation a limit cycle is born. Close the bifurcation point
nothing much happens because a stable spiral point becomes a stable limit cycle with a very
small amplitude. This limit cycle grows when one moves further away from the bifurcation (red
dots in Fig. 3b and 3c indicate the amplitude of the limit cycle):

0

2

1

0

x

21

y

3a

x

y

k k k k 0.001

2

1

0

k

21

x

3b

k

x̄

dh
a−d

0.001

2

1

0

k

21

y

3c

k

ȳ

Changing the parameter k one can make a bifurcation diagram display all steady states of the
model. For low values of k the carrying capacity, (x̄ = k, ȳ = 0), is the only attractor of the
system (Fig. 3a), and this state become unstable when k = dh/(a − d) (black diagonal line in
Fig. 3b) and the state x̄ = dh/(a − d), ȳ) becomes the global attractor (horizontal blue line
in Fig. 3b and curved blue line in Fig. 3c). When the vertical nullcline crosses the top of the
parabola, i.e., when (k− h)/2 = dh/(a− d), this steady state becomes unstable (the line turns
black, and a stable limit cycle (red symbols) is born.

A sigmoid interaction term. Several processes in biology have sigmoid saturation functions.
Let’s rewrite the model into

dx

dt
= rx

(
1− x

k

)
− ayx2

h2 + x2
and

dy

dt
=

ayx2

h2 + x2
− dy , (7)
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where the x2/(h2 +x2) function is called a Hill function. The meaning of the parameters a and
h stays the same. The nullclines are now described by

y(x) =
r

a

h2 + x2

x

(
1− x

k

)
and x = h

√
d

a− d
, (8)

respectively. The y-nullcline remains a vertical line. We can get an idea of the x-nullcline by
considering Eq. (8)a for small and large values of x. For x� h and h� x < k we obtain

y(x) =
r

a

h2

x

(
1− x

k

)
and y(x) =

r

a
x
(

1− x

k

)
, (9)

respectively. The former reveals a vertical asymptote at x = 0, and the latter is a parabola
intersecting the horizontal axis at x = 0 and x = k. In combination this may look like the
phase plane in Fig. 4a. Note the x-nullcline now has two stable parts and an unstable region in
between its minimum and maximum:
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When the vertical y-nullcline intersects on the stable right hand side of the nullcline the situation
around the steady state is again like that of the Lotka Volterra model, Js =

(− −
+ 0

)
, and the

non-trivial steady state is the global attractor (Fig. 4a). When the y-nullcline intersects in the
unstable region between the minimum and the maximum of the x-nullcline the steady state
is unstable, Js =

(
+ −
+ 0

)
, and the trajectories approach a stable limit cycle (Fig. 4b). The new

situation, where the y-nullcline intersects on the stable left hand side of the minimum (Fig. 4c),
the global attractor of the system is again a stable steady state, with Js =

(− −
+ 0

)
.

One can again summarize the potential behaviors of the model by making a bifurcation diagram.
In the figure below we change the death rate, d, to move the vertical y-nullcline to the left or
to the right (Fig. 5a). Plotting x̄ or ȳ as a function of d we obtain the diagrams displayed in
Fig. 5b and 5c. Note that ȳ = 0 at the largest value of d: for larger values of d the system
approaches the carrying capacity x̄ = k. We see two Hopf bifurcation at which a stable limit
cycle appears or disappears. The amplitude of the limit cycle (red dots) is maximal somewhere
in between these two Hopf bifurcations:
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If we were to fix ay as a bifurcation parameter, the x-nullcline with its minimum and maximum
would represent the steady state, x̄, of Eq. (7)a. Plotting x̄ as a function of the “parameter”
ay gives the bifurcation diagram shown in Fig. 6a. We observe an intermediate region of ay
values where the system is bi-stable. A large value of x̄ is separated from a low value of x̄
by an unstable value of x̄. The two bifurcations in Fig. 6a are called saddle-node bifurcations
because a saddle and a node point merge and annihilate each other. This is an example of
a catastrophic bifurcation because the system behavior will switch to a completely unrelated
attractor.
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A simple toy model to make a bifurcation diagram like Fig. 6a is the following

dx

dt
= a− bx +

x2

1 + x2
, (10)

where by changing b one can make the line y = bx intersect the line y = a+x2/(1 +x2) once or
three times. This delivers the bifurcation diagram in Fig. 6b. Starting with a low value of b, and
increasing b slowly while drawing normally distributed random values of a, we obtain the noisy
green trajectory shown in Fig. 6c. The system switches to the low state of x around the highest
saddle-node bifurcation. If one were to turn backwards at the end by slowly decreasing b, one
would obtain the noise blue trajectory shown on Fig. 6c, which reverts to the upper branch
of x at the lowest saddle-node bifurcation. This “late” switching between alternate attractors
around the tipping points is called hysteresis.

Reading more. Background on phase plane analysis and the ecological models of Eqs. (1), (5),
and (7) can be found in various textbooks [1, 2]. The review paper [4] or the book by Marten
Scheffer [3] gives an excellent introduction into bi-stability and the potential early warning
signals in the system behavior around tipping points. All figures in this handout were made with
GRIND (http://tbb.bio.uu.nl/rdb/grind.html); in the computer practical you will make
similar pictures using an R-version of GRIND (http://tbb.bio.uu.nl/rdb/grindR.html).
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