
Estimating parameters from experimental data:
The Rust et al. [2] model for circadian oscillations

In this practical you will repeat the analysis of Rust et al. [2] and estimate a large number of parameters
(phosphorylation and de-phosphorylation rates) from their experimental data. We will do this in “R”,
which is a language to analyze data, and has excellent packages to fit mathematical models to data.
R is installed in the UU MyWorkPlace environment, and can easily be installed on your own laptop.
We advise you to use the RStudio environment. From this practical you will learn:
• how to fit fairly complicated model to a fairly rich data set
• that one cannot just estimate a large set of parameters from a reasonably large set of data
• that we can repeat the Rust et al. [2] analysis by first fitting a subset of parameters on dedicated

data, and then fit the others from other dedicated data sets. Parameter estimation therefore requires
special design of the experiments.

• even so it remains difficult to find the best parameters
• that estimating the parameters of large systems biology models is highly non-trivial, requiring both

the careful design of experiments, as well as making guesses about several parameters of the model.

The Rust et al. [2] model. The authors study circadian rhythms of the cyanobacterium Syne-
chococcus elongatus. Three adjacent genes at the kai locus, KaiA, KaiB and KaiC, that are all
regulated by the kaiBC operon, are known to be essential for the circadian rhythm in this species
[7]. In the Rust et al. [2] paper the experimental system is simplified by only considering the three
encoded proteins and ATP. Modeling this simple system they thus obtain a minimal model that one
can perfectly understand, and which turned out to be a main engine of the circadian rhythm. The
KaiC protein can be phosphorylated at two positions, serine-431 and threonine-432, and therefore has
four phosphorylation forms, unphosphorylated (U), thReonine (R), serine (S), and double phospho-
rlylated (D). The sum of the concentrations of these phosphoforms equals the total concentration
of KaiC, Ĉ, which is assumed to remain conserved. Studying the regulation of phosphorylation and
dephosphorylation by the active form of KaiA, A, they set out to measure the parameters of their
mathematical model:

U = Ĉ −R−D − S ,

A = max(0, Â− 2S) ,

fij = k0ij + kAij

A

Km +A
, where i, j ∈ {U,R,D, S} ,

dD

dt
= fRDR+ fSDS − fDRD − fDSD ,

dR

dt
= fURU + fDRD − fRUR− fRDR ,

dS

dt
= fUSU + fDSD − fSUS − fSDS ,

where we have three differential equations for: D the concentration of Double phosphorylated KaiC,
R the concentration of thReonine phosphorylated KaiC, and S the concentration of Serine phospho-
rylated KaiC. The concentration of unphosphorylated KaiC, U , is the total concentration of KaiC, Ĉ,
minus the concentrations of the three phosphorylated forms. A is the concentration of active KaiA (in
µM). Having Â as the total amount of KaiA (also in µM), active KaiA, A, is the total dimeric KaiA
minus that bound by S-KaiC (S) monomers. The max() function guarantees that at high concentra-
tions of S-KaiC the amount of active KaiA cannot drop below zero. The total phosphorylation and
dephosphorylation rates follow Michaelis-Menten kinetics, and are composed of a basal rate, k0, plus
or minus a maximum effect of KaiA, kA, weighed by the KaiA concentration with a Michaelis-Menten
constant, Km. It was assumed that all phosphorylation and dephosphorylation rates in the model
obey the same Michaelis-Menten constant, and this constant was fitted numerically in Fig. S4 in the
paper, which suggested that Km ' 0.43µM [2].
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Figure 1: Figure 1a from Rust et al. [2]: Phosphorylation of KaiC is cyclically ordered. (A) De-
composition of total KaiC phosphorylation (“Total”) into its constituent phosphoforms, measured by
SDS-PAGE (used throughout this study unless noted otherwise). The percentage of U-KaiC (not
shown) is equal to 100% − Total.

dephosphorylation phosphorylation
Rates fDS fDR fRU fSU fRD fSD fUS fUR

k0ij 0.31 0 0.21 0.11 0 0 0 0
kAij -0.319 0.173 0.0798 -0.133 0.213 0.506 0.0532 0.479

Table 1: The phosphorylation and dephosphorylation rates of the model, all per hour. For the other
parameters we have for the total KaiA: Â = 1.3µM, the total KaiC: Ĉ = 3.4µM, and Km = 0.43µM.
Rust et al. [2] write that several of the basal rates, k0XY, were estimated to be very small and could
be set to zero without affecting the quality of the fit to the data. In the script rust.R we have made
all parameters positive by changing fij into fij = k0ij − kAij

A
Km+A for fDS and fSU.

The three differential equations depend on 16 phosphorylation and dephosphorylation rates, which
have been estimated in Fig. 2 of the paper [2], that has data in the absence of KaiB (Fig. 2a) or in
the absence of KaiA (Fig. 2b). These parameter estimates are given in Table 1 of this handout, and in
Table S2 of the paper [2]. Finally, note the modeling on this system is still ongoing as the parameters
of this model were recently estimated using a more biophysical approach [1].

Using Grind. Today you will work with an R-script called grind.R which is a wrapper around
the R-packages deSolve, FME and rootSolve developed by Karline Soetaert and colleagues [3–6].
These packages allow one to solve differential equations, find their steady state, and perform nonlinear
parameter estimation. Today you only need three of Grind’s easy-to-use functions:
• run() integrates a model numerically and provides a time plot or a trajectory in the phase plane,
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
• timePlot() plots a data frame.
The full manual of Grind is available on the website http://tbb.bio.uu.nl/rdb/grindR/.

We will work in the RStudio environment. To get started perform the following:
• If you work on your own laptop you will need to install RStudio, R, and the Soetaert libraries.

Check this tutorial on how to install RStudio and R:
http://tbb.bio.uu.nl/rdb/bm/Introduction_to_R.pdf
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After that install the three Soetaert libraries by opening RStudio, going to the Tools menu, choosing
Install Packages, and then typing deSolve, FME and rootSolve. (Experts may prefer to type
install.packages(c("deSolve", "FME", "rootSolve") in the R-console).

• Otherwise: skip the previous step and go to the University’s MyWorkPlace environment.
• Make a local folder (directory) on your system where you will save the following files: the two

R-scripts grind.R and rust.R, and the four data files the four data files fig1a.txt, fig2a.txt,
fig2b.txt, and figS3.txt. All files can be obtained by downloading the circadian.zip file
from Blackboard or directly from the tbb.bio.uu.nl/rdb/practicals/circadian/ website. (In
Windows use the right mouse button and use “Save target as”, to store a file in a folder).

• Set the working directory of RStudio to the folder where your R-codes and data are stored (Set
working directory in the Session menu of RStudio). Files will then be opened and saved in that
directory.

• Use “Open file” to open grind.R and source Grind to define the functions (button on the right).
• Use “Open file” to open rust.R and run that script line by line.
Thus, after installing Grind and downloading the files, you first “Source” the grind.R file (button in
right hand top corner), and then “Run” the model with its parameter and state definitions line by
line (“Run” or “Control Enter”).

The Rust et al. [2] parameters are defined in the parameter vector p, by joining three vectors with the
default k0, the kA, the Km and the KaiA, KaiB and KaiC concentrations. The concentrations of D
(Double phosphorylated KaiC), R (thReonine phosphorylated KaiC), and S (Serine phosphorylated
KaiC) determine the state of the system, and are defined in the state vector s. Proceed slowly (line-
by-line) through the rust.R file, by clicking Run (or control R), and make sure that you understand
what is happening. Make notes!

The Figure 1a data. The data of Fig. 1a and the behavior of the model can be plotted together by
running the first lines of the R-script. Take some time to familiarize yourself with using R, and the
way the parameters are defined. Questions:
a. What are the main differences between the model behavior and the data of Fig. 1a?
b. What could be a reason for this, and how could this be taken into account?
c. Why do we need to transform the data from the paper (and how does the script do this)?

The Figure 2b data. Next we follow their procedure to fit subsets of the parameters to data
collected in under dedicated simplified conditions. In Grind the vector free contain the names of
the parameters to be fitted, and their initial values are taken from the parameters p. Rust et al. [2]
performed dedicated experiments to estimate subsets of parameters. In Fig. 2b they study the four
basal dephosphorylatyion rates by omitting KaiA (KaiC completely dephosphorylates in the absence
of KaiA). In the R-script we set p["KaiA"] <- 0 (make sure to set it back to 1.3 at the end). Repeat
their estimation procedure by stepping through the script. Note that parameter estimates are inserted
in the parameter vector in the line p[free] <- par2b, where free contains the names of the fitted
parameters, and par2b are the estimates taken from the list returned by fit (par2b <- fit2b$par).
Questions:
a. What is the meaning of the p[free] <- runif(length(free),0,0.5) line?

Hint: type ?runif in the R-console.
b. Do you always get the same values for the four dephosphorylatyion parameters they estimate?

Hint: fit several times by drawing novel random guesses.
c. Extra question: what happens if you would allow for some autophosphorylation in this exper-

iment i.e., if you allow all eight k0 parameters to be fitted (which is achieved by typing free <-

names(k0))? Do you get a better fit? Was that to be expected? Do you obtain oscillations for
these new parameters?

The Figure 2a data. Having estimated the k0 parameters, Rust et al. [2] proceed by estimating
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the kA parameters. They prevent oscillations by omitting the inhibitor KaiB (in the model we set
p["KaiB"] <- 0, make sure to set it back to 2 at the end). They found that the data in Fig. 2a is not
sufficient to estimate all kA parameters, and performed another experiment (Fig. S3) with another
initial condition to have more data. Repeat their estimation procedure by stepping through the script.
Try several initial guesses until you find a reasonable fit to both data sets. Finally, the estimates are
inserted in the parameters to test whether the model behavior is periodic. Questions:
a. What is the difference between the Fig. 2a data and the data in Fig. S3?
b. Do you get the same values for the eight kA parameters they estimate?
c. How do these estimates depend on the k0 values that you use?
d. Do you get oscillations?
e. Why do the authors first fit parameters to Fig. 2b and then to Fig. 2a? Why do they use Fig. 2b

to fit the k0 and Fig. 2a to fit the kA parameters?
f. In the last call to fit() we set scaleVar=TRUE to weigh each data set equally. The Fig. 2a data

contains many more data points than the Fig. S3 data. What happens if you don’t weigh the two
datasets similarly?

The Michaelis-Menten constant. If you still have time you might want to study the dependence
of the oscillations on the Michaelis-Menten parameter Km. On page 15 of the SI the authors write
that their model shows circadian oscillations for 0.092 < Km < 0.93µM, and that their standard value
of Km = 0.43µM lies well in this range. Thus, it should not matter if their parameter values were
slightly incorrect, as the qualitative behavior of the model should stay the same. Questions:
a. Check their statement by setting Km, e.g., p["Km"] <- 0.9 and running the model.
b. Study how the period of the oscillation depends on the value of Km.

October 21, 2018, Rob J. de Boer and Kirsten ten Tusscher, Utrecht University
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rust.R

model <− f unc t i on ( t , s ta te , parms ) {
with ( as . l i s t ( c ( s ta te , parms ) ) ,{

U = max(0 ,KaiC − R − D − S)
A = max(0 ,KaiA − KaiB∗S)
fA = A/ (Km + A)
fUR = k0UR + kaUR∗ fA
fDR = k0DR + kaDR∗ fA
fRU = k0RU + kaRU∗ fA
fRD = k0RD + kaRD∗ fA
fSD = k0SD + kaSD∗ fA
fDS = k0DS − kaDS∗ fA
fUS = k0US + kaUS∗ fA
fSU = k0SU − kaSU∗ fA
dD = fRD∗R + fSD∗S − fDR∗D − fDS∗D
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dR = fUR∗U + fDR∗D − fRU∗R − fRD∗R
dS = fUS∗U + fDS∗D − fSU∗S − fSD∗S
return ( l i s t ( c (dD,dR, dS) ) )

})
}

# Set some parameters f o r n i c e r g raph i c s ( keeping the d e f au l t in opar )
opar <− par
par (mar=c ( 2 . 6 , 2 . 6 , 1 . 6 , 0 . 2 ) ,mgp=c ( 1 . 5 , 0 . 5 , 0 ) ) # mar=c (B,L ,T,R)

# The parameters from the paper :
k0 <− c (k0DS=0.31 ,k0DR=0,k0RU=0.21 ,k0SU=0.11 ,k0RD=0,k0SD=0,k0US=0,k0UR=0) # Table S2
ka <− c (kaDS=0.319385 ,kaDR=0.173 ,kaRU=0.0798462 ,kaSU=0.133077 , # Table S2

kaRD=0.212923 ,kaSD=0.505692 ,kaUS=0.0532308 ,kaUR=0.479077)
K <− c (KaiA=1.3 ,KaiB=2,KaiC=3.4 ,Km=0.43) # the pro t e in concen t ra t i on s
p <− c ( k0 , ka ,K) # the complete parameter vec to r p
s <− c (D=1,R=0.5 ,S=0.2) # the s t a t e vec to r s

# Here the s e s s i o n s t a r t s

run ( )
data1a <− read . t ab l e ( ” f i g 1 a . txt ” , header=TRUE) # Read the data o f Fig1a
data1a [ , 2 : 4 ] <− p [ ”KaiC” ] ∗data1a [ , 2 : 4 ] /100 # Transform the data
t imePlot ( data1a , add=TRUE, draw=po in t s )

run ( s t a t e=un l i s t ( data1a [ 1 , 2 : 4 ] ) ) # Take i n i t i a l cond i t i on from data
t imePlot ( data1a , add=TRUE, draw=po in t s )

# Fit dephophory lat ion r a t e s from Fig 2b data
p [ ”KaiA” ] <− 0 # In Fig 2b KaiA=0
data2b <− read . t ab l e ( ” f i g 2b . txt ” , header=TRUE)
data2b [ , 2 : 4 ] <− p [ ”KaiC” ] ∗data2b [ , 2 : 4 ] /100 # Transform the data
t imePlot ( data2b , draw=points , main=”2b” )
f r e e <− c ( ”k0DS” , ”k0DR” , ”k0RU” , ”k0SU” ) # Fit 4 basa l k0 r a t e s
p [ f r e e ] <− r un i f ( l ength ( f r e e ) , 0 , 0 . 5 ) # Provide a random i n i t i a l guess
f i t 2 b <− f i t ( data2b , f r e e=f r e e , ymax=1.5 , lower=0,upper=1, i n i t i a l=TRUE, main=”2b” )
summary( f i t 2 b )
par2b <− f i t 2 b $par # Save est imated parameters
par2b <− i f e l s e ( par2b<1e−3 ,0 , par2b ) # Set smal l parameters to zero
p [ ”KaiA” ] <− 1 .3 # Reset KaiA
p [ f r e e ] <− par2b # Inc lude e s t imate s in parameters
run ( ) # Inspec t new model behavior

# Now f i t phophory lat ion r a t e s from Fig 2a data
p [ ”KaiB” ] <− 0 # In Fig 2a the re i s no KaiB
data2a <− read . t ab l e ( ” f i g 2 a . txt ” , header=TRUE)
data2a [ , 2 : 4 ] <− p [ ”KaiC” ] ∗data2a [ , 2 : 4 ] /100 # Transform the data
dataS3 <− read . t ab l e ( ” f i gS3 . txt ” , header=TRUE)
dataS3 [ , 2 : 4 ] <− p [ ”KaiC” ] ∗dataS3 [ , 2 : 4 ] /100 # Transform the data
par (mfrow=c (2 , 1 ) ) # Show data with a run ( ) :
t imePlot ( data2a , l egend=FALSE, draw=points , main=”2a” )
run (20 , s t a t e=un l i s t ( data2a [ 1 , 2 : 4 ] ) , add=TRUE, legend=FALSE)
t imePlot ( dataS3 , l egend=FALSE, draw=points , main=”3S” )
run (10 , s t a t e=un l i s t ( dataS3 [ 1 , 2 : 4 ] ) , add=TRUE, legend=FALSE)
par (mfrow=c (1 , 1 ) )

f r e e <− c ( ”kaDS” , ”kaDR” , ”kaRU” , ”kaSU” , ”kaRD” , ”kaSD” , ”kaUS” , ”kaUR” )
p [ f r e e ] <− r un i f ( l ength ( f r e e ) , 0 , 0 . 5 ) # Random i n i t i a l guess
par (mfrow=c (2 , 1 ) )
f i t 2 a s 3 <− f i t ( l i s t ( data2a , dataS3 ) , f r e e=f r e e , ymax=2, lower=0,upper=1, i n i t i a l=TRUE,

sca leVar=TRUE, main=c ( ”2a” , ”3S” ) , l egend=FALSE)
par (mfrow=c (1 , 1 ) ) # sca leVar s c a l e s both data s e t s equa l l y !
par2as3 <− f i t 2 a s 3 $par
p [ ”KaiB” ] <− 2 # Reset KaiB to i t s c o r r e c t va lue
p [ f r e e ] <− par2as3 # In s e r t e s t imate s in parameter vec to r p
run ( ) # Inspec t model behavior
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p # and the est imated parameters

# Plot the Figure 1 data to t e s t i f parameters d e s c r i b e that data
t imePlot ( data1a , draw=po in t s )
run ( s t a t e=un l i s t ( data1a [ 1 , 2 : 4 ] ) , add=TRUE, legend=FALSE)

# Run the model f o r the Rust parameters f o r va r i ous o f Km:
p <− c ( k0 , ka ,K) # Revert to the o r i g i n a l parameters
s <− c (D=1,R=0.5 ,S=0.2) # and s t a t e
p [ ”Km” ] <− 0 . 9 ; f <− run ( )

newton ( f ) # For the ” exper t s ” : f i nd steady s t a t e
cont inue ( f , x=”Km” , s tep =0.01) # and f o l l ow i t f o r s e v e r a l o f Km
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