
Quantifying T cell repertoire diversity

This practical uses the tcR package [4] to quantify the T cell repertoire data published by Warren et al. [5].
You will learn
• how to analyze complicated next generation sequencing (NGS) data on T cell repertoires
• to work with R using the tcR package
• how to study the gene-usage and diversity of a T cell repertoire
• to appreciate how difficult it is to estimate the diversity of the repertoire.
• you will become familiar with various measures for repertoire diversity and learn to read rarefaction curves.

Warren et al. [5] sequenced TCRβ genes from two blood draws that were taken 1 week apart from a healthy
male volunteer. Each blood draw contained about 10 × 106 cells and was sequenced on several lanes of an
Illumina sequencer. We analyze this data because it is publicly available, and because one can estimate the
diversity of the repertoire from the incidence of TCRs in the different lanes by the Chao2 estimator [2]. The
data was error-corrected by the R-TCR package [3], and the files from every lane are available in the directories
draw1 and draw2. Because there is less data in blood draw 2 we will start with that data set.

The manual of tcR can be found on https://cran.r-project.org/web/packages/tcR/tcR.pdf, and a tutorial
is available on http://imminfo.github.io/tcr/tcrvignette.html. All documents for the practical can be
found on the webpage: http://tbb.bio.uu.nl/rdb/practicals/tcr. Make a local directory (folder) on your
computer and save the practical.R and tcR RTR parser.R files in that directory. In the same directory make
a directory called draw2, and save the six .tsv files into that directory. Because it is convenient to use RStudio,
you should open practical.R in the RStudio interface. You probably have to install the tcR-library: type
install.packages(tcR) in the console, or use Install Packages in the Tools menu. You probably also have
to set the working directory to the folder where you stored all the files (Set working directory in the Session
menu). Then slowly proceed through the practical.R script by running it line-by-line (using Control Enter).
Make sure that you understand what is happening, and make notes.

Project 1. Read the data and look at the first few lines of the data structure to see what is in the data (e.g.,
by typing head(lanes[[1]])). Next provide answers to the following biological questions:
1. How many distinct TCRβ sequences are present in each library of blood draw 2? Hint: use the repseq.stats()

from the tcR package (which also gives the coverage of the data). Note that the number of distinct species
defines the diversity of each lane (this simplest measure of diversity is also known as species “richness”).

2. Are all libraries exhaustively sequenced (i.e., do you think the coverage is sufficient)?
3. How many distinct TCRβ sequences are present in blood draw 2? Why is this not the sum of the richness

of all the lanes?
4. Study the distribution of the clone sizes (e.g., by typing hist(log10(lanes[[1]]$Read.count))). How

many clones are large, how many are small? Hint: use the top.proportion() and clonal.space.homeostasis()

functions of tcR. What is the difference between these two functions, and which one do you find most infor-
mative?

5. What is a Simpson diversity, and what is the Simpson diversity of the lanes and the whole blood draw2?
Hint: read the definition of Simpson diversity on Wikipedia, and use the repDiversity() function of tcR.
Note that this function knows several more diversity measures.

6. What is the overlap in TCRs between the various libraries? Hint: use repOverlap, and study the different
measures for the overlap (e.g., exact and jaccard).

7. The 6 Illumina lanes actually came from 5 PCR libraries. Can you tell which two lanes are from the same
library?

Project 2. Human TCR β chains are formed by random rearrangement of 50 V and 13 J gene segments, and
all clones using a particular V-J combination can be called a family. Let’s study the frequencies with which the
different V and J-segments are used in the repertoire.
1. Are there any V gene segments that are more commonly used than others? Is that a consistent pattern in

all libraries? Hint: use the geneUsage() function.
2. Which J gene segments are very common in this volunteer?
3. Investigate a couple of V-J families more closely by studying their diversity. Start with a large family. Hint:

a family can be created using the subset() function of R.
4. Study the amino acid usage of the families you picked. For instance, save all TCRs of a given length

from a large V-J family to generate a sequence logo. Hint: use subset() to select a certain length and
write.table() to print al CDR3s to a file, and use WebLogo (http://weblogo.berkeley.edu/logo.cgi)
to generate the logo. Can you predict the germline sequence underlying this family?
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Project 3. Now that we know how to study the lengths of CDR3 sequences, we can repeat the analysis of
Arstila et al. [1]. They were ahead of their time because NGS did not exist yet, and they estimated the diversity
of TCR β repertoire by Sanger sequencing all CDR3s of one particular length in a given V-J family. Knowing the
frequency with which this V-J combination is used (from antibody data) and knowing the fraction of sequences
of that length within the family (from the relative fluorescence intensity of the band (finger) on the gel in which
the TCRs were separated on length by electrophoresis), they extrapolated from this single finger to the whole
repertoire. Due to the limited sequencing technology in those days, the estimate was based upon just a few
sequences (about 10–20), and hence the extrapolation seems bold. We can now test how bold because we have
many more sequences, and we know for all families the number of clones of any length, and from the usage of
the V-J combinations we know the frequencies of all families.
1. Pick a few families and a few lengths and repeat their analysis. Try to include a finger with 10–20 TCRs.
2. How robust is their estimate?

Project 4. Can you estimate the diversity (richness) of the whole repertoire? Rarefaction curves provide an
interesting graphical approach to study whether the samples were sufficiently large to estimate the total body
diversity. Note that there are two issues here: we need to sample enough cells to have a representative sample
of the total body repertoire, and this sample has to be sequenced deep enough such that all unique TCRs are
detected. Another approach is the Chao2 diversity estimate, which uses the incidence of clones in the samples
[2]. The ratio of singletons over doubletons provides a measure for the diversity because a large number of
species that are present in just one sample indicates that the total diversity is much larger than the current
diversity of the samples.
1. Make sure you understand what a rarefaction curve is, and make them using the rarefaction() function

of tcR.
2. Compute the Chao2 diversity using the function provided in the R-script.
3. Since blood draw one is much larger (and has sequencing 22 lanes made from 11 PCR libraries), one could

add these samples to obtain a better estimate of the diversity. So save the lanes of blood draw 2 (lanes2 <-

lanes) and return to the beginning of the script to read the lanes from blood draw one. Check the richness
and the coverage of all lanes in blood draw one, and infer which lanes came from the same library.

4. Use the lanes from both blood draws to estimate the diversity. How many TCRs do you have in both
samples? Do the rarefaction curves suggest saturation? What is the Chao2 estimate?

5. Do you think you have a fair estimate of the diversity of the TCR repertoire of this volunteer?

June 28, 2016. Bram Gerritsen, Aridaman Pandit & Rob J. de Boer
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practical.R

#i n s t a l l . packages (” tcR”)

source ( ”tcR RTCR par se r .R” )
l i b r a r y ( tcR )
l i b r a r y ( t o o l s )

# Read a l l l ane s from the d i r e c t o r y ” d i r ”
l ane s <− l i s t ( )
d i r <− ”draw2”
f i l enames <− l i s t . f i l e s ( d i r )
f o r ( i in 1 : l ength ( f i l enames ) ) {

l an e s [ [ i ] ] <− parse . r t c r ( f i l e . path ( dir , f i l enames [ [ i ] ] ) )
}
names ( l ane s ) <− f i l e path sans ext ( f i l enames )

# Merge a l l l ane s in to a separa t e data frame
merged <− group . c l onotypes ( do . c a l l ( rbind , l ane s ) , . gene . c o l=NA, . seq . c o l=”CDR3. nuc l e o t i d e .

sequence ” )

# Look at the data
head ( l ane s [ [ 1 ] ] )
s t r ( l ane s [ [ 1 ] ] )

# How many TCRs in every lane , how many in a l l ? What i s the Simpson d i v e r s i t y ?
repseq . s t a t s ( l ane s )
repseq . s t a t s (merged )
r epD ive r s i t y ( lanes , ’ inv . simp ’ , ’ read . prop ’ )
r epD iv e r s i t y (merged , ’ inv . simp ’ , ’ read . prop ’ )

# What i s the c lone s i z e d i s t r i b u t i o n ?
h i s t ( log10 ( l ane s [ [ 1 ] ] $Read . count ) )
top . propor t ion ( lanes , 10) # Fract ion o f ten l a r g e s t c l one s
top . propor t ion ( lanes , 100)
v i s . top . p ropor t i on s ( l ane s ) # Graphica l r ep r e s en t a t i on

b ins <− c l o na l . space . homeostas i s ( l ane s ) # Binning c l o n e s i z e s
b ins
v i s . c l o n a l . space ( b ins ) # Graphical r ep r e s en t a t i on

# What i s the over lap between the l ane s ?
repOverlap ( lanes , ’ exact ’ , . norm = F)
v i s . heatmap ( i n t e r s e c tC l o n e s e t s ( l ane s ) )
repOverlap ( lanes , ’ j a c ca rd ’ )
v i s . heatmap ( repOverlap ( lanes , ’ j a c ca rd ’ ) )

# What i s the V and J gene usage ?
geneUsage ( lanes , HUMAN TRBV)
v i s . gene . usage ( geneUsage (merged , HUMAN TRBV) )
v i s . gene . usage ( geneUsage ( lanes , HUMAN TRBV) , . dodge = T)
v i s . gene . usage ( geneUsage ( lanes , HUMAN TRBJ) , . dodge = T)
v i s . gene . usage ( geneUsage ( lanes , l i s t (HUMAN TRBV, HUMAN TRBJ) ) )

# What i s the CDR3 length d i s t r i b u t i o n o f one fami ly in the merged data ?
fami ly <− subset (merged , V. gene == ”TRBV20−1” & J . gene == ”TRBJ2−1” )
repseq . s t a t s ( fami ly )
v i s . count . l en ( fami ly )
v i s . count . l en ( fami ly ) + s c a l e x cont inuous ( breaks=seq (27 ,100 , by=3) )
f i n g e r <− subset ( fami ly , nchar (CDR3. nuc l e o t i d e . sequence ) == 45)
wr i t e . t ab l e ( f i n g e r $CDR3. amino . ac id . sequence , f i l e = ” f i n g e r . csv ” , row . names = F, quote = F,

c o l . names = F)

# Redo the Ar t i l a a n a l y s i s f o r t h i s f i n g e r
repseq . s t a t s ( f i n g e r )
repseq . s t a t s ( fami ly )
f i n g e r f r a c <− repseq . s t a t s ( f i n g e r ) [ ”Sum. reads ” ] / repseq . s t a t s ( fami ly ) [ ”Sum. reads ” ]
fami ly f r a c <− repseq . s t a t s ( fami ly ) [ ”Sum. reads ” ] / repseq . s t a t s (merged ) [ ”Sum. reads ” ]
a r s t i l a <− repseq . s t a t s ( f i n g e r ) [ ”Clones ” ] / f i n g e r f r a c / fami ly f r a c
a r s t i l a / repseq . s t a t s (merged ) [ ”Clones ” ]

# Make Rare fac t i on curves f o r each lane and f o r the merged data
ra r <− r a r e f a c t i o n ( lanes , . c o l = ”Read . count” )
v i s . r a r e f a c t i o n ( ra r )
ra r <− r a r e f a c t i o n (merged , . c o l = ”Read . count” )
v i s . r a r e f a c t i o n ( ra r )
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# Compute the Chao2 d i v e r s i t y from the in c i d enc e o f each TCR in a l l l ane s
# s = number o f observed s p e c i e s ; n = number o f samples
# f1 = number o f s p e c i e s occur ing only once ; f 2 = sp e c i e s occur ing twice
chao2 <− f unc t i on ( s , n , f1 , f 2 ) {

i f ( f 2 == 0) {
r e turn ( s + ( ( n−1)/n) ∗ f 1 ∗ ( f1−1)/ (2 ∗ ( f 2+1) ) )

} e l s e {
r e turn ( s + ( ( n−1)/n) ∗ ( f 1 ˆ2) / (2 ∗ f 2 ) )

}
}

shared <− shared . r e p e r t o i r e ( l ane s )
tab <− t ab l e ( shared $People )
chao2 (sum( tab ) , l ength ( l ane s ) , tab [ ”1” ] , tab [ ”2” ] )

l ane s2 <− l an e s # Save your l ane s

# Now read the l ane s from blood draw 1 , i . e . , goto above , and redo what you l i k e
# Then make a r a r e f a c t i o n curve and compute the Chao2 index o f a l l data

a l l l ane s <− append ( lanes , l ane s2 ) # Combine the 22 + 6 lane s
merged <− group . c l onotypes ( do . c a l l ( rbind , a l l l an e s ) , . gene . c o l=NA, . seq . c o l=”CDR3. nuc l e o t i d e .

sequence ” )
repseq . s t a t s (merged )
ra r <− r a r e f a c t i o n (merged , . c o l = ”Read . count” )
v i s . r a r e f a c t i o n ( ra r )

shared <− shared . r e p e r t o i r e ( a l l l an e s )
tab <− t ab l e ( shared $People )
chao2 (sum( tab ) , l ength ( a l l l ane s ) , tab [ ”1” ] , tab [ ”2” ] )
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