
Estimating parameters from experimental data:
the fitting by Ram et al. [1] of rich bacterial growth data.

The aim of this practical is to learn how can quantitatively interpret data by fitting mathematical
models, and to become aware of the problem of reliably identifying all parameter values, when complex
models are fitted to simple data.

You will first repeat the analysis of Ram et al. [1] and estimate the growth parameters of a few
bacterial strains under two different experimental conditions. The paper demonstrates that estimating
these growth parameters suffices for estimating the relative fitness of the strains. The individual
growth rate of each strain is described by the following extension of the logistic growth equation
dN/dt = rN(1 −N/K) into
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where v is a parameter defininig the curvature of the density dependent function [1− (N/K)v], which
is linear when v = 1 and concave when v > 1 (convex shapes are not considered). The leading term
describes the adjustment of the bacteria to the environment of the experiment. When t = 0 the
bacteria start with a maximum replication rate q0r

q0+1 that is below r, and approach their ultimate
maximum replication rate r after some time defined by the parameter m in the exponential function.
This model has 6 parameters, N(0), q0, m, r, K, and v, and in Fig. 3 these parameters are inde-
pendently estimated for each of the strains (called 1 (red), 2 (green), 3 (red) or 4 (green)) in three
experimental conditions (called A, B or C). These estimates are given in Table S2. Note that v was
not estimated for A1 and C4, and that the lag parameters, q0 and m, were ignored in experiment B
(that was done with bacteria coming from a fresh culture). You can find the paper and its appendix
on tbb.bio.uu.nl/rdb/practicals/bacteria.

After estimating these six parameter from the growth curves in Fig. 3, two different strains were grown
together and the total OD was measured (see Fig. 4). Not using any data on the relative frequencies
of the strains, the Fig. 4 data was fitted to the summed population size, N1 + N2, of a 2-dimensional
version of the same model
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The two ci parameters provide the relative competitive strength of the other species (when ci = 1 the
intraspecific competition is equal to the interspecific competition). Fitting this model with 14 free
parameters to the sigmoid curve of data points representing the total OD (see Fig. 4) would clearly
be unfeasible. Instead, only c1 and c2 were estimated, and the 12 other parameters were copied from
the fitting of the Fig. 3 data.

Finally, the model is run numerically for the best fitted parameters and the thus predicted frequencies
of each strain, N1

N1+N2
and N2

N1+N2
, are plotted together with frequencies measured by flow cytometry

(see Fig. 5). The main result of the paper is that these predictions work well, and that hence for esti-
mating the relative fitness, we need not collect frequency data. Having two individual growth curves
and a total density curve from a combination experiment, i.e., three growth curves, suffices for gener-
ating simulation data from which a classic relative fitness parameter can be estimated. Additionally,
using this approach one can attribute fitness differences to a variety of parameters, rather than to a
single selection coefficient.

Today you will first repeat this analysis for one experiment (start with A), by fitting the data in Fig. 3
to the first model, copying the estimated parameters for the second model, to estimate the competition
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parameters, ci, from the data in Fig. 4 (write the ci values down), and predict the frequency data in
Fig. 5. This can all be done with the R-script ram.R using the wrapper grind.R. Note that the 3 data
sets as we have retrieved them from their public repository are identified by a date (uncomment one
of the 3 lines at the start of the ram.R script), and that strains are called ‘R’ and ‘G’, for red and
green, respectively.

Using Grind. You will work with an R-script called grind.R which is a wrapper around the R-
packages deSolve, FME and rootSolve developed by Karline Soetaert and colleagues [2–5]. These
packages allow one to solve differential equations, find their steady state, and perform nonlinear
parameter estimation. Today you only need two of Grind’s easy-to-use functions:
• run() integrates a model numerically and provides a time plot,
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
A full manual of Grind is available in the form of a tutorial (tbb.bio.uu.nl/rdb/grindR/tutorial.pdf).
For today you need to know that the vector p contains the parameters, and the vector s the initial
condition (the state). The vector lower in the call to fit() defines the lower bound of the parameters
to be estimated (lower=0 guarantees that they are all positive, use lower[i]=1 to set the lower bound
of the ith parameter to one). With the vector free in fit() you can define which parameters are
free and should be estimated. With the vector differ in fit() you can define which free parameters
differ between the data sets. With the text tweak in fit() you can add columns to the numerical
solution before this is forwarded to the fitting algorithm (e.g., add a total or a frequency). Data sets
can be fitted simultaneously when they are provided as a list of data sets. Most of these options will
become clear by running the example step-by-step.

We will work in the RStudio environment. To get started perform the following:
• You may need to install RStudio, R, and the Soetaert libraries. Install the three Soetaert libraries

by opening RStudio, going to the Tools menu, choosing Install Packages, and then typing deSolve,
FME and rootSolve.

• Download the practicals/bacteria/ram.zip file and unzip it somewhere in your file system. This
creates a folder containing the grind.R and ram.R scripts and three subdirectories called Fig3,
Fig4 and Fig5, which contain the data in the form of ‘csv’-files.

• Open ram.R to startup RStudio (you may have to set the working directory in RStudio to the
folder containing the R-script (Set working directory in the Session menu of RStudio)). Files
will then be opened from that directory.

• Use “Open file” to open grind.R and source Grind to define the functions (button on the right).
• Switch back to the ram.R tab, and run that script line by line.
Next time, first “Source” the grind.R file (button in right hand top corner), and then “Run” the
ram.R script line by line (select a line and hit “Run” or “Control Enter”).

Question 1. Repeat the Ram et al. [1] analysis for at least experiment A and B.
a. Compare your parameter estimates with those in Table S2. We transform the data by taking the

log. Why do we do that, did they do that, and does it make a difference?
b. What happens to the estimated parameters if the lower bound of the v parameter is zero (rather

than one), and what does this imply for the form of density dependent function?
c. What happens to the estimated parameters if the lag parameters, q0 and m, are not ignored when

fitting the data from Fig. 3B?
d. What are the ci estimates, and what do they mean? How much do you loose in the quality of the

fit (i.e., in the SSR), when the ci parameters are forced to be equal?

Question 2. When the total density of two competing strains is fitted to the OD data, each strain is
given its 6 best estimated parameters and a free competition parameter, ci, for weighting the relative
competitive effect of the other strain. Although only the two competition parameters, ci, are being
estimated in Fig. 4, the two strains ultimately differ in all 7 parameters (i.e., the model to describe all
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data has 14 parameters).
a. Can you describe the differences between the strains in Fig. 3 with fewer parameters? Hint: use

the option differ=c("m","v","K") to Grind’s fit-function to fit the two data sets simultaneously
assuming that only these 3 parameters have to estimated separately, and that the two strains have
identical values for the other free parameters.

b. Can you also fit the Fig. 3 and Fig. 4 data together, and find an even more minimal difference
between the two strains in an experiment? How would you predict the Fig. 5 data given these
minimal differences. Which parameter(s) play a major role in defining the relative fitness of these
two strains?

Question 3. The only difference between the red bacteria A1 and B1 in Fig. 3 should be that the
A1 bacteria had to wake up from their stationary phase, whereas the B1 bacteria were pre-grown in
fresh media (the same should be true for the difference between the green A2 and B2 bacteria). By
estimating these data separately, the A1 and B1 are different in all six parameters, however (and so
are A2 and B2). For instance, the parameter v for the curvature of the density dependence could not
be estimated for A1 whereas v = 1.49 for B1, while this strain should basically have a single curvature
of its density dependence function.
a. Can you describe the A1 and A2 data while assuming that the two data sets only differ in the

parameters for the lag phase (q0 and m) and possibly the initial condition? If you can, would you
then trust the other estimated differences between the two data sets? What would be your ‘best’
parameters for the first strain in both experiments?

b. What were your estimates for the four ci parameters in the A and B experiment? Do you expect
c1 to differ between experiment A and B? And c2? How would you test this? (Just propose how
this could be done, because actually coding this in R may be too laborious for a single afternoon).

Question 4. The relative fitness of the first and second strain differs between experiment A and B
because the lag phase plays hardly any role in B, and is quite long in A. Wouldn’t it be best to find
out which parameters really need to be different between the strains in all 6 experiments (i.e., Fig. 3
A1, B1, A2 and B2 and Fig. 4 A and B), since all experiments were done with the same two strains?
How would you test this? (Again, coding this may be too tricky for a single afternoon).

Question 5. This is a question for students having a more technical background: The data for every
strain actually consists of 30 or 32 independent experiments that we have joined into one data set.
One can also fit the model to each individual culture, and hence obtain 30 or 32 estimates for each of
the parameters, and report an average or median, with some range around it.
a. What did the authors do, and how do they obtain the confidence ranges in Table S2? How come

that they have so narrow confidence ranges while we find that we can choose quite different values
for several of the parameters?

b. What would the relative fitness be if the Fig. 5 data were fitted to the classic model from population
genetics? This model is derived from

dN1

dt
= rN1 and

dN2

dt
= r(1 + s)N2 yielding

df

dt
= rsf(1 − f) ,

where f = N2
N1+N2

is the fraction of the strain having a selection coefficient s (see the Appendix).
What would the relative fitness be if this model were fitted to the predicted frequencies? How many
identifiable free parameters does this model have if it is fitted to frequency data only? Would the
estimated relative fitness depend on the growth conditions?

August 15, 2020, Rob J. de Boer, Utrecht University
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ram/ram.R

# The 3 exper iments are indexed by t h e i r date :
expt <− ”2015−11−18” #Experiment A
#expt <− ”2015−12−14” #Experiment B
#expt <− ”2016−01−06” #Experiment C

# F i r s t read and p lo t a l l data :

f ig3R <− read . csv ( paste ( ”Fig3/” , expt , ” R. csv ” , sep=”” ) ) # Red
fig3G <− read . csv ( paste ( ”Fig3/” , expt , ” G. csv ” , sep=”” ) ) # Green
p l o t ( f ig3R$Time , f ig3R$OD, ylim=c ( 0 , 0 . 8 ) , c o l=” red ” , pch=” . ” , xlab=”Time ( hr ) ” , ylab=”OD” )
po in t s ( f ig3G$Time , f ig3G$OD, ylim=c ( 0 , 0 . 8 ) , c o l=” green ” , pch=” . ” )

f i g 4 <− read . csv ( paste ( ”Fig4/” , expt , ” RG. csv ” , sep=”” ) )
p l o t ( f i g 4 $Time , f i g 4 $OD, ylim=c ( 0 , 0 . 8 ) , c o l=”blue ” , pch=” . ” , xlab=”Time ( hr ) ” , ylab=”

Total OD” )

f i g 5 <− read . csv ( paste ( ”Fig5/ f low df ” , expt , ” . csv ” , sep=”” ) )
f ig5G <− f i g 5 [ f i g 5 $ St ra in==”Green” , ]
f ig5R <− f i g 5 [ f i g 5 $ St ra in==”Red” , ]
p l o t ( f ig5G$time , f ig5G$ f r e q mean , ylim=c (0 , 1 ) , c o l=” green ” , xlab=”Time ( hr ) ” , ylab=”

Frequency” )
po in t s ( f ig5R$time , f ig5R$ f r e q mean , c o l=” red ” )

# Here the f i t t i n g s t a r t s

model <− f unc t i on ( t , s ta te , parms ) {
with ( as . l i s t ( c ( s ta te , parms ) ) , {

v <− max(1 , v )
a <− q0/ ( q0+exp(−m∗ t ) )
dN <− r ∗a∗N∗(1−(N/K) ˆv )
re turn ( l i s t (dN) )

})
}

s <− c (N=0.124)
p <− c (K=0.6 , r =0.4 ,m=2,q0=0.005 ,v=2)
f r e e <− c ( ”N” , names (p) )
lower <− rep (0 , l ength ( f r e e ) ) ; lower [ match ( ”v” , f r e e ) ] <− 1 ; lower # se t lower bounds
data3R <− as . data . frame ( cbind ( f ig3R$Time , f ig3R$OD) ) ; names ( data3R ) <− c ( ” time” , ”N” )
f i t 3R <− f i t ( data3R , f r e e=f r e e , fun=log , lower=lower , pch=” . ” , l egend=FALSE, t s t ep =0.1 ,main=”

red ” )
summary( f i t 3R )

data3G <− as . data . frame ( cbind ( f ig3G$Time , f ig3G$OD) ) ; names ( data3G ) <− c ( ” time” , ”N” )
f i t3G <− f i t ( data3G , f r e e=f r e e , fun=log , lower=lower , pch=” . ” , l egend=FALSE, t s t ep =0.1 ,main=”

green ” )
summary( f i t3G )

# The 2D model i s de f ined :

model2 <− f unc t i on ( t , s ta te , parms ) {
#sta t e <− i f e l s e ( s t a t e < 0 , 0 , s t a t e )
with ( as . l i s t ( c ( s ta te , parms ) ) , {

v1 <− max(1 , v1 ) ; v2 <− max(1 , v2 )
a1 <− q01/ ( q01+exp(−m1∗ t ) ) ; a2 <− q02/ ( q02+exp(−m2∗ t ) )
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dN1 <− r1 ∗a1∗N1∗(1−(N1/K1) ˆv1−c2∗ (N2ˆv2 ) / (K1ˆv1 ) )
dN2 <− r2 ∗a2∗N2∗(1−(N2/K2) ˆv2−c1∗ (N1ˆv1 ) / (K2ˆv2 ) )
re turn ( l i s t ( c (dN1 , dN2) ) )

})
}

# Retr i eve parameters from the ” f i t $par” l i s t and rename them f o r the 2D model

pR <− f i t 3R $par [ 2 : l ength ( f i t 3R $par ) ] ; names (pR) <− paste ( names (pR) , ”1” , sep=”” )
pG <− f i t3G $par [ 2 : l ength ( f i t3G $par ) ] ; names (pG) <− paste ( names (pG) , ”2” , sep=”” )

data4 <− as . data . frame ( cbind ( f i g 4 $Time , f i g 4 $OD) ) ; names ( data4 ) <− c ( ” time” , ”OD” )
p <− c (pR,pG, c1=1, c2=1) ; p [ ”v1” ] <− max(1 , p [ ”v1” ] ) ; p [ ”v2” ] <− max(1 , p [ ”v2” ] ) ; p
in i t i a lOD <− data4 [ 1 , 2 ]
s <− c (N1=in i t i a lOD /2 ,N2=in i t i a lOD /2) ; s # assume the expt was s t a r t ed equa l l y
f r e e <− c ( ”c1” , ” c2” )
f i t 4 <− f i t ( data4 , odes=model2 , tweak=” nso l $OD=nso l $N1+nso l $N2” , f r e e=f r e e , fun=log , lower

=0,upper=2,pch=” . ” , l egend=FALSE, t s t ep =0.1 ,main=”blue ” )
summary( f i t 4 )

p [ ” c1” ] <− f i t 4 $par [ ” c1” ] ; p [ ” c2” ] <− f i t 4 $par [ ” c2” ] ; p # Retr i eve parameters from ” f i t
$par”

i n i t i a l F <− f ig5R$ f r e q mean [ 1 ]
s <− c (N1=i n i t i a l F ∗ in i t ia lOD ,N2=(1− i n i t i a l F ) ∗ i n i t i a lOD )
nso l <− run ( 6 , 0 . 1 , odes=model2 , tweak=” nso l $fR=nso l $N1/ ( nso l $N1+nso l $N2) ; n so l $fG=1−nso l $

fR” , t ab l e=TRUE)
p lo t ( n so l $ time , n so l $fR , ylim=c (0 , 1 ) , type=” l ” , c o l=” red ” )
po in t s ( f ig5R$time , f ig5R$ f r e q mean , c o l=” red ” )
l i n e s ( n so l $ time , n so l $fG , c o l=”darkGreen” )
po in t s ( f ig5G$time , f ig5G$ f r e q mean , c o l=”darkGreen” )

# Here the paper ends

# This i s an example showing how to f i t two data s e t s s imu l taneous ly

s <− c (N=0.124)
p <− c (K=0.6 , r =0.4 ,m=2,q0=0.005 ,v=2)
f r e e <− c ( ”N” , names (p) )
d i f f e r <− c ( ”N” , ”K” , ”v” , ”m” )
t o t f r e e <− c ( f r e e [ ! ( f r e e %in% d i f f e r ) ] , d i f f e r , d i f f e r ) ; npar <− l ength ( t o t f r e e )
cat ( ”Number o f f r e e parameters ” , npar )
lower <− rep (0 , npar ) ; lower [ which ( t o t f r e e == ”v” ) ] <− 1 ; lower # se t lower bounds
f i t q 1 <− f i t ( data=l i s t ( data3R , data3G ) , f r e e=f r e e , d i f f e r=d i f f e r , fun=log , lower=lower , pch=”

. ” , l egend=FALSE, t s t ep =0.1 ,main=” red & green ” , add=TRUE)
summary( f i t q 1 )

# This i s an example o f f i t t i n g the populat ion g en e t i c s model to f requency data

model <− f unc t i on ( t , s ta te , parms ) {
with ( as . l i s t ( c ( s ta te , parms ) ) , {

df <− r ∗ s ∗ f ∗(1− f )
r e turn ( l i s t ( df ) )

})
}

s <− c ( f =0.5) ; p <− c ( r=1, s =0.1) ; f r e e=c ( ” f ” , ” s ” )

data <− as . data . frame ( cbind ( f ig5R$time , f ig5R$ f r e q mean) ) ; names ( data ) <− c ( ” time” , ” f ” )
f i t q 4d1 <− f i t ( data , f r e e=f r e e )
data <− as . data . frame ( cbind ( nso l $ time , n so l $fR ) ) ; names ( data ) <− c ( ” time” , ” f ” )
f i t q 4d2 <− f i t ( data , f r e e=f r e e )

Appendix
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Consider two exponentially expanding populations, e.g., a wild type N1 and a mutant N2,

dN1

dt
= rN1 and

dN2

dt
= r(1 + s)N2 ,

where s is the selection coefficient of the mutant (s can be positive or negative). In a competition
experiment one would plot how the fraction mutant f ≡ N2/(N1 +N2) evolves over time. To compute
how the fraction f(t) changes one needs to employ the quotient rule of differentiation: [f(x)/g(x)]′ =
(f(x)′g(x) − f(x)g(x)′)/g(x)2. Thus, using ′ to denote the time derivative, one obtains for df/dt:

df

dt
=

N ′2(N1 + N2) − (N ′1 + N ′2)N2

(N1 + N2)2
,

=
N ′2N1 −N ′1N2

(N1 + N2)2
,

=
r(1 + s)N2N1 − rN1N2

(N1 + N2)2
,

= r(1 + s)(1 − f)f − rf(1 − f) ,

= rsf(1 − f) ,

with the solution

f(t) =
1

1 + e−rst 1−f(0)
f(0)

,

that is also written in the legend of Fig. 5 of the Ram et al. [1] paper.
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