
From the Lotka-Volterra model to bi-stability: computer practical.

Rob J. de Boer, Theoretical Biology, Utrecht University.

The phase portraits in the handouts were made with a computer program called GRIND,
for GReat INtegrator Differential equations (http://tbb.bio.uu.nl/rdb/grind.html). This
afternoon you will work with an R-script called grind.R that is easier to install, and can perform
very similar phase plane analysis (http://tbb.bio.uu.nl/rdb/grindR.html). Thanks to the
R-packages deSolve and rootSolve developed by Karline Soetaert and colleagues [7, 8, 10], it
was relatively easy to copy most of GRIND’s capabilities into R. People liking R may also like
this simple interface to phase plane analysis. Thanks to the FME package, also developed by
Karline Soetaert and colleagues [9], it was also relatively easy to extend GRIND with non-linear
parameter estimation. This resulted in an R-script grind.R defining five easy-to-use functions:
• run() integrates a model numerically and provides a time plot or a trajectory in the phase

plane,
• plane() draws nullclines and can provide a vector field or phase portrait,
• newton() finds steady states (using the Newton-Raphson method) and can provide the

Jacobian with its eigenvalues and eigenvectors.
• continue() continues a steady state along a parameter, thus providing a bifurcation dia-

gram.
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
The run() function calls ode() from the deSolve library, the fit() function calls modFit from
the FME library, and newton() and continue() call steady() from the rootSolve library.
Typing ?ode, etcetera, provides help on the options of these library functions. The following
section is a tutorial illustrating the usage of the grind.R’s phase-plane functions. Go for the
exercise as soon as you haved completed the tutorial. The full manual of grind.R is available
on the website http://tbb.bio.uu.nl/rdb/practicals/grindR/.

The best way to get started is to download our example analyzing the Lotka Volterra model. We
will work in the RStudio environment. If you work on your own laptop you will need to install
the Soetaert libraries by using Install Packages in the Tools menu of RStudio. (Experts may
prefer to type install.packages(c("deSolve", "FME", "rootSolve") in the R-console).
Download the R-scripts grind.R and lotka.R from the website http://tbb.bio.uu.nl/rdb/

practicals/grindR/ in a local directory, and open both of them via the File menu. It may
anyway be useful to set the working directory to the folder where your R-codes are stored (Set
working directory in the Session menu of RStudio). Files with then be opened and saved
in that directory.

First “Source” the grind.R file (button in right hand top corner) to define the functions, then
“Run” the model with its parameter and state definitions from the lotka.R script. In the
R-console below the lotka.R panel, one can then type the function calls given in the example
session below. Once you have a picture that you like, you may copy the lines creating that
figure into the lotka.R window for later usage. (Use “Run” or “Control Enter” to execute
lines from the lotka.R panel into the console).

Lotka Volterra model
The ODEs of the model are defined in the simple notation defined for the deSolve package.
The following is an example of the Lotka Volterra model, here defined by the function model().
This R-script is available as the file lotka.R on the website tbb.bio.uu.nl/rdb/practicals/

grindR/:

1

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dR <- r*R*(1 - R/K) - a*R*N

dN <- c*a*R*N - delta*N

return(list(c(dR, dN)))

})

}

p <- c(r=1,K=1,a=1,c=1,delta=0.5) # p is a named vector of parameters

s <- c(R=1,N=0.01) # s is the state

where the two lines below the function define the parameter values in the vector p, and the initial
state of the variables in the vector s. Note that the function returns a list of derivatives (dR,dN).
The names model, s, and p are the default designations for the model, state, and parameter
values in all grind.R functions. This example should be self explanatory as it just defines
the Lotka Volterra model dR/dt = rR(1 − R/K) − aRN , and dN/dt = caRN − δN , with its
parameter values and initial state as R-vectors, p <- c(r=1,K=1,a=1,c=1,d=1,delta=0.5),
and s <- c(R=1,N=0.01), respectively. The following tutorial is an example session illustrating
the usage of the first four grind.R functions, by simulating and analyzing this Lotka Volterra
model:

run() # run the model and make a timeplot

plane() # make a phase plane with nullclines

plane(xmin=-0.001,ymin=-0.001) # include the full axis in the phase plane

plane(tstep=0.5,portrait=T) # make a phase portrait

plane() # make a clean phase plain again

p["K"] <- 0.75 # change the parameter K from 1 to 0.75

plane(add=T) # add the new nullclines

s["R"] <- 0.1 # change the initial state to (R=0.1,N=0.01)

run(traject=T) # run the model and plot a trajecory

newton(c(R=0.5,N=0.5),plot=T) # find a steady state around (R=0.5,N=0.5)

f <- newton(c(R=0.5,N=0.5)) # store this steady state in f

continue(f,x="K",xmax=2,y="N") # continue this steady state while varying K

p["K"] <- 0.5 # set K to the value at which N goes extinct

plane(vector=T) # make a phase plane for this value of K

Cattle in the Sahel
Overgrazing by cattle in arid areas is known to lead to desertification. In the Sahel zone
one may find both barren areas and vegetated areas in the same region. This bistability has
been studied with models having saddle-node bifurcations [2–4]. We here study a toy model
describing the dynamics of water uptake in arid zones [2, 4]. The main idea is that in areas
with little vegetation coverage most of the (sometimes heavy) rainfall fails to penetrate into
the soil, and is rapidly washed off into rivers and disappears. In areas with somewhat more
vegetation water is better captured, but vegetation also consumes water by growth. Models for
vegetation growth in arid areas can remain simple because the availability of water in the soil
is typically the major limiting factor. This main idea is translated into the following model:

dW

dt
= R

(
w0 +

V

k2 + V

)
− rWW − gV W

k1 +W
,

dV

dt
= i+

cgV W

k1 +W
− dV ,

2

where R is the rainfall (in mm d−1), V is the vegetation biomass (in g m−2), and W is the
amount of water in the soil (mm). The model has two saturation constants, k1 (mm) defines
the amount of water at which the vegetation grows at half its maximal rate, and k2 (g m−2) is
the vegetation cover at which the penetration of water into the soil is R(w0 + 1/2) = 1.4 mm
d−1. Parameters of this model have been estimated by Rietkerk and Van de Koppel [4] and
HilleRisLambers et al. [2]:

Name interpretation value dimension
R rainfall 2 mm d−1

c conversion of water to plant biomass 10 g mm−1m−2

d death rate of vegetation 0.25 d−1

g maximum water uptake 0.05 mm g−1 m2 d−1

k1 half saturation constant 5 mm
k2 half saturation constant 5 g m−2

rW soil water loss due to evaporation 0.2 d−1

w0 water infiltration in absence of vegetation 0.2 —
i immigration of seeds/plants 0.01 g m−2 d−1

In the absence of a vegetation there is about 2 mm water in the soil. The death rate of the
vegetation is partly due to normal turnover and partly due to grazing by cattle. In the absence
of cattle the vegetation turnover is about d = 0.05 d−1, and the vegetation reaches a carrying
capacity of approximately 450 g m−2. Assume that a single cow per farm corresponds to a
grazing rate of 0.025 d−1. Buying cows in the model should increase d, e.g., p["d"]<-0.075,
and selling cows is the reverse. The model and its parameters are available on the website
http://tbb.bio.uu.nl/rdb/practicals/toy/ under the name cattle.R:

model <- function(t, state, parms) {

with(as.list(c(state,parms)), {

dW <- R*(w0 + V/(k2 + V)) - rW*W - g*V*W/(k1 + W)

dV <- i + c*g*V*W/(k1 + W) - (d + eps*t)*V

return(list(c(dW, dV)))

})

}

p <- c(R=2,c=10,d=0.25,g=0.05,i=0.01,k1=5,k2=5,rW=0.2,w0=0.2,eps=0)

s <- c(W=5,V=100)

plane(0,10,0.01,1000,log="y")

which defines the two ODEs, and a logarithmic axis for the vegetation because the vegetation
grows exponentially and covers a wide range of densities. For eps=0 this model is identical to
the ODEs defined above, setting eps>0 allows one to increase the herd size over time.
a. The first line of the script draws nullclines for a herd size of 8 cows per farm, i.e., for d=0.25.

Why is the water nullcline starting at 2 mm of water in the soil? Why is the vegetation
nullcline ending at 5 mm of water in the soil?

b. Identify the stability of all steady states and give each of them a biological interpretation.
c. Make a phase portrait by the plane(...,portrait=T) command. Which of the two vari-

ables has the fastest time scale, and is that reasonable?

3

d. Study the effect of increasing and decreasing the herd size by buying and selling cows. Make
a sketch of the expected vegetation cover as a function of the death and grazing rate d.

e. Make a bifurcation diagram by finding the three steady states (using newton()) and following
each of them using d as a bifurcation parameter (using continue()). For instance:

fhig <- newton(c(W=5,V=50),plot=T)

fmid <- newton(c(W=5,V=2),plot=T)

flow <- newton(c(W=2,V=0.1),plot=T)

continue(flow,x="d",xmax=0.5,y="V",ymin=0.01,ymax=1000,log="y")

continue(fmid,x="d",xmax=0.5,y="V",ymin=0.01,ymax=1000,log="y",add=T)

continue(fhig,x="d",xmax=0.5,y="V",ymin=0.01,ymax=1000,log="y",add=T)

f. Perform a similar analysis for the effect of the rainfall. What is the effect on the vegetation
of a few years of low, or high, rainfall, and how does this depend on the herd size?

g. Scheffer et al. [6] give a short overview of the current approaches to predict catastrophic
bifurcations in noisy biological systems (see also the book by Scheffer [5]). Have a look at
the paper and study the boxes on the underlying theory.

h. Apply their approach to the Sahel model by first adding noise to the rainfall, using the
grind.R-option after, that is executed after each time-step, and is here calling the R-
function rnorm(n,mean,stdev) for drawing random numbers:

after <- "parms[\"R\"]<-abs(rnorm(1,2,0.2))"

run(after=after,traject=T)

Next study the behavior of the model by very slowing changing the herd size starting in the
upper steady state. This can be done by setting the parameter eps to a non-zero value:

s <- c(W=5,V=100)

plane(0,10,0.01,1000,log="y")

f <- newton(plot=T)

p["eps"] <- 0.0001

run(1000,state=f,after=after,traject=T)

i. Do you obtain an early warning signal? What if the herd size changes even more slowly?
j. Do you receive an early warning signal in another variable of the model?
k. In the Scheffer et al. [6] paper they explain in a box how autocorrelations can be used as a

predictor. You can compute and visualize autocorrelations by saving the data from a run:
data <- run(table=T), and then call something like:

plot(data$V[1:nrow(data)-1],data$V[2:nrow(data)],type="p"), and/or
cor(data$V[1:nrow(data)-1],data$V[2:nrow(data)]).

l. Do you think you would be able to predict a catastrophic bifurcation, and what would be
the best approach to detect this?

m. If you know about the eigenvalues of the Jacobian matrix, study them in the neighborhood
of the bifurcation point by calling newton(), and predict in what variable to expect to see
most the early warning signals. Later this afternoon you could read the paper by Boerlijst
et al. [1] to learn when early warning signals are expected to be present.

June 4, 2017

4

References

[1] Boerlijst, M. C., Oudman, T., and De Roos, A. M., 2013. Catastrophic collapse
can occur without early warning: examples of silent catastrophes in structured ecological
models. PLoS. One. 8:e62033.

[2] HilleRisLambers, R., Rietkerk, M., Van den Bosch, F., Prins, H. H. T., and
De Kroon, H., 2001. Vegetation pattern formation in semi-arid grazing systems. Ecology
82:50–61.

[3] Noy-Meir, I., 1975. Stability of grazing systems: an application of predator-prey graphs.
J. Ecology 63:459–483.

[4] Rietkerk, M. and Van de Koppel, J., 1997. Alternate stable states and threshold
effects in semi-arid grazing systems. Oikos 79:69–76.

[5] Scheffer, M., 2009. Critical Transitions in Nature and Society. Princeton U.P., Princeton.

[6] Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R.,
Dakos, V., Held, H., Van Nes, E. H., Rietkerk, M., and Sugihara, G., 2009.
Early-warning signals for critical transitions. Nature 461:53–59.

[7] Soetaert, K., 2009. rootSolve: Nonlinear root finding, equilibrium and steady-state
analysis of ordinary differential equations. R package 1.6.

[8] Soetaert, K. and Herman, P. M., 2009. A Practical Guide to Ecological Modelling.
Using R as a Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

[9] Soetaert, K. and Petzoldt, T., 2010. Inverse modelling, sensitivity and monte carlo
analysis in R using package FME. Journal of Statistical Software 33:1–28.

[10] Soetaert, K., Petzoldt, T., and Setzer, R. W., 2010. Solving differential equations
in R: Package desolve. Journal of Statistical Software 33:1–25.

5

