A Grind tutorial on estimating parameters from experimental data.

Today you will work with an R-script called grind.R that is a wrapper around the R-packages deSolve,
FME and rootSolve developed by Karline Soetaert and colleagues [2-5]. These packages allow one
to solve differential equations, find their steady state, and perform nonlinear parameter estimation.
Today you only need three of Grind’s easy-to-use functions:

e run() integrates a model numerically and provides a time plot or a trajectory in the phase plane,
e fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.

e timePlot() plots a data frame.

The R-script and the manual of Grind is available on the website http://tbb.bio.uu.nl/rdb/grindR/.

We will work in the RStudio environment. To get started perform the following:

e If you work on your own laptop you will need to install RStudio, R, and the Soetaert libraries.
Check this tutorial on how to install RStudio and R:
http://tbb.bio.uu.nl/rdb/bm/Introduction_to_R.pdf
After that, install the three Soetaert libraries by opening RStudio, going to the Tools menu, choosing
Install Packages, and then typing deSolve, FME and rootSolve. (Experts may prefer to type
install.packages(c("deSolve", "FME", "rootSolve") in the R-console).

e Otherwise: skip the previous step and go to the University’s MyWorkPlace environment.

e Make a local folder (directory) on your system where you will save the following 5 files: grind.R,
bact.R, crispr.R, Levin pgl13_fig2 BO.csv and Levin pg13_fig2.csv. All files can be obtained
by downloading the crispr.zip file from Blackboard or directly from the tbb.bio.uu.nl/rdb/
practicals/crispr/ website. (In Windows use the right mouse button and use “Save target as”,
to store a file in a folder).

e Set the working directory of RStudio to the folder where your R-codes and data are stored (Set
working directory in the Session menu of RStudio). Files will then be opened and saved in that
directory.

e Use “Open file” to open grind.R and source Grind to define the functions (button on the right).

e Use “Open file” to open bact.R and run that script line by line.

Thus, after downloading the files, you first “Source” the grind.R file (button in right hand top corner),

and then “Run” the model with its parameter and state definitions line by line (“Run” or “Control

Enter”). Make sure you understand what you do and what you get.

Bacterial growth.
The bact.R script defines a model of two ODEs,
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The script next defines some default parameter values in the vector p, and defines an initial state in the
vector s (all taken from Levin et al. [1]). Then it runs the model for 7 hours using the Grind function
run(). The R-function read.csv() is called to read a data file, and this data is plotted. Finally, the
fitting starts: first the parameter v is selected as the only “free” variable. The Grind function £it () is
called, telling the system which data to fit, how to plot it, and use a logarithmic transformation of the
data (where loglp(x) computes log(1+x)). The function reports back the summed squared residuals
(SSR) and the best estimate for v. The R-function summary () provides additional information of the
result.

Questions: Why do we transform the data? Next, try to also estimate the parameter & from the data.
Why is k not identifiable from this data?

Bacterial growth with phages
The crispr.R script defines the full Levin et al. model [1] with phages, P, infected bacteria, M,
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Figure 1: Figure 2 from Levin et al. [1]: Short-term bacterial and phage growth dynamics in the absence
of immunity: change in the density of WT bacteria and W'T phage. The broken lines are the densities
predicted by the above model with the following parameters: v = 1.4 per hour, e = 5 x 1077 ug per
cell, R (initial resource concentration)=350 ug/ml, § = 8 x 1078 ml per cell per phage per hour, b = 80
phage particles per infected cell and, A = 0.4 hours. At 24 hours, the estimated densities of bacteria
and phage in these cultures were, respectively, 5x 108 cells per ml for the control and 3.2x10° CFU and
6.2x 107 PFU for the bacteria and phage in the mixed culture. doi:10.1371/journal.pgen.1003312.g002

resistant bacteria, Bj, and sensitive bacteria, By:
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where ¢ is an infection rate, s a selection coefficient, A the eclipse time, and b the burst size. After
defining the default parameters and the initial state, the option tweak is defined to add a column to the
data generated by the model. Here the column contains the total number of bacteria, B = By+B1+M.
This is required because the data only contains the number of phages, P, and the total number of
bacteria, B.

Questions: Test for yourself if you can estimate the selection coefficient, s, and the initial density, B,
of the resistant bacteria. What is your opinion on this model: does it describe the data well? Are s
and Bj both identifiable?
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bact.R

model <— function(t, state, parms) {
state <— ifelse (state <0,0,state)
with(as.list (c(state ,parms)), {
f <— vxR/(k+R)
dtR <— — fxexB
dtB <— f*B
return (list (c(dtR, dtB)))
1)
}

p <— c(e=be—T7,v=1.4,k=1)
s <— ¢(R=350,B=5189702)

run(7,0.1,ymin=1,ymax=1e10 ,log="y”)

data <— read.csv(”Levin_pgl3_fig2 _B0.csv” ,header=ITRUE)
timePlot (data ,ymin=3,ymax=1el10 ,log="y” ,draw=points)

free <— c¢("Vv”)
f <— fit(data,tstep=0.1,ymin=1e3,ymax=1e10,log="y” ,fun=loglp , free=free ,legend=F)
summary ( )

free <— ¢(7v”,7k”)

f <— fit (data,tstep=0.1,ymin=1e3 ,ymax=1el0,log="y” ,fun=loglp ,lower=0,upper=10,free=free
, legend=F)

summary ( f)

crispr.R

model <— function(t, state, parms) {
state <— ifelse (state <0,0,state)
with (as.list (c(state ,parms)), {
f <— v«R/(k+R)
dtR <— — fxex(B0+(1—s)*B1)
dtB0 <— f*B0 — deltaxB0xP
dtBl <— (1—s)=*f{x*B1
dtM <— deltaxB0«P — M/lambda
dtP <— b*M — deltaxPx(B0+B1)
return(list (c(dtR, dtBO, dtB1l, dtM, dtP)))
1))
}

p <— c¢(b=80,delta=5e—8,e=5e—7,lambda=0.4,v=1.5,k=1,s=0)
s <— ¢(R=350,B0=4382322,B1=100M=0,P=5.58e+06)

tweak <— "nsol$B<—nsol$B0+nsol$Bl+nsol M”
run(7,0.1,ymin=1e3 ,ymax=1el0,log="y” ,tweak=tweak)

data <— read.csv(” Levin_pgl3_fig2.csv”  header=TRUE)
timePlot (data ,ymin=1e3 ,ymax=1e10,log="y” ,draw=points)

free <_ C(77B177 777b77 7771a‘:[?(1]3d.8677 777577)
f <— fit(data,tstep=0.1,ymin=1e3 ,ymax=1e10,log="y” ,fun=loglp , free=free ,tweak=tweak)
summary ()




