
doi:10.1182/blood-2013-03-488411
Prepublished online August 14, 2013;
2013 122: 2205-2212
 
 
 

 
Borghans
Gaiser, Mariëtte T. Ackermans, Becca Asquith, Rob J. de Boer, Kiki Tesselaar and José A. M.
Kwast, Thomas Volman, Elise H. R. van de Weg-Schrijver, István Bartha, Gerrit Spierenburg, Koos 
Liset Westera, Julia Drylewicz, Ineke den Braber, Tendai Mugwagwa, Iris van der Maas, Lydia
 
isotope-labeling studies in mice and humans
Closing the gap between T-cell life span estimates from stable

 http://bloodjournal.hematologylibrary.org/content/122/13/2205.full.html
Updated information and services can be found at:

 (5086 articles)Immunobiology   �
Articles on similar topics can be found in the following Blood collections

 http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#repub_requests
Information about reproducing this article in parts or in its entirety may be found online at:

 http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#reprints
Information about ordering reprints may be found online at:

 http://bloodjournal.hematologylibrary.org/site/subscriptions/index.xhtml
Information about subscriptions and ASH membership may be found online at:

 Copyright 2011 by The American Society of Hematology; all rights reserved.
Washington DC 20036.
by the American Society of Hematology, 2021 L St, NW, Suite 900, 
Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published weekly
 
 
 
 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

 only.
For personal use at Universiteitsbibliotheek Utrecht on September 30, 2013. bloodjournal.hematologylibrary.orgFrom 

http://bloodjournal.hematologylibrary.org/content/122/13/2205.full.html
http://bloodjournal.hematologylibrary.org/cgi/collection/immunobiology
http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#repub_requests
http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#reprints
http://bloodjournal.hematologylibrary.org/site/subscriptions/index.xhtml
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


Regular Article

IMMUNOBIOLOGY
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Key Points

• Life span estimates can be
sensitive to the duration of
stable isotope label
administration, explaining
discrepancies in the literature.

• Multiexponential models are
needed to obtain reliable
leukocyte life span estimates.

Quantitative knowledge of the turnover of different leukocyte populations is a key to our

understanding of immune function in health and disease. Much progress has been

made thanks to the introduction of stable isotope labeling, the state-of-the-art technique

for in vivo quantification of cellular life spans. Yet, even leukocyte life span estimates

on the basis of stable isotope labeling can vary up to 10-fold among laboratories. We

investigated whether these differences could be the result of variances in the length of

the labeling period among studies. To this end, we performed deuterated water-labeling

experiments in mice, in which only the length of label administration was varied. The

resulting life span estimates were indeed dependent on the length of the labeling period

when the data were analyzed using a commonly used single-exponential model. We

show that multiexponential models provide the necessary tool to obtain life span estimates

that are independent of the length of the labeling period. Use of a multiexponential model

enabled us to reduce the gap between human T-cell life span estimates from 2 previously published labeling studies. This provides an

important step toward unambiguous understanding of leukocyte turnover in health and disease. (Blood. 2013;122(13):2205-2212)

Introduction

Quantitative insights into leukocyte turnover is vital to a better
understanding of immune function in health and disease.1,2 These
insights help understand the pathogenesis and treatment of clinical
conditions of leukocyte depletion, such as HIV infection,3 bone
marrow transplantation, or chemotherapy; and leukocyte excess,
including leukemia.4 In vivo stable isotope labeling with deuterated
(heavy) water (2H2O) or deuterated glucose is one of the most reliable
ways to measure leukocyte turnover, because deuterium labeling
can be safely applied in humans and does not interfere with cell
turnover at the doses used.2,5 Nevertheless, T-cell life span estimates
can differ up to 10-fold among stable isotope-labeling studies.2 The
cause of this discrepancy has yet to be elucidated.

A meta-analysis of different stable isotope-labeling studies
revealed a positive correlation between the estimated T-cell life
span and the duration of label administration.2 Studies based on
deuterated glucose, which is typically administered for shorter
periods than 2H2O, have consistently yielded shorter average life
spans than studies based on heavy water.2 Although it cannot be
excluded that a difference between the 2H-labeled compounds may
have an influence,1 the correlation between the expected life span

and the length of the labeling period remained when comparing
life span estimates derived from glucose labeling or water labeling
separately.2 This finding suggests that at least some of the discrep-
ancy between estimated T-cell life spans from stable isotope-labeling
studies is attributable to the duration of label administration.

Mathematical modeling is essential for the interpretation of stable
isotope-labeling data. Typically, these models are differential
equations, which are based on the assumption that cellular events
such as division and death are distributed exponentially. Depending
on the complexity of the population structure of the model, its solution
involves 1 to several exponentials. Therefore, we refer to these
models as exponential models. A major step forward was made
by Asquith et al,6 who argued that if a cell population is kinetically
heterogeneous (ie, a population comprising multiple subpopula-
tions with different turnover rates, or a population in which recently
divided cells and quiescent cells have different life expectancies),
the rate of label uptake during the labeling period may not be equal
to the rate at which label is lost after label cessation, because the
kinetics of labeled cells may not be representative of the cell popu-
lation as a whole. To account for this heterogeneity, a model was
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proposed that distinguishes 2 parameters: the average turnover rate
(p), and the average disappearance rate of labeled cells (d*).
This model is now commonly used4,7-11 and has stressed the
importance of deducing average life spans from p. The rate of d*
has previously been shown to be dependent on the length of the
labeling period: the shorter the labeling period, the stronger the
bias toward rapidly proliferating cells in the labeled fraction, and
hence the faster the loss of label d*.6 To date, why also p is higher
(and hence the average life span shorter) in short-term compared with
longer-term labeling studies2 has not been experimentally addressed.

Unlike delabeling curves, which may vary according to the
length of the labeling period, the shape of the uplabeling curve is
independent of the length of the labeling period. It is determined by
the weighted average of turnover rates of all subpopulations, and
its initial slope should reflect p (Figure 1A). Here, we test the
hypothesis that during long-term labeling, the label uptake of cells
with fast turnover may start to saturate7 (Figure 1A). If label
administration is continued beyond this point, subsequent label
accrual occurs mainly because of cells with relatively slow kinetics.
Because single-exponential models cannot capture the saturation
behavior and, instead, are forced to make a compromise, p could
become increasingly underestimated as the length of the labeling
period increases (Figure 1B). This mechanism might explain the
positive correlation between the estimated T-cell life span and the
length of the labeling period observed in the literature.

Here, we have investigated this hypothesis by performing 2H2O
labeling experiments in mice in which only the duration of label
administration was varied. We confirm that life spans estimated by
fitting single-exponential models to stable isotope labeling data are

sensitive to the length of the labeling period. When using a multi-
exponential model (describing label accrual with more than 1
exponential), which explicitly captures kinetic heterogeneity within
a cell population12 (Figure 1B), we found that life span estimates
became independent of the duration of label administration. By
labelingmice in utero to have all leukocytes of newbornmice equally
labeled, we confirmed that the life span estimates that were obtained
with the multiexponential model were reliable. Application of the
model to published human deuterium-labeling data reduced the
difference between life span estimates on the basis of glucose and
2H2O labeling studies.10,13 Both our findings and approach present
a major step toward consensus on how long different types of
leukocytes live in health and disease.

Methods

Mice

C57Bl/6 mice were maintained by in-house breeding at the Central Animal
Facility at Utrecht University, Utrecht, The Netherlands, in accordance with
institutional and national guidelines.

2H2O labeling

For finite-term labeling experiments, ;12-week-old male mice were given
a boost intraperitoneal injection of 15 mL/kg of 2H2O (99.8%; Cambridge
Isotopes) in phosphate-buffered saline and received 4% 2H2O for 1, 4, or 8
weeks. For prenatal labeling experiments, to obtain mice in which all
cells were labeled to the same extent, female mice were given a boost injection

Figure 1. The influence of the length of the labeling period on the estimated turnover rate p. Consider an artificial long-term labeling experiment of a kinetically

heterogeneous cell population, in which the labeled fractions of a slow (dark gray) and a fast subpopulation (light gray) gradually increase with the duration of label

administration (A). During labeling, samples are obtained, and the percentage of labeled DNA is determined at several time points (B, black circles). During the labeling phase,

the initial accrual of label (the slope nearby the origin, as indicated by the black tangent line) reflects p of the kinetically heterogeneous population (A, situations 1 and 2; B,

white area). If labeling is continued, the enrichment level of the fastest subpopulation may start to saturate (A, situation 3). Although cells of the fastest subpopulation continue

to divide after this point, this is no longer reflected by a corresponding increase in their enrichment level. If sampling is continued (B, gray area), any further increase in labeled

DNA is largely the result of cell production in the slow subpopulation, reflected by a second, flatter slope of the labeling curve (B). If the label enrichment data are fitted using

a single-exponential model (dotted black curve), the model seeks a compromise between the initial, steep increase and the later, slower increase of label enrichment. As

a result, the model fit is forced to bend downward from the initial slope, and the average turnover rate will become increasingly underestimated with increasing

duration of label administration. In contrast, the multiexponential model corrects for this effect by allowing for multiple slopes during the labeling phase (B, dashed

black curve), and thereby yields a reliable estimate of the average turnover rate, independent of the length of the labeling period.
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of 15 mL/kg of 99.8% 2H2O in phosphate-buffered saline. They were placed
together with male mice and drank 4% 2H2O until they gave birth. After
weaning, male pups received 4% 2H2O until age 16 weeks.

The 9-week labeling data in humans have been published previously,10

and the enrichment in total CD41 T cells was derived from naive and
memory T cells as described in supplemental Materials (available on the
Blood Web site).

Cell preparation and sorting

Spleens were isolated at different time points for further sorting. Thymocytes
were isolated as a cell population with rapid turnover to determine the
maximal level of label enrichment. Blood was collected in EDTA vials and
was spun down to isolate plasma. Single-cell suspensions were obtained as
described previously.10 Splenocytes were stained with CD62L-FITC, CD44-
eFluor450 (eBioScience, SanDiego, CA), CD4-APC-H7, andCD8-PerCP (BD
PharMingen, San Jose, CA) in the presence of a 2.4G2-blocking antibody.
Within CD41CD82 and CD42CD81 splenocytes, naive T cells were defined
as CD62L1CD442 and effector/memory T cells as CD441. Cells were sorted
using a FACSAria cell sorter and FACSdiva software (BD PharMingen).
Genomic DNA was isolated according to the manufacturer’s instructions
(Nucleospin Blood QuickPure; Macherey-Nagel, Duren, Germany).

Measurement of deuterium enrichment in DNA and body water

Deuterium enrichment in DNA was measured according to the method
described by Neese et al14 with minor modifications, as described previously.10

Both natural enrichment and concentration dependence (abundance sensitivity)
were controlled for, using a naturally enriched background sample or standards
of known isotopic enrichments. To determine deuterium enrichment in
body water, plasma samples were measured using gas chromatography-
mass spectrometry.15,16 Mathematical modeling is described in supplemental
Materials.

Statistical analysis

Analysis-of-variance tests were performed to compare the different estimates
using Prism 5 (GraphPad). Nested mathematical models were compared
using an F test. Differences with a P value of , .05 were considered
significant.

Results

Life span estimates can be influenced by the duration of

label administration

The observed correlation in the literature between average life span
estimates and the duration of label administration2 prompted us to
investigate whether we could reproduce this correlation within a
single experiment, in which only the duration of label administration
was varied. Twelve-week-old C57Bl/6 mice were given a bolus of
2H2O and subsequently 4% 2H2O in the drinking water for 1, 4,
or 8 weeks. Splenic effector/memory (CD441) T cells and naive
(CD62L1CD44-) T cells were isolated at different time points during
2H2O administration (labeling phase), and after 2H2O administra-
tion (delabeling phase), and deuterium enrichment in the DNA was
measured. Labeling curves for naive (Figure 2A) and effector/
memory (Figure 2B) CD41 and CD81 T-cell subsets of the 1-week,
4-week, and 8-week labeling experiments were fitted separately
with the single-exponential model proposed for interpreting deuterated
glucose experiments,6 which we have previously adapted for use
with 2H2O labeling10 (supplemental Materials).

For naive CD41 andCD81T cells, d* (Figure 3A) was somewhat
higher than the estimated p (Figure 3B), especially in the 1-week

Figure 2. Best fits of the single-exponential model

and the multiexponential model to labeling experi-

ments of different duration. At different time points

during and after labeling, the percentage of labeled DNA

of splenic (A) naive and (B-C) effector/memory (E/M)

CD41and CD81 T cells was determined. Dots represent

measurements (ie, individual mice) at different time

points during labeling for 1, 4, and 8 weeks (d, black

circles), and during delabeling after 1 week of labeling

( , gray diamonds), 4 weeks of labeling ( , gray circles),

or 8 weeks of labeling ( , gray triangles). (A-B) Data

were fitted separately for each labeling period using the

single-exponential (SE) model to estimate p of the cells

and d* of the labeled cells for the corresponding labeling

period. For naive T cells, a delay was added in the model

as described in supplemental Materials equations 9 and

10 and was estimated to be 4 days (95% CI, 2-6 days).

For effector/memory T cells (B), the best-fitting curves

during the labeling period were not identical for the

different labeling periods (indicated by arrows). (C)When

the data were fitted separately for each labeling period

using the multiexponential (ME) model (describing 2

kinetically different subpopulations; the addition of more

subpopulations did not change the average turnover

rate), the best-fitting curves during the labeling period

were almost identical. Label enrichment was corrected

for 2H2O enrichment in plasma (supplemental Figure 1A)

and was scaled between 0% and 100% by normalizing

for themaximal percentage of labeled DNA asmeasured

in thymocytes (supplemental Figure 1B).

BLOOD, 26 SEPTEMBER 2013 x VOLUME 122, NUMBER 13 ESTIMATING LIFE SPANS BY STABLE ISOTOPE LABELING 2207



labeling experiment, and tended to decrease with the length of the
labeling period, although not significantly (P 5 .07 for CD41 and
P 5 .19 for CD81; Figure 3A). The estimated p (and hence the
average life span) of naive T cells was similar for the 3 durations of
label administration (P 5 .30 for CD41 and P 5 .41 for CD81;
Figure 3B). For CD41 and CD81 effector/memory T cells, d*
decreased as the length of the labeling period increased (P , 1024;
Figure 3C), and unlike what was observed for naive T cells, even the
estimated average turnover rate p decreased significantly as the
duration of label administration increased (P , 1024; Figure 3D).
Hence, within a single experiment, we reproduced the previously
observed correlation in the literature between the duration of label
administration and the estimated average life span.2

Inspection of the best fits to the data shows that the discrepancy
in the estimated average turnover rate of effector/memory T cells is
caused by the model that was fitted to the data. Although the curves
of the 3 labeling experiments should be identical during labeling
(as we observed for naive T cells, Figure 2A), the separate fits to the
1-, 4-, and 8-week labeling data of effector/memory T cells differed
during labeling (Figure 2B, indicated by arrows). Apparently, the
model could not capture saturation of the fastest cells in the effector/
memory pool and thereby underestimated the average turnover
rate during long-term labeling (Figure 1).

Multiexponential models correct for the influence of the length

of the labeling period

Because the correlation between p and the duration of label admin-
istration was most evident for the CD41 and CD81 effector/memory
T-cell pools, we used the labeling data from those cell populations
to investigate how life spans can be determined reliably when cell

populations are kinetically heterogeneous. We propose using a multi-
exponential model that explicitly accounts for kinetic heterogeneity,12

by describing multiple subpopulations each with their own produc-
tion and disappearance rate. Each subpopulation is assumed to be
in equilibrium, that is, its production equals loss (supplemental
Materials). In contrast to the single-exponential models that are
typically used, a multiexponential model describes both the labeling
and the delabeling phase by a multiexponential function.12 Because
a very similar model is obtained in populations with temporal het-
erogeneity (eg, consisting of quiescent and activated cells),17 we here
use the multiexponential model generally to account for hetero-
geneity in the population. Although the number of kinetically different
subpopulations within a cell population may not be known, one
can increase the number of subpopulations in the model until the
estimated average turnover rate no longer markedly changes, provided
sufficient data are available (supplemental Materials).

To test whether a multiexponential model would correct for the
influence of the length of label administration on the estimated average
turnover rate, we fitted the individual labeling curves of T cells from
the 1-, 4-, and 8-week labeling experiments separately using a
multiexponential model. Because the multiexponential model did
not improve the fits of the naive T-cell data for any duration of
label administration (not shown) but did influence the average life
span estimates of effector/memory T cells, we decided to focus on
the latter. The labeling data from the CD41 and CD81effector/
memory T-cell pools were well described by a model describing
2 kinetically different subpopulations (the addition of more sub-
populations did not change the average turnover rate). In contrast
to the single-exponential model (Figure 2B), the multiexponential
model described the 1-, 4-, and 8-week labeling data with largely
overlapping curves during labeling (Figure 2C) and thus yielded 3

Figure 3. Summary of parameter estimates. Estimates of d* (A,C) and the average turnover rate p (B,D) of naive (A-B) and effector/memory (C-D) CD41 ( , gray circles)

and CD81 (n, black squares) T cells, obtained by fitting the single-exponential model to the data collected during 1, 4, or 8 weeks of labeling. (E) Estimates of the average

turnover rate of CD41 ( , gray circles) and CD81 (n, black squares) effector/memory T cells obtained by fitting a multiexponential model (describing 2 subpopulations) to the

individual data sets (labeling for 1, 4, or 8 weeks; or prenatal labeling) and simultaneously to all data combined. Bars with whiskers represent the 95% CIs of the estimates

obtained by bootstrapping the residuals.
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similar turnover rates (P 5 .08 for CD41 and P 5 .60 for CD81)
that were independent of the length of the labeling period (Figure 3E).
As expected, the estimates obtained by the single- and multi-
exponential model differed most for the longer labeling periods,
and the multiexponential model gave significantly better fits to
the data than the single-exponential model (8 weeks of labeling:
P , .0001 for CD41 and P = .0028 for CD81; 4 weeks of
labeling: P, .0001 for CD41). For the 1-week data, both models
behaved similarly.

It should be noted that the 4-week labeling data of CD81

effector/memory T cells were not fitted well during the de-
labeling phase, and that the multiexponential model did not
describe the 4-week labeling data significantly better than the
single-exponential model (P 5 .08). Importantly, our estimates
of the average turnover rate of CD81 effector/memory T cells do
not depend on the 4-week labeling data, as using only 1-week and
8-week labeling data (separately or combined) yielded consis-
tent estimates.

Hence, the correlation of published turnover rates with the length
of the labeling period may be the result of kinetic heterogeneity
that was not fully accounted for by the models that were used to fit
the data. Mathematical models that explicitly capture such kinetic
heterogeneity yield average turnover rates that do not depend on
the duration of label administration.

Prenatal labeling experiments yield similar life span estimates

Next, we sought to obtain independent confirmation of the turnover
rates that we estimated when fitting the multiexponential model
to the 1-, 4-, and 8-week labeling data. Because the main difficulty in
the interpretation of “finite-term” labeling experiments is caused by
the difference between cells that are and are not labeled during the
experiment, we designed a labeling experiment in which, at ces-
sation of label administration, all cells were labeled. Female mice
received a bolus of 2H2O and were subsequently fed with 4% 2H2O
in the drinking water before conception and throughout pregnancy.
Female mice thus gave birth to pups that had been labeled in utero
(referred to as “prenatal labeling”) and in which all cells were equally
labeled. Pups received 2H2O until age 16 weeks, after which 2H2O
was withdrawn from the drinking water. They were euthanized at
different time points after labeling to measure the loss of deuterium
enrichment in the DNA of their T cells. The resulting delabeling
curves were used to deduce d, which, in this case, reflects the cell
population as a whole and can directly be interpreted as the average
turnover rate.

In line with the finite-term labeling experiments, fitting the multi-
exponential model (describing 2 kinetically different subpopulations;
the addition of more subpopulations did not change the average
turnover rate, Figure 4A) to the effector/memory delabeling data
gave a significantly better description of the data (P, .01) than the
single-exponential model (not shown). Fitting the prenatal data
yielded average turnover rates for effector/memory CD41 and CD81

T cells that were similar to the estimates obtained in the 1-, 4-, and
8-week labeling experiments (P 5 .68 for CD41 and P 5 .54 for
CD81; Figure 3E). Indeed, we found that delabeling of a fully
labeled population behaved similarly to labeling of an unlabeled
population. For all cell subsets analyzed, both the average turnover
rate and the number of exponentials required to describe the data
were similar for the finite-term labeling data and the corresponding
prenatal labeling data. This independent experiment confirmed the
turnover estimates obtained by fitting the multiexponential model
to the finite-term labeling data above.

Simultaneously fitting the model to the complete data set we
had collected (ie, the 1-, 4-, and 8-week labeling experiments and
the prenatal labeling experiments together, Figure 4B-C) revealed
that mouse CD41 and CD81 effector/memory T cells have average
turnover rates of 0.068 (95% confidence interval [CI], 0.065-0.088)
and 0.050 (95% CI, 0.045-0.085) per day (Figure 3E), correspond-
ing to average life spans of 15 days (95% CI, 11-15 days) for
CD41, and 20 days (95% CI, 12-22 days) for CD81 effector/memory
T cells (Table 1).

The multiexponential model reduces the difference between

human T-cell life span estimates

Next, we applied the multiexponential model to previously published
human 2H2O labeling data10 to obtain human T-cell life span esti-
mates that are independent of the length of the labeling period. For
each individual labeled with 2H2O for 9 weeks, the multiexponential
model (describing 2 kinetically different subpopulations; the addition
of more subpopulations did not change the average turnover rate)
fitted the memory CD41 and CD81 T-cell data significantly better
(P , .001) and, in general, yielded higher average turnover rates
p (and therefore shorter average life spans) than the single-exponential
model (Figure 5A; supplemental Figure 4). Hence, single-exponential
models have overestimated the average life span of memory T cells
in long-term labeling studies. According to the multiexponential
model, human memory CD41 and CD81 T cells have a median
p of 0.0061 (range, 0.0020-0.0141) and 0.0064 (range, 0.0043-
0.089) per day, corresponding to median life spans of 164 days
(range,71-500 days) for CD41 and 157 days (range, 113-231 days)
for CD81 memory T cells.

Finally, we investigated whether the multiexponential model
could resolve the discrepancy between previously published human
stable isotope-labeling studies. We confined our analysis to 2 data
sets that clearly differed in the length of the labeling period, and
had a sufficient number of data points: a 1-week deuterated glucose-
labeling experiment13 and a 9-week 2H2O-labeling experiment.10

Because the glucose-labeling experiment reported deuterium enrich-
ment in total CD41 T cells, and the 2H2O-labeling experiment dis-
tinguished between naive and memory T cells, we first recalculated
the corresponding levels of deuterium enrichment in total CD41

T cells for the 9-week 2H2O-labeling experiment (supplemental
Materials). When we fitted a single-exponential model to the data,
the life spans estimated from the 9-week labeling experiment were
longer than the life spans based on the 1-week labeling experiment
(Figure 5B; individual fits in supplemental Figure 5), in line with
the positive correlation between estimated life spans and the duration
of label administration in the literature.2 The multiexponential
model reduced the estimated life spans from the 9-week labeling
experiment and hence reduced the differences between the studies
(Figure 5B). Although the discrepancies between the 2 studies were
not entirely resolved, largely because of a single outlier in the 2H2O
study whose memory turnover was much lower than in the other
individuals10 (supplemental Figure 4D), correction of the length-of-
labeling effect revealed that the current best estimate of the average
life span of CD41 T cells in healthy human adults (based on the
median values of both studies) lies between 270 and 469 days.

Discussion

The quantification of leukocyte life spans from stable isotope-
labeling data relies on the use of mathematical models. The finite-term

BLOOD, 26 SEPTEMBER 2013 x VOLUME 122, NUMBER 13 ESTIMATING LIFE SPANS BY STABLE ISOTOPE LABELING 2209



labeling experiments that we performed in mice show that single-
exponential models fail to correctly describe the dynamics of kinet-
ically heterogeneous cell populations and thereby yield average life
span estimates that depend on the duration of label administration.
Longer labeling periods gave rise to longer estimated average life
spans, confirming the correlation observed in the literature.2 These
analyses suggest that a considerable part of the discrepancy in
published T-cell life spans arises from differences in the duration of
label administration. Here, we show that the use of a multiexponential
model resolves the dependence on the length of the labeling period
and thereby yields reliable turnover parameters.

It has been proposed before that a multiexponential model
describing all subpopulations would be the ideal way to model
kinetically heterogeneous cell populations, but that this would lead
to models with too many parameters.6 The mathematical model pro-
posed by Asquith et al6 was a pragmatic solution that captured kinetic
heterogeneity by allowing p to be different from d*. However, the fact
that single-exponential models fail to describe labeling curves that are
identical during labeling but different after label cessation stresses the
need for a multiexponential model to obtain reliable estimates of
turnover rates, particularly when the labeling period is long.

Fitting multiexponential models not only reveals the average
life span of a cell population but also reveals quantitative insights
into the sizes ai and turnover rates pi of its subpopulations. The
uncertainty on the latter parameters is, however, generally much
larger than on p, because of the strong correlation between the size
of a subpopulation and its turnover rate (supplemental Figure 6).
Therefore, the biological interpretation of the parameters de-
scribing the kinetically different subpopulations used in the model
is not straightforward. It is important to realize that the number of
kinetically different subpopulations that is sufficient to describe the
data may, in fact, be lower than the actual number of subpopulations,
and that the subpopulations need not even reflect phenotypically
different subsets. Moreover, if the use of a multiexponential model

Table 1. Life span estimates of CD41 and CD81 effector/memory
T cells from different labeling experiments

Life span, days (95% CIs)

CD41effector/memory T cells CD81 effector/memory T cells

No. of weeks

1 13.46 (5.17-15.02) 18.68 (10.00-26.30)

4 12.30 (5.38-14.75) 17.82 (6.43-22.06)

8 8.67 (2.88-16.05) 20.94 (6.82-27.56)

Prenatal 16.85 (12.29-22.64) 16.82 (4.55-66.53)

All data 14.78 (11.39-15.39) 20.14 (11.73-22.04)

Figure 4. Best fits of the multiexponential model to

effector/memory T-cell data from prenatal and finite-

term labeling experiments. (A) Mice were labeled

prenatally and drank 2H2O until age 16 weeks. At different

time points after label cessation, the percentage of

labeled DNA of splenic effector/memory CD41 (left) and

CD81 T cells (right) was determined. Gray squares

( ) represent measurements (ie, individual mice) at

different time points after labeling. Data were fitted with

the multiexponential model (describing 2 subpopulations)

to estimate the average turnover rate of the total cell

population. (B-C) Effector/memory CD41 (B) and CD81

(C) T-cell labeling data from the finite-term (left) and

prenatal labeling (right) experiments were simultaneously

fitted with the multiexponential model to estimate the

average turnover rate. Black circles (d) represent mea-

surements (ie, individual mice) at different time points

during labeling; during delabeling after 1 week of labeling

( , gray diamonds), 4 weeks of labeling ( , gray circles),

or 8 weeks of labeling ( , gray triangles); and during

delabeling of prenatally labeled mice ( , gray squares).
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significantly improves the fit to the data, an alternative interpretation
is that cells transiently have different turnover rates (ie, that there is
so-called temporal heterogeneity). For example, resting cells and cells
that have recently been produced or activated may have different life
expectancies, an illustrative example being activation-induced cell
death.7,17

Our analyses demonstrate that the use of single-exponential
models may lead to overestimation of the average life span of
kinetically heterogeneous cell populations, especially in long-term
labeling studies. This problem can be overcome by implementing
a multiexponential model. Hence, both short-term and long-term
labeling can be considered, and the decision should be based on
the population of interest (slow or fast turnover) and on practical
and/or ethical considerations. Although short-term labeling studies
are less prone to underestimate cellular turnover rates, long-term
labeling can also have advantages. First, longer labeling periods
allow more frequent sampling during the labeling phase, which is
the essential phase to estimate average turnover rates. It also allows
better spreading of blood withdrawals with time, keeping the
burden of blood sampling for patients relatively low. Second,
prolonged exposure to labeling allows even cells with relatively
slow turnover rates, such as naive T cells, to become sufficiently

labeled to reliably estimate their turnover. Third, longer labeling
gives recently produced, and hence labeled, cells ample time to
appear in the blood, where most measurements are generally taken.
Naturally, the shorter the labeling period, the less saturation of
subpopulations is expected to occur, and the smaller the requirement
for a multiexponential model. However, even during short-term
labeling, saturation may already be present. Therefore, it may be
good to always use the multiexponential model, both for short-term
and long-term labeling periods. As long as label accrual reflects the
average population turnover (before any signs of saturation), the
multiexponential model will behave like a single-exponential
model, and the fitting procedure will set the contribution of the
extra exponential(s) to zero. It will hence yield the same average
turnover rate.

Remarkably, 2 earlier studies have reported longer life span
estimates for murine memory CD81 T cells than the 20-day average
that we found. Labeling experiments with 5-bromo-2’-deoxyuridine
in thymectomized mice revealed a CD81 effector/memory T-cell
half-life of 63 days (corresponding to a life span of 91 days),18 and
later Choo et al19 showed that adoptively transferred lymphocytic
choriomeningitis virus–specific memory CD81 T cells and bulk
CD44hi T cells had an intermitotic time of ;50 days. A major ad-
vantage of stable-isotope labeling is that one can study cell turnover
under physiological circumstances, without affecting immune homeo-
stasis. This could be different for the (more manipulative) approaches
used in the earlier studies.More in agreement with our results is a study
by Younes et al,20 who proposed that the CD41 memory pool is
heterogeneous, comprising both slowly dividing “authentic” antigen-
experienced memory cells as well as rapidly dividing “memory-
phenotype” cells that arise from an antigen-independent mechanism.
The level of 5-bromo-29-deoxyuridine incorporation that they
measured in CD41 (CD44hi) memory-phenotype cells corresponds
to a CD41memory T-cell life span of 14 to 22 days.21 This estimate is
very similar to our CD41memory T-cell life span estimate of 15 days.

In humans, the current best estimates are that memory CD41 and
CD81 T cells live 164 and 157 days, respectively. Again, these esti-
mates are considerably shorter than our previous estimates of 222 and
357 days for memory CD41 and CD81 T cells, respectively.10 Thus,
discrepancies in the literature on human T-cell life span estimates10,13

may have, to a large extent, been caused by the use of single-
exponential models, which led to overestimation of T-cell life spans
in long-term labeling studies. We cannot exclude that other, yet
unidentified factors may cause differences in life span estimates, such
as an intrinsic difference between 2H2O and deuterated glucose, which
may underlie the remaining differences between the estimated life
spans of the 1-week deuterated glucose experiment and the 9-week
2H2O experiment (Figure 5B). The part of the variation that is due
to the length of the labeling period has at least been resolved thanks
to the use of a multiexponential model.
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Calculation of enrichment in total CD4+ T cells 

To be able to compare data from a previously published 9-week heavy water 2H2O labeling 

experiment, which distinguished naive (CD27+CD45RO-) from memory (CD45RO+) T cells1, 

and a 1-week deuterated glucose labeling experiment on total CD4+ T cells2 (data kindly 

provided by David Ho and Hiroshi Mohri), we calculated the corresponding enrichment level 

of total CD4+ T cells from the heavy water 2H2O labeling experiment using the relative sizes 

and the enrichment levels of the naive and memory CD4+ T-cell subsets1. This could be done 

for CD4+ T cells because the fraction of CD27-CD45RO- cells is negligible in the CD4+ T-cell 

pool, but not for CD8+ T cells. The enrichment levels of memory and total CD4+ T cells were 

fitted with a single-exponential3 and a multiexponential model describing two kinetically 

different subpopulations (the addition of more subpopulations did not change the average 

turnover rate). 

Mathematical modeling of deuterium labeling data. Following Vrisekoop et al.1, the 

availability of heavy water at any moment in time was calculated by fitting the following 

equations to the deuterium enrichment in the plasma: 

(i) For finite-term labeling experiments: 



tt SftS δδ −− +−= e)e1()( 0    during label intake ( τ≤t ),   [1] 

[ ] )(
0 ee)e1()( τδδτδτ −−−− +−= tSftS     after label intake ( t >τ ).   [2] 

(ii) For prenatal labeling experiments: t .     [3] tS δβ −= e)(

In these equations, S(t) represents the fraction of 2H2O in plasma at time t (in days), f is the 

fraction of deuterium in the drinking water, labeling was stopped at t = τ days in finite-term 

labeling experiments, and at t=0 days in the prenatal labeling experiments, δ represents the 

turnover rate of body water per day, S0 is the plasma enrichment level attained after the i.p. 

2H2O boost at day 0 of finite-term labeling experiments, and β the plasma enrichment level at 

the start of the de-labeling period in the prenatal labeling experiments. The best fits to the 

plasma data are shown in Fig. S1A and Fig. S2. 

To model the label enrichment of adenosine in the DNA of cells, we used both single-

exponential and multiexponential models. In the single-exponential model3, cells have an 

average turnover rate p (meaning that a fraction p of cells is renewed per day; life spans are 

obtained by inverting p), and labeled cells are lost at a rate d* per day. We previously 

extended this model to include the dependence on the actual enrichment of the body water (as 

described by S(t))1. We also introduced a parameter c which accounts for the fact that the 

adenosine deoxyribose (dR) moiety contains multiple hydrogen atoms that can be replaced by 

deuterium. Basically one writes that each adenosine residue replicates at rate p per day and 

will incorporate a deuterium atom with probability cS(t). The fraction of labeled DNA (L) at 

any given time is hence given by: 

LdtScp
dt
dL *)( −= .          [4] 
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To determine the maximum level of label incorporation that could possibly be attained in 

finite-term labeling experiments, we fitted this model to labeling data from mouse thymocytes 

(Fig. S1B), which are known to have a high rate of turnover4, 5. Turnover parameters for the 

different T-cell subsets were determined as described before 1. Because we observed a lag in 

the appearance of labeled naive T cells in the spleen after start of (finite-term) labeling, 

suggesting that cells had divided in the thymus and then migrated to the spleen, we allowed 

for a time delay Δ with which labeled cells appear in the spleen. When fitting naive T-cell 

data, Δ was treated as a free parameter, while it was fixed to Δ=0 when fitting 

effector/memory T-cell data. The corresponding equations are: 

if : ,
          [5] 
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Alternatively, labeling data from the different T-cell subsets were fitted using a 

multiexponential model in which each subpopulation i contains a fraction αi of cells with 

turnover rate pi per day. Assuming a steady state for each kinetic subpopulation, the fraction 

of labeled deoxyribose residues of adenosine in the DNA of each subpopulation i was 

modeled by the following differential equation: 

3 

 



iii
i LptcSp

dt
dL
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For naive T cells, T-cell production may occur both in the thymus and in the periphery. The 

fraction of labeled DNA in the total T-cell population under investigation was subsequently 

derived from  and the average turnover rate p was calculated as . ∑= i ii tLtL )()( α ∑= i ii pp α

For finite-term labeling experiments, the analytical solutions are:  
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Again, Δ was fixed to 0 when fitting effector/memory T-cell data, while Δ was a free 

parameter when fitting naive T-cell data. 

For prenatal labeling experiments, the analytical solution is: [ ]t
i

tp

i
i p

p
ctL i δδ

δ
β −− −
−

= ee)( . 

Best fits were determined by minimizing the sum of squared residuals using the R function 

nlminb6. The 95% confidence intervals were determined using a bootstrap method where the 

residuals to the optimal fit were resampled 500 times. 

The effect of the number of kinetically different subpopulations on the estimated 

average turnover rate. To estimate the average turnover rate using the multiexponential 

model, one has to consider a given number of kinetically different subpopulations. We 

investigated the effect of model specification by creating artificial data and fitting this data set 
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using different models with increasing numbers of kinetically different subpopulations. We 

consider the following models during label intake: 

iii
i Lpp

dt
dL

−=      (Mi) for i=1…6. 

And after label intake: 

ii
i Lp

dt
dL

−=       (Mi) for i=1…6. 

Note that in the artificial data we consider perfect labeling, i.e., cS(t)=1 during label uptake 

and 0 after. Each subpopulation i contains a fraction αi of cells with turnover rate pi per day. 

The fraction of labeled DNA in the total T-cell population is subsequently derived from 

 and the average turnover rate p is calculated as∑= i ii tLtL )()( α ∑= i ii pp α . For model M1 

we consider two variants (M1a and M1b in Fig. S3). In model M1a we set α1<1 to make it 

equivalent to the model proposed by Asquith et al 2, and model M1b is a single-exponential 

model because we set α1=1. The models M2 to M6 are multiexponential models including 2 to 

6 kinetically different subpopulations (i.e., with 2 to 6 turnover rates).  

Artificial data were generated using the model (M2) (assuming two kinetically different 

subpopulations) and Gaussian white noise was added. The duration of label administration 

was assumed to be 90 days and the label enrichment was measured every 7 days until day 

150. The data were fitted with the eight proposed models using Mathematica. The 95% 

confidence intervals were determined using a bootstrap method. 

Fig. S3 presents the average turnover rates estimated by the different models from one 

generated data set. The models M1a and M1b clearly underestimate the average turnover rate, 

whereas adding more kinetically different subpopulations than really presented leads to 
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accurate (and similar) estimates. In practice, if there are too many subpopulations, the 

algorithm chooses either to put in a very small fraction for a subpopulation, or to assign the 

same turnover rate to two or more subpopulations. Similar results were found for data 

generated from different sets of parameters. Note that this result is conditional to the sampling 

design as well as the noise level in the data, which were all set to mimic true experiments. 

To determine the number of kinetically different subpopulations to include in the model we 

recommend a stepwise selection procedure, adding a new kinetically different subpopulation 

into the model and stopping when the average turnover rate no longer markedly changes 

provided sufficient data are available. 

Finally, one may wonder whether a multiexponential model with 2 kinetically different 

subpopulations (model M2) can describe labeling experiments from biological populations 

composed of several kinetically different subpopulations. We tested one example creating 

artificial data with model M4, setting αi=0.25 and pi=1, 0.5, 0.25, 0.125 for i=1,2,3,4. In a 

similar setup as in supplemental Figure 3, model M2 performed reasonably in estimating the 

average turnover rate: pestimated= 0.40 (95%CI= 0.20;0.78) for the “true” turnover rate ptrue= 

0.46 (not shown). 
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Table S1. Estimates for deuterium enrichment in plasma and thymocytes. 

Parameter 
Estimate (95% confidence interval) 

Finite-term labeling Prenatal labeling 

Plasma S0 0.015 (0.012-0.018) 0.0248 (0.0238-0.0260) 

 δ (per day) 0.261 (0.230-0.272) 0.2242 (0.2034-0.2439) 

 f (per day) 0.024 (0.023-0.025) n/a 

Thymocytes p (per day) 0.416 (0.377-0.468) n/a 

 c 3.093 (2.974-3.161) 3.755 (3.596-3.984)* 

*c is estimated directly from the level of enrichment of thymocytes at day 0 in prenatal 
labeling experiments. n/a: not applicable 



 

 

Fig. S1. Deuterium enrichment in plasma (A) and thymocytes (B) of mice labeled for 1, 4, or 

8 weeks. Best fits are given by black lines. Thymocytes were used to determine the maximum 

percentage of labeled DNA that could possibly be attained (see Methods). Dots represent 

measurements (i.e., individual mice) at different time points during up-labeling (● black) and 

different points post labeling, after 1 week (  gray diamonds), after 4 weeks  (  gray circles), 

and after 8 weeks (  gray triangles)  of  labeling, respectively. Parameter estimates are given 

in Table S1. 
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Fig. S2. Deuterium enrichment in plasma of prenatally labeled mice from the moment 2H2O 

was withdrawn from the drinking water (i.e., at 16 weeks of age). Gray squares ( ) represent 

plasma deuterium enrichment measurements (i.e., individual mice); the black curve represents 

the best fit of the model to the experimental data. The turnover rate of plasma (body water) in 

prenatal labeling experiments is somewhat slower than the turnover rate in finite-term 

labeling experiments (see Table S1), which is natural because deuterium is fully enriched in 

all available compartments in prenatally labeled mice. 
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Fig. S3. Average turnover rates and 95% confidence intervals estimated with the 7 different 

models. Model M1a is the one proposed by Asquith et al. 2 where only a fraction α of cells is 

turning over, while the rest of the cell population is kinetically inert. Model M1b assumes that 

all cells have the same turnover rate (i.e., form a homogeneous population). Models M2 to M6 

are kinetic-heterogeneity models including 2 to 6 kinetically different subpopulations (i.e., 

with 2 to 6 turnover rates). Artificial labeling data were generated with model M2 

for ,  and 720.01 =p 016.02 =p 10.01 =α , corresponding to an average turnover rate 

 (---- dashed gray horizontal line), and after adding a Gaussian white noise, these 

data were fitted with the 7 different models. 

0864.0=p
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Fig. S4. Best fits of the multiexponential model to deuterium enrichment data in memory 

CD4+ and CD8+ T cells from five healthy individuals (A to E). During 9 weeks of 2H2O 

labeling, CD4+ (left) and CD8+ (right) memory T cells were isolated at different time points 

during and post-labeling, and deuterium enrichment of the DNA was determined and 

previously published 1. The resulting labeling curves were fitted with a multiexponential 

model describing two kinetically different subpopulations (the addition of more 

subpopulations did not change the average turnover rate). 
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Fig. S5. Best fits of the multiexponential model to deuterium enrichment data in total CD4+ T 

cells from five healthy individuals (A to E). During 9 weeks of 2H2O labeling, CD4+ naive 

and memory T cells were isolated at different time points during and post-labeling, and 

deuterium enrichment was determined, and previously published 1. From this the deuterium 

enrichment in total CD4+ T cells at every time point was recalculated, and the resulting 

labeling curves were fitted with a multiexponential model describing two kinetically different 

subpopulations (the addition of more subpopulations did not change the average turnover 

rate). 
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Fig. S6. Relationship between parameter estimates describing the individual subpopulations. 

As an illustration of the ranges of, and the relationship between, the sizes of the different 

subpopulations, the average turnover rate (panels A and C), and the individual turnover rates 

of the subpopulations (panels B and D), we selected two data sets: 8-week labeling of CD4+ 

effector/memory (E/M) T cells in mice (panels A and B), and labeling of human CD4+ 

memory T cells (individual A of Vrisekoop et al. 1, panels C and D, note the different scales!). 

For both data sets we plotted the 500 parameter sets obtained by the bootstrap analysis of 

Figure 2. We ordered the results of the bootstrap analysis such that the turnover rate of the 

fastest (pfast) and the slowest (pslow) subpopulations can be plotted as a function of the size of 

the fastest subpopulation (αfast). The examples illustrate that there is quite a strong correlation 
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between the size of a subpopulation and its rate of turnover (panels B and D). As a result, the 

confidence limits on the turnover rate of the fastest subpopulation (panels B and D) are much 

less restricted than on the average turnover rate p (panels A and C). Nevertheless, the data do 

provide some bounds on the sizes and turnover rates of the subpopulations. The mouse data 

show that the fastest subpopulation makes up between 24% and 51% of the CD4+ E/M pool, 

while in humans it represents only 11-20% of the CD4+ memory pool. In the mouse data set, 

the turnover rate of the fast subpopulation cannot be estimated as it varies from almost 0 to 1 

(panel B), while the human labeling data reveal that the turnover rate of the fast subpopulation 

lies between 0.03 and 0.17 per day, and that of the slow subpopulation between 0.001 and 

0.002 per day (panel D). 
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