
Estimating lymphocyte turnover by deuterium labeling

This practical describes a few approaches to estimate the life spans of lymphocytes from deuterium
data. This text is based upon the Appendix of the paper of Vrisekoop et al. [9] and the review of
De Boer and Perelson [3]. You will learn
• how to perform non-linear parameter estimation by fitting fairly complicated data
• that T cell memory is maintained by short lived cells, and that naive T cells are extremely long-lived,
• that the selection of the most appropriate model is of utmost importance because different models

give different estimates,
• and hence that quantification of cellular population dynamics is far from trivial.

Volunteers and patients can drink heavy water (2H2O) for weeks. During the labeling period deuterium
is build into the newly synthesized DNA strands of cells that divide. Labeled DNA strands will
subsequently disappear by cell death. We here fit data of five volunteers whom have been drinking
a glass of 4% deuterated water for nine weeks. Because the fraction of heavy water in body water is
similar to that in urine, one typically measures the urine enrichment, and models this by the differential
equation du/dt = f − δu, where f represents the fraction of 2H2O in the drinking water, and δ is the
turnover rate of body water per day. During the de-labeling phase, starting at τ = 63 days, we simply
set f = 0. The initial condition, u(0) = β, is set by the initial deuterium boost that is given at day
zero to rapidly approach the steady state u(∞) = f/δ. This simple ODE has the piece wise solution

u(t) =

{
f(1− e−δt) + βe−δt , if t ≤ τ ,[
f(1− e−δτ ) + βe−δτ )

]
e−δ(t−τ), otherwise ,

(1)

which is provided by the function urine() in the accompanying R documents.

A general model for a population of leucocytes that is produced at rate s (for source), is maintaining
itself by cell division at rate p (for proliferation), and with cells that die at rate d is

dT

dt
= s+ (p− d)T with steady state T̄ =

s

d− p
, (2)

where T stands for total cell numbers in some volume. Without loss of generality this steady state
can be scaled to T̄ = 1, giving that s = d − p. At steady state conditions the model therefore has
two parameters. From this “master” equation one derives a model for the fraction of labeled strands,
L(t),

dL

dt
= γ(t)s+ γ(t)pL+ γ(t)pU − dL , (3)

where γ(t) is the rate at which newly synthesized DNA in a dividing cell is incorporating deuterium
(which should be proportional to the deuterium concentration in the serum u(t), see below). Note
that in cells dividing during the labeling phase both unlabeled and labeled DNA strands are copied
into labeled DNA strands, and that labeled strands disappear by cell death when γ(t) = 0. Because
L(t) + U(t) = 1 this simplifies into

dL

dt
= γ(t)(s+ p)− dL or, at steady state,

dL

dt
= γ(t)d− dL . (4)

The latter is provided by the function model() in the accompanying R documents. Fortuitously, this
model can be used both for populations maintained entirely by the source, i.e., dT/dt = s− dT as its
steady state T̄ = 1 = s/d implies s = d, and for populations maintained entirely by self renewal, i.e.,
dT/dt = (p− d)T as its steady state implies p = d [3].

Since deuterium can be incorporated at several positions of the adenosine moiety that is analyzed by
the gas chromatography mass spectrometry (GC-MS), the enrichment of this moiety is expected to
exceed that of the body water. One therefore expects an amplification factor, c, that is estimated from

1



the estimated plateau enrichment of a fast population of cells (here granulocytes). This is achieved
by fitting Eq. (1) to the urine data, substituting γ(t) = cu(t) into Eq. (4), and fitting that to the
granulocyte data of Vrisekoop et al. [9]. This is achieved in the script granul.R.

A popular model to describe deuterium labeling data was proposed by Asquith and her co-workers
[1]. They argue that in kinetically heterogeneous populations the label should accumulate faster in
sub-populations that are turning over more rapidly. The initial up-slope during the labeling phase
should reflect the average turnover rate, p, and the labeled cells should die at a rate d (typically called
d∗) that is faster than p. Hence they write Eq. (4) as

dL

dt
= γ(t)p− dL , (5)

which is provided by the function modelp() in the tcells.R script. According to this model the
population will not approach the same enrichment of the fast population because this model has an
asymptote L(∞) = γ(∞)p/d < γ(∞) (as p < d). To repair this the death rate of labeled cells should
decrease over time and ultimately approach the average turnover rate p [3].

A more mechanistic model to describe kinetically heterogeneous populations was proposed by Ganusov
et al. [4], and basically generalizes Eq. (4) into the sum of several sub-populations with different
turnover rates di, and where L =

∑n
i αiLi. Here αi is the fractional size of sub-population i, and Li

obeys the very similar
dLi
dt

= γ(t)di − diLi . (6)

The basic procedure to fit this model to deuterium data is to start with one sub-population, n = 1,
and increase the number of compartments, n, until the best fit is obtained [4, 10]. (What is best should
be defined statistically by the F-test, as the quality of the fit will always improve when the number
of parameters is increased). A two compartment version of this model is provided by the function
model2() in the tcells.R script. The average turnover rate of this model is defined as d̄ =

∑n
i αidi,

and d̄ is fortunately much more identifiable than the estimates of the individual αi and di parameters
[2, 4, 10]. The average life span of the cells in the entire population is defined as 1/d̄. Finally, note
that this is a nested set of models as the one and two parameter model can be defined by Eq. (6) by
setting α1 = d2 = 0 or by setting d2 = 0.

Running with grind.R.

Today you will work with an R-script called grind.R that is a wrapper around the R-packages deSolve,
FME and rootSolve developed by Karline Soetaert and colleagues [5–8]. These packages allow one
to solve differential equations, find their steady state, and perform nonlinear parameter estimation.
Today you only need three of grind.R’s easy-to-use functions:
• run() integrates a model numerically and provides a time plot or a trajectory in the phase plane,
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
• timePlot() plots a data frame.
The run() function calls ode() from the deSolve library, and the fit() function calls modFit from
the FME library. For instance, typing ?ode, provides help on the ode() function. The full manual of
grind.R is available on the website http://tbb.bio.uu.nl/rdb/practicals/grindR/.

We will work in the RStudio environment. If you work on your own laptop you will need to install the
Soetaert libraries by using Install Packages in the Tools menu of RStudio. (Experts may prefer
to type install.packages(c("deSolve","FME", "rootSolve") in the R-console). All documents
can be found on the webpage http://tbb.bio.uu.nl/rdb/practicals/deuterium. Download the
R-scripts grind.R, granul.R, and tcells.R, and store them in a local directory, and open them
via the File menu. Next download the data file Vrisekoop pnas08.csv, and store it in the same
folder. Set the working directory of RStudio to the folder where your R-codes and data are stored
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(Set working directory in the Session menu of RStudio). Files will then be opened and saved in
that directory.

First “Source” the grind.R file (button in right hand top corner) to define the functions, then “Run”
the first part of the granul.R script to define the models and a few convenient functions (button in
right hand top corner). It is useful to first highlight everything up to the line Here the session

starts, and “Run” that highlighted section, and subsequently run the script line-by-line. Do read
this first part to know what we predefined for you (this R-code is fairly readable). In the R-console
one can type and call any function in R. (Use “Run” or “Control Enter” to execute lines from the
code panel into the console). Subsequently proceed through the granul.R file by selecting line and
Run that using Control Enter.

Estimating the amplification factor

The main mission of this practical is to fit the data of the Vrisekoop et al. [9] data with the various
models explained above to study how the estimated turnover rates, or life spans, of the various
populations of T lymphocytes depend on the choice of the model. Fit the memory T cell data to
the models with one (model()), two (modelp()) and three parameters (model2()), and study which
model best describes the data, and how the estimated death rates depends on the choice of the model.
This can be done for the CD4+ and CD8+ memory T cell data of all five volunteers (i.e., 2 × 3 × 5
fits). When you finish early, try the same for the naive T cell data (using model() and modelp()

only). Make sure you understand what happens when you execute a line of the R-scripts, and provide
answers to the following questions:
1. What is the turnover rate of body water per day in volunteer one? How confident are you of this

estimate? Note that you can add bootstrap=100 to the call of myfit to obtain confidence intervals
(but this takes long). What is his/her expected life span of neutrophils? Does this make sense?
How confident are you of the estimate of the amplification factor c? Do you think the neutrophil
population is fast enough to accurately estimate the amplification factor c?

2. To obtain the most reliable estimate of the amplification factor, we estimate one c and one gran-
ulocyte death rate, d, from all five patients, while giving each of them their own kinetics for the
heavy water. Is this general c very different from the individual amplification factors? If you are
on a fast computer, try to get a confidence interval for c, because this is the parameter required in
the next session.

Estimating T cell turnover.

Copy your estimate of c into the R-script tcells.R. Again Run the first part of the script until the
line Here the session starts:
1. Fit the memory T cell data of every volunteer to each of the three models.
2. What is the expected lifespan of memory T cells? How do these estimates depend on the choice of

the model?
3. Which model provides the best description of the data? Use the ftest() function.
4. How confident are you of these estimates (perform bootstrapping)?
5. How can we have life long T cell memory to many pathogens?
6. Which model seems most appropriate for describing the CD4+ naive T cells? What is your best

estimate for the expected life span on CD4+ naive T cells?

June 14, 2017, Rob J. de Boer
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granul.R

ur ine <− f unc t i on ( t , s ta te , parms ) { # sta t e i s a dummy va r i ab l e
with ( as . l i s t ( parms ) , {

U <− i f e l s e ( t < tau ,
f ∗(1−exp(−de l t a ∗ t ) )+beta ∗exp(−de l t a ∗ t ) ,
( f ∗(1−exp(−de l t a ∗ tau ) )+beta ∗exp(−de l t a ∗ tau ) ) ∗exp(−de l t a ∗ ( t−tau ) ) )

re turn (U)
})

}

model <− f unc t i on ( t , s ta te , parms ) {
with ( as . l i s t ( c ( s ta te , parms ) ) , {

dL <− d∗c∗ ur ine ( t ,NULL, parms ) − d∗L
return ( l i s t (dL) )

})
}

a s i n s q r t <− f unc t i on (x ) re turn ( a s in ( sq r t ( x ) ) )

myf it <− f unc t i on ( data , model , who , . . . )
r e turn ( f i t ( datas=data , odes=model , who=who , fun=as in sq r t , lower =0 , . . . ) )

s e l e c t <− f unc t i on ( i ) {
pat i en t <− subset ( rawdata , rawdata$ pa t i en t == i )
pa t i en t <− pat i en t [ ( pa t i en t $ time < 200) , ] # Use ea r l y time po in t s only
re turn ( na . omit ( pa t i en t [ 2 : 4 ] ) )

}

opar <− par ( ) ; par (mar=c ( 2 . 6 , 2 . 6 , 1 . 6 , 0 . 2 ) ,mgp=c ( 1 . 5 , 0 . 5 , 0 ) )

# Here the s e s s i o n s t a r t s :
rawdata <− read . csv ( ”Vrisekoop pnas08 . csv ” )
f o r ( i in seq (4 , 8 ) ) # Set negat ive va lue s to zero

rawdata [ , i ] <− sapply ( rawdata [ , i ] ,max , 0 )
data <− l app ly ( seq (5 ) , s e l e c t ) # Urine & granu los from 5 pa t i en t s

# I n i t i a l parameters
p <− c ( beta =0.01 , f =0.018 , d e l t a =0.05 , tau=63, c=2,d=0.1)
tweak <− ” nso l<−cbind ( nsol , u r ine ( times ,NULL, parms ) ) ; names ( n so l ) [ 2 : 3 ]<−c (\ ”G\” ,\ ”U\” ) ”

4



s <− c (L=0) # I n i t i a l s t a t e
t imePlot ( data [ [ 1 ] ] ) # Plot the f i r s t data s e t
run (200 , tweak=tweak , add=T) # add the s o l u t i o n o f the model

# Fit the ur ine and granulo data toge the r : Estimate one c and d
who <− c ( ”c” , ”d” , ” beta ” , ” f ” , ” de l t a ” ) # s e l e c t f r e e parameters
f i t 1 <− myfit ( data [ [ 1 ] ] , model , who , tweak=tweak ) # Fit one data s e t
d i f f e r <− c ( ” beta ” , ” f ” , ” de l t a ” ) # subset that d i f f e r s between data s e t s
par (mfrow=c (3 , 2 ) )
f a l l <− myfit ( data , model , who , tweak=tweak , d i f f e r=d i f f e r , main=seq (5 ) , l egend=F)
par (mfrow=c (1 , 1 ) )
p a l l <− f a l l $par
p r i n t ( ”Shared C & Granulo turnover : ” )
p a l l [ 1 : 2 ]

tcells.R

ur ine <− f unc t i on ( t , s ta te , parms ) { # sta t e i s a dummy va r i ab l e
with ( as . l i s t ( parms ) , {

U <− i f e l s e ( t < tau ,
f ∗(1−exp(−de l t a ∗ t ) )+beta ∗exp(−de l t a ∗ t ) ,
( f ∗(1−exp(−de l t a ∗ tau ) )+beta ∗exp(−de l t a ∗ tau ) ) ∗exp(−de l t a ∗ ( t−tau ) ) )

re turn (U)
})

}

model <− f unc t i on ( time , s ta te , parms ) {
with ( as . l i s t ( c ( s ta te , parms ) ) , {

dL <− d∗c∗ ur ine ( time ,NULL, parms ) − d∗L
return ( l i s t (dL) )

})
}

modelp <− f unc t i on ( time , s ta te , parms ) {
with ( as . l i s t ( c ( s ta te , parms ) ) , {

dL <− p∗c∗ ur ine ( time ,NULL, parms ) − d∗L
return ( l i s t (dL) )

})
}

model2 <− f unc t i on ( t , s ta te , parms ) {
with ( as . l i s t ( c ( s ta te , parms ) ) , {

dL1 <− d1∗c∗ ur ine ( t ,NULL, parms ) − d1∗L1
dL2 <− d2∗c∗ ur ine ( t ,NULL, parms ) − d2∗L2
return ( l i s t ( c (dL1 , dL2) ) )

})
}

a s i n s q r t <− f unc t i on (x ) re turn ( a s in ( sq r t ( x ) ) )

f t e s t=func t i on ( ss r1 , p1 , s s r2 , p2 , n) {
i f ( p2 > p1 ) {

df1 <− p2−p1
df2 <− n−p2
f <− ( ( s s r1−s s r 2 ) / df1 ) / ( s s r 2 / df2 )
cat ( ”F [ ” , df1 , ” , ” , df2 , ” ] =” , f , ” : P = ” ,1−pf ( f , df1 , df2 ) , ”\n” )

} e l s e
f t e s t ( s s r2 , p2 , s s r1 , p1 , n)

}

myfit <− f unc t i on ( data , model , who , . . . )
r e turn ( f i t ( datas=data , odes=model , who=who , fun=as in sq r t , lower=0,upper=1, a r r e s t=”tau”

, . . . ) )

opar <− par ( ) ; par (mar=c ( 2 . 6 , 2 . 6 , 1 . 6 , 0 . 2 ) ,mgp=c ( 1 . 5 , 0 . 5 , 0 ) )

5



# Here the s e s s i o n s t a r t s :
rawdata <− read . csv ( ”Vrisekoop pnas08 . csv ” )
f o r ( i in seq (4 , 8 ) ) rawdata [ , i ] <− sapply ( rawdata [ , i ] ,max , 0 )

id <− 3
pa t i en t <− subset ( rawdata , rawdata$ pa t i en t == id )
udata <− na . omit ( pa t i en t [ 2 : 3 ] ) # Urine data
tdata <− na . omit ( cbind ( pa t i en t [ 2 ] , pa t i en t [ ”M4” ] ) ) # Se l e c t Memory CD4
names ( udata ) [ 2 ] <− ”L” ; names ( tdata ) [ 2 ] <− ”L” # Rename columns 2

par (mfrow=c (2 , 2 ) )
s <− c (L=0)
p <− c ( beta =0.01 , f =0.012 , d e l t a =0.05 , tau=63)
p [ ” beta ” ] <− udata [ 1 , 2 ] # Get guess f o r beta from data
who <− c ( ” beta ” , ” f ” , ” de l t a ” )
fu <− myfit ( udata , ur ine , who , s o l u t i o n=T, main=” ur ine ” )

p <− c ( fu $par , tau=63, c=4.37 ,d=0.05)
s <− c (L=0) # I n i t i a l s t a t e
who <− c ( ”d” ) # Se l e c t f r e e parameters
f 0 <− myfit ( tdata , model , who , main=id )
p r i n t ( c ( f 0 $par [ ”d” ] , Li feSpan=1/as . numeric ( f 0 $par [ ”d” ] ) ) )

p <− c ( fu $par , tau=63, c=4.37 ,d=0.05 ,p=0.01)
who <− c ( ”d” , ”p” )
fp <− myfit ( tdata , modelp , who , main=id )
p r i n t ( c ( fp $par [ ”p” ] , Li feSpan=1/as . numeric ( fp $par [ ”p” ] ) ) )

f t e s t ( f 0 $ s s r , l ength ( f 0 $par ) , fp $ ss r , l ength ( fp $par ) , nrow ( tdata ) )

s <− c (L1=0,L2=0)
p <− c ( fu $par , tau=63, c=4.37 , alpha =0.5 , d1=0.05 , d2=0.001)
who <− c ( ” alpha ” , ”d1” , ”d2” )
tweak <− ” nso l<−cbind ( nsol , parms [\ ” alpha \” ] ∗ nso l [ ,2]+(1−parms [\ ” alpha \” ] ) ∗ nso l [ , 3 ] ) ;

names ( n so l ) [ 4 ]<−\”L\””
f2 <− myfit ( tdata , model2 , who , tweak=tweak , main=id )
p r i n t ( c ( ”Average death ra t e : ” , with ( as . l i s t ( f 2 $par ) , alpha ∗d1+(1−alpha ) ∗d2 ) ) )

f t e s t ( f 0 $ s s r , l ength ( f 0 $par ) , f 2 $ s s r , l ength ( f 2 $par ) , nrow ( tdata ) )
par (mfrow=c (1 , 1 ) )
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