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Determining the fitness of specific microbial genotypes has
extensive application in microbial genetics, evolution, and bio-
technology. While estimates from growth curves are simple and
allow high throughput, they are inaccurate and do not account for
interactions between costs and benefits accruing over different
parts of a growth cycle. For this reason, pairwise competition
experiments are the current “gold standard” for accurate estima-
tion of fitness. However, competition experiments require distinct
markers, making them difficult to perform between isolates de-
rived from a common ancestor or between isolates of nonmodel
organisms. In addition, competition experiments require that com-
peting strains be grown in the same environment, so they cannot
be used to infer the fitness consequence of different environmen-
tal perturbations on the same genotype. Finally, competition ex-
periments typically consider only the end-points of a period of
competition so that they do not readily provide information on
the growth differences that underlie competitive ability. Here,
we describe a computational approach for predicting density-
dependent microbial growth in a mixed culture utilizing data from
monoculture and mixed-culture growth curves. We validate this
approach using 2 different experiments with Escherichia coli and
demonstrate its application for estimating relative fitness. Our
approach provides an effective way to predict growth and infer
relative fitness in mixed cultures.

population dynamics | microbial growth | competition model |
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Microbial fitness is usually defined in terms of the relative
growth of different microbial strains or species in a mixed

culture (1). Pairwise competition experiments can provide ac-
curate estimates of relative fitness (2), but can be laborious and
expensive, especially when carried out with nonmodel organisms.
Moreover, competition experiments cannot be used to estimate
the effect of environmental perturbations on fitness, as the
competing strains must be grown in a shared environment. In-
stead, comparisons of separate aspects of growth curves—for
example, growth rates or lag times—are commonly used to es-
timate the fitness of individual microbial isolates, despite clear
evidence that they provide an inadequate alternative (3, 4).
Growth curves describe the density of cell populations in liq-

uid culture over time and are usually obtained by measuring the
optical density (OD) of cell populations. The simplest way to
infer fitness from growth curves is to estimate the growth rate
(i.e., Malthusian parameter) during the exponential growth
phase, using the slope of the log of the growth curve (5) (see
example in Fig. 1). While relative growth rates are often used as
a proxy for relative fitness (1, 6, 7), exponential growth rates do
not capture the complete dynamics of typical growth curves,
such as the duration of the lag phase and the cell density
achieved at stationary phase (8) (Fig. 1A). Moreover, the
maximal specific growth rate is not typical for the entire growth

curve (Fig. 1B). Thus, growth rates are often poor estimators of
relative fitness (3, 4).
By contrast, competition experiments can produce estimates

of relative fitness that account for all growth phases (9). In
pairwise competition experiments, 2 strains—a reference strain
and a strain of interest—are grown in a mixed culture. The
density or frequency of each strain in the mixed culture is
measured during the course of the experiment using specific
markers, either by counting colonies formed by competitors that
differ in drug resistance, resource utilization, or auxotrophic
phenotypes (9); by monitoring fluorescent markers with flow
cytometry (2); or by counting DNA barcode reads using deep
sequencing (10, 11). The relative fitness of the strain of interest is
then estimated from changes in the densities or frequencies of
the strains during the competition experiment. Such competition
experiments allow relative fitness to be inferred with high pre-
cision (2), as they directly estimate fitness from changes in strain
frequencies over time.

Significance
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Competition experiments are often more demanding and ex-
pensive than simple growth curve experiments, especially in lab-
oratories where they are not routinely performed. They require
the strains of interest to be engineered with genetic or phenotypic
markers (see ref. 3 and references therein), which is difficult or
impossible in some nonmodel organisms or when measuring the
fitness effect of environmental change. Moreover, many markers
incur costs that can affect the outcome of competitions (2).
Therefore, many investigators prefer to use proxies for fitness,
such as growth rates estimated from growth curves of monocul-
tures. However, it is difficult to infer how differences in growth
during the growth phases affect relative fitness in competition (12,
13), even when competition experiments are a plausible approach
[e.g., in microbial lineages with established markers (9)].
Here, we present a computational approach that provides a

framework for estimating growth parameters from growth dy-
namics and for predicting relative growth in mixed cultures. We
provide 2 different experimental validations of this approach and
demonstrate its application to estimating the effect of protein
expression on relative fitness.

Results
Our approach consists of 3 stages: (i) fitting growth models to
monoculture growth curve data (Fig. 2A), (ii) fitting competition
models to mixed-culture growth curve data (Fig. 2B), and (iii)
predicting relative growth in a mixed culture using the estimated
growth and competition parameters. Independent experimental
validations of this approach include the use of fluorescent
Escherichia coli strains, and the use of E. coli strains that pre-
viously evolved under metabolic challenges. In both of these
experimental approaches, we measured growth of 2 strains in
monoculture and mixed culture, predicted growth in the mixed
culture, and compared these predictions to the empirical results.
Finally, we describe an application of our method to estimating
the effect of lac operon expression on relative fitness.

Experimental Validation Design.
Fluorescence experiments. Three fluorescence experiments (denoted
A, B, and C) were performed with 2 pairs of E. coli strains
marked with green and red fluorescent proteins (GFP and RFP,
respectively). The same pair of strains was used in experiment A
and B, and a different pair was used in experiment C. Experiment
A started by diluting stationary-phase bacteria from strains 1 and
2 into fresh media, yielding cultures in which lag phase was ob-
servably longer for strain 2. In experiment B, strains 1 and 2 were
pregrown in fresh media for 4 h, allowing them to reach early
exponential growth phase, and then diluted into fresh media, so

that there was no observable lag phase. Experiment C was similar
to experiment A but with different strains, denoted 3 and 4. Each
experiment consisted of 3 subexperiments: 32 replicate mono-
cultures of the GFP strain; 30 replicate monocultures of the RFP
strain; and 32 replicate mixed cultures containing the GFP and
RFP strains together. These subexperiments were performed
under the same experimental conditions in a single 96-well plate
format. The OD of every well (i.e., in all subexperiments, both in
monoculture and mixed-culture wells) was measured using an
automatic plate reader (Figs. 3 and 4). In addition, samples were
collected from the mixed-culture subexperiment wells and the
relative frequencies of the 2 strains were measured by flow

A B

Fig. 1. Common approach to analyzing growth curve data using an exponential model. Growth rates are commonly estimated from growth curve data by
taking the log of the growth curve and performing linear regression around the time of maximum growth, tmax (see Materials and Methods for specific
details). Implicitly, this is equivalent to fitting an exponential growth model N(t) = N0e

rt to the growth curve. (A) The circles represent N(t), the mean cell
density of 22 growth curves of strain A1 growing in monoculture (see details of experiment A). The solid line represents a fit of a polynomial of degree
3 through the points. The dashed line represents the exponential model N0e

rt fitted to the data, with r = 0.35 and N0 = 0.088. The dotted vertical line denotes
tmax. (B) The solid curve shows dN/dt, the derivative of the mean density (calculated as the derivative of the solid line in A). The dotted vertical line denotes
tmax. Data in this figure correspond to the growth of strain A1 (red markers in Fig. 3A1).

A

B

Fig. 2. Illustration of the computational approach. (A) Two strains (here
marked with red and green circles) are grown separately in monocultures
while the cell culture density (e.g., OD) is measured. Then, growth models
are fitted to the measured growth curves from each experiment, providing
estimates for the growth parameters of each strain: initial cell density N0,
maximum cell density K, specific growth rate r, deceleration parameter ν,
initial adjustment q0, and adjustment rate m. (B) The same 2 strains are
grown in a mixed culture, and the total cell density of the mixed culture is
measured. The resulting growth curve is fitted to a competition model, pro-
viding estimates for the competition parameters c1 and c2. Importantly, at this
stage, the cells are not identified by their strain; hence, the gray circles.
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cytometry (Fig. 5). See Materials and Methods for additional
details (14).
LacI experiments. Eight E. coli strains were isolated from pop-
ulations that previously evolved in lactose-containing environments
(15). These strains maintained the ancestral allele (rather than
having fixed a loss-of-function mutation) at the lacI gene, which
represses the lac operon. These strains were then mutated at the
lacI gene. For each pair of lacI+ and lacI− strains, growth curves
were measured in a monoculture, and in competition experiments
conducted in mixed culture (Fig. 6). See Materials and Methods for
additional details.

Estimating Growth Parameters.
Growth model. The Baranyi–Roberts model (16) can be used to
model growth that comprises several phases: lag phase, expo-
nential phase, deceleration phase, and stationary phase (5). The
model assumes that cell growth accelerates as cells adjust to new
growth conditions, then decelerates as resources become scarce,
and finally halts when resources are depleted (17). The model is
described by the following ordinary differential equation (see

equations 1c, 3a, and 5a in ref. 16; for a derivation of Eq. 1 and
for further details, see Appendix A):

dN
dt

= r · αðtÞ ·N
�
1−

�
N
K

�v�
, [1]

where t is time, N =NðtÞ is the cell density at time t, r is the
specific growth rate at low density, K is the maximum cell
density, v is a deceleration parameter, and αðtÞ is the adjust-
ment function ð0≤ αðtÞ≤ 1Þ, which describes the fraction of the
population that has adjusted to the new growth conditions by
time t. In microbial experiments, an overnight liquid culture of
microorganisms that has reached stationary phase is typically
diluted into fresh media. Following dilution, cells enter lag
phase until they adjust to the new growth conditions. We chose
the specific adjustment function suggested by Baranyi and
Roberts (16), which is both computationally convenient and
biologically interpretable: αðtÞ= q0=q0 + e−mt, where q0 charac-
terizes the physiological state of the initial population, and m is
the rate at which the physiological state adjusts to the new
growth conditions.

A1 B1 C3

A2 B2 C4

Fig. 3. Fitting growth models to monoculture growth curves. The panels show monoculture growth curve data (markers) and best-fit growth models (lines;
Eqs. 2a and 2b). In panel labels, letters denote the experiment (A, B, and C) and numbers denote the strain (1–4; red strains in Top row, green strains in
Bottom row); see Results, Experimental Validation Design. See Table 1 for estimated growth parameters. Thirty to thirty-two replicates per strain. The figure
omits the stationary phase.

A B C

Fig. 4. Fitting competition models to mixed-culture growth curves. The panels show mixed-culture growth curves (blue symbols show measured total
densities) and best-fit competition models (solid blue lines; Eqs. 3a and 3b) from experiments A–C (i.e., from the mixed growth subexperiments). Thirty-two
replicates per experiment. The dashed black lines show the prediction of an exponential model with N1ðtÞ+N2ðtÞ=N0ðer1t + er2tÞ, where ri are estimated by
fitting an exponential model to monoculture growth curves (Fig. 1).
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The Baranyi–Roberts differential equation (Eq. 1) has a
closed-form solution:

NðtÞ=K
��

1−
�
1−

�
K
N0

�v�
e−r·v·AðtÞ

�1
=v
, [2a]

where

AðtÞ=
Z t

0

αðwÞdw= t+
1
m
log

�
e−m·t + q0
1+ q0

�
, [2b]

with parameters as defined above and with N0 =Nð0Þ, the initial
population density. For a derivation of Eqs. 2a and 2b from Eq.
1, see Appendix A. We used this growth model (Eqs. 2a and 2b)
to estimate growth parameters, which we then used in a compe-
tition model (Eqs. 3a and 3b below) to infer relative growth in a
mixed culture. Note that alternative models could be used with
our approach, for example when analyzing biphasic growth
curves (18).
Model fitting. Growth model parameters were estimated by fitting
the growth model (Eqs. 2a and 2b) to the monoculture growth
curve data of each strain (Fig. 1A). The best-fit models (lines)

and experimental data (markers) are shown in Fig. 3; see SI
Appendix, Table S1 for the estimated growth parameters. From
these best-fit models, we also estimated the maximum specific
growth rate ðmaxðð1=NÞ · ðdN=dtÞÞÞ, the minimal specific dou-
bling time (minimal time required for cell density to double), and
the lag duration (time required to adjust to new environment);
see SI Appendix, Table S1 and Materials and Methods. Different
strains differ in their growth parameters: for example, strain A1
(red strain in experiment A) grows 41% faster than the strain A2
(green), has 23% higher maximum density, and has a 60%
shorter lag phase (Fig. 3).

Estimating Competition Coefficients.
Competition model. To model growth in a mixed culture, we as-
sume that interactions between strains are density dependent, for
example due to resource competition. This excludes frequency-
dependent interactions, which may arise due to production of
toxins (19) or public goods (20) (see Fig. 8 for a deviation from
this assumption). Therefore, all interactions are described by the
deceleration of the growth rate of each strain in response to the
increased density of both strains. We have derived a 2-strain
Lotka–Volterra competition model (21) based on resource
consumption (Appendix B):

8>>>><
>>>>:

dN1

dt
= r1

q0,1
q0,1 + e−m1t

 N1

�
1−

Nv1
1

Kv1
1
− c2 ·

Nv2
2

Kv1
1

�

dN2

dt
= r2

q0,2
q0,2 + e−m2t

 N2

�
1− c1 ·

Nv1
1

Kv2
2
−
Nv2

2

Kv2
2

�
,

[3a, 3b]

where Ni is the density of strain i= 1, 2, ri,Ki, vi, q0,i, and mi are
the values of the corresponding parameters for strain i, obtained
from fitting the growth model (Eqs. 2a and 2b) to monoculture
growth curve data, and ci are competition coefficients, the ratios
between interstrain and intrastrain competitive effects. Note that
in resource competition, each strain can be limited by a different
resource, and strains may vary in their efficiency of resource
utilization (i.e., uptake and conversion rates; Appendix A).
Model fitting. The competition model (Eqs. 3a and 3b) was fitted
to growth curve data from the mixed culture, in which the total
OD of both strains in mixed culture was recorded over time (i.e.,
the bulk density, not the frequency or density of individual
strains; Fig. 2B). The growth parameters ðri,Ki, vi, q0,iÞ were fixed
to the values estimated from the monoculture growth curves at
the previous stage, and the fitting at this stage only provided
estimates for the competition coefficients ci. Fitting was per-
formed by minimizing the squared differences between N1 +N2
(the sum of the solutions of Eqs. 3a and 3b; integrals solved
numerically using LSODA solver) and the total OD from the

Fig. 6. Predicting relative fitness. Comparison of experimental and model
estimates of the fitness (Eq. 4) of lacI− mutants relative to lacI+ wild types
for 8 different E. coli strains (strain identifiers on x axis). The open circles (○)
show experimental estimates. The filled circles (●) show model predictions
based only on monoculture growth curve data. Errors bars show 95% con-
fidence intervals. Due to noise in the growth curve data, model fitting was
unstable, and some predicted competitions resulted in no growth, or even a
decrease in OD, for one strain. Such outliers were excluded from the analysis.

A B C

Fig. 5. Predicting competition results. Comparison of experimental data (markers) and model prediction (dashed lines; see SI Appendix, Fig. S3 for confidence
intervals) of relative strain frequencies in a mixed culture from experiments A–C. The red and green dashed lines show our model predictions for the red and
green strains (red strains eventually win in all experiments). The dashed black lines show exponential model predictions (f1ðtÞ= 1=ð1+ ðN2ð0Þ=N1ð0ÞÞe−ðr1−r2ÞtÞ
and f2ðtÞ=1− f1ðtÞ; Fig. 1). Error bars show SD (hardly seen in A and C).
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mixed culture (Fig. 4). Part of the strength of this approach stems
from its use of measurements of the total density of mixed cul-
tures, which is usually ignored when estimating fitness from
growth curves (5). However, when such measurements are not
available, competition coefficients can be set to ci = 1. This is the
case for the lacI experiments. See Materials and Methods for
additional details.

Prediction and Validation.
Model prediction. We solved the competition model (Eqs. 3a and
3b) using estimates of all of the competition model parameters,
and numerical integration (LSODA solver), thereby providing a
prediction for the cell densities N1ðtÞ and N2ðtÞ of the 2 strains
growing in a mixed culture. From these predicted densities, the
relative frequencies of each strain over time were estimated as
fiðtÞ= ðNiðtÞÞ=ðN1ðtÞ+N2ðtÞÞ.
Experimental validation: Relative growth. We compared the model
predictions fiðtÞ to experimental relative frequencies obtained
using flow cytometry from mixed-culture samples in the fluo-
rescent experiments. Experimental results and model predictions
are shown in Fig. 5, together with the exponential model pre-
dictions (which effectively use the growth rate as a proxy for
fitness). Our model performed well and clearly improved upon
the exponential model for predicting competition dynamics in
a mixed culture.
Experimental validation: Relative fitness. We validated the use of this
approach for estimation of relative fitness using 8 pairs of lacI+
and lacI− strains. In each pair, the lacI+ strain had previously
evolved in a lactose-containing environment (15) and the lacI−
strain was produced by introducing a mutation that causes lac
genes to be constitutively expressed at a high level. For each
lacI+/lacI− strain pair, growth curves were measured in a
monoculture and used to predict growth in mixed culture (Eqs.
3a and 3b; competition parameters were set to ci = 1 rather than
estimated from growth in a mixed culture). In addition, com-
petition experiments were conducted in mixed culture. The rel-
ative fitness W of lacI− strain relative to lacI+ strain was
estimated from the experimental and predicted densities NlacI−
and N lacI+ following Lenski et al. (7), where Ni(t) is the density
of strain i after t hours, and

W = log
�
NlacI−ð24Þ
NlacI−ð0Þ

��
log

�
NlacI+ð24Þ
NlacI+ð0Þ

�
. [4]

Fig. 6 compares the relative fitness W of lacI− mutants from
competition experiments and from model predictions in 8 strain
pairs. Clearly, estimates from experiments and from model pre-
dictions are very similar. This suggests it was reasonable to as-
sume competitions parameters can be fixed at ci = 1.

Application: Predicting the Effect of lac Operon Expression on
Relative Fitness. We next tested an application of our computa-
tional approach by estimating the effect of lac operon expression
on relative fitness in a strain of E. coli that evolved in a distinct
lactose-containing environment (15). Quantitative manipulation
of lac expression level is done by changing either the genotype or
the environmental concentration of an inducer. With the latter,
it is not possible to perform direct fitness competitions between
strains expressing the lac operon at different levels.
To estimate the effect of lac operon expression on relative

fitness, growth curves of a lacI+ strain, namely strain GL2, were
measured in monoculture at a range of concentrations of iso-
propyl-β-D-thiogalactoside (IPTG), a molecular analog of allo-
lactose that induces the lac operon (experimental conditions
were similar to the lacI experiments used for experimental vali-
dation; see above). The growth medium contained glycerol as a
sole carbon source so that expression of the lac operon was
expected to confer a fitness cost. The effect of each IPTG con-

centration on lac expression was determined directly using Miller
assays. The monoculture growth curves were used to predict
growth in a mixed culture and then to estimate the relative fit-
ness W of cells growing with each level of IPTG, and therefore
lac expression, relative to cells growing without IPTG that did
not express the lac operon (Fig. 7).

Discussion
We developed a computational approach to predict relative
growth in a mixed culture from growth curves of mono- and
mixed cultures (Fig. 2). This approach removes the need to
measure the frequencies of single isolates within a mixed culture.
The approach performed well in 2 different experimental setups
(Figs. 5 and 6), with results far superior to the current approach
commonly used (3, 5). The 2 experimental validations provide
strong support for the idea that our computational approach
provides a way to simplify and reduce the cost of analyzing rel-
ative fitness. Indeed, this approach has already been used to
estimate relative fitness of an E. coli strain in which the arginine
codons CGU and CGC were edited to CGG in 60 highly
expressed genes (22).
Our approach assumes that the assayed strains will grow in

accordance with the density-dependent growth and competition
models, which are appropriate when growth depends on the
availability of a limiting resource (Appendix A and Appendix B).
Therefore, this approach can be applied to data from a variety
of organisms, experiments, and conditions. However, our ap-
proach is not appropriate if growth is frequency dependent, for
example due to production of public goods (23–25) and toxins
(19) or due to cross-feeding (26). Fig. 8 demonstrates the ap-
plicability of our model to simulated experimental results from
4 different frequency-dependent dynamics (1). When density- and
frequency-dependent interactions work in the same direction, e.g.,
due to exploitation of the slow-growing strain (green) by the fast-
growing strain (red), our approach is consistent with the simulated
experiments: The competition model fits the total density in mixed
culture quite well (Fig. 8A), and its mixed growth prediction is
consistent with the final outcome after 10 h, but not with the full
frequency trajectories (Fig. 8E). However, this is not the case
when density- and frequency-dependent interactions do not agree
so that the slow-growing strain benefits from the presence of the

Fig. 7. Predicting relative fitness of lac operon expression. Expression of the
lac operon is induced by IPTG concentration. Thus, competing strains that
grow in a shared environment cannot have different expression levels. Our
approach was therefore applied to growth curves from monocultures with
and without IPTG to predict the fitness W of cells expressing lac relative to
cells that do not express lac (Eq. 4). Symbols denote the estimated relative
fitness (y axis) for different expression levels (x axis, relative to a reference
ancestor strain). Error bars show SEs.
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fast-growing strain, e.g., due to mutualism, competition, or exploi-
tation by the slow-growing strain. In these cases, the fit of our
competition model to total density in a mixed culture is poor (Fig. 8
B–D), and the model can fail to predict even the final outcome of
pairwise competition (Fig. 8H). Future work will determine whether
such divergences between experimental results and model predic-
tions could be used to detect frequency-dependent interactions.
Growth curve experiments, in which only OD is measured,

require less effort and fewer resources than pairwise competition
experiments, in which the cell frequency or count of each strain
must be determined (2, 3, 9, 27). Current approaches to estimate
fitness from growth curves only incorporate measurements from
monoculture experiments. In contrast, our approach infers actual
competition by directly incorporating measurements from mixed-
culture experiments. Moreover, current approaches mostly use the
growth rate and/or the maximum population density as a proxy for
fitness (5), but proxies for fitness based on a single growth pa-
rameter cannot capture the full scope of effects that contribute to
differences in overall fitness (13, 28). Most obviously, they fail to
account for the lag and deceleration phases of growth. In contrast,
our approach integrates several growth phases, allowing more
accurate estimation of relative growth and fitness from growth
curve data. Different growth phases also can be integrated into a
single parameter by measuring or calculating the area under the
curve (AUC) for the monoculture growth curves (29) (Fig. 3). This
approach is easy to understand and to implement, and the AUC
seems to correlate with both the growth rate and the maximum
density (29). However, the biological interpretation of the AUC,
how it is affected by the different growth parameters, and how it
affects relative fitness and competition results, is unclear.
Our approach is useful even for laboratories that have con-

siderable experience performing competition experiments. First,
it can predict the results of hypothetical competition experi-
ments. We demonstrated this by measuring growth of E. coli
strains at different concentrations of IPTG, an inducer of the lac
operon. We used our computational approach to predict how
2 populations of this strain would grow, if it were possible for
them to compete in a mixed culture while keeping their IPTG
exposures different. We then used this prediction to estimate the
effect of protein expression on relative fitness (Fig. 7). We sug-

gest that our approach can be similarly applied to predict the
relative growth of strains experiencing different drug or nutrient
concentrations. Second, it can be used to predict mixed growth,
even if it is very hard or impossible to insert phenotypic or ge-
netic markers into the strains in question, e.g., with some non-
model organisms. Third, even when competition experiments can
be performed, they are rarely designed in a way that gives insight
into how differences in growth underlie differences in fitness (12,
13): Our approach can highlight whether strain 1 is more fit than
strain 2 due to faster growth rate, or due to a shorter lag phase,
for example. By inferring relative fitness from growth parame-
ters, this approach sheds light on the source of differences in
fitness. Furthermore, one can change specific growth parameters
and simulate competition, thereby predicting the adaptive po-
tential of such changes.
Another interesting approach to relating differences in growth

during different growth phases to fitness has recently been de-
scribed by Li et al. (11), who assumed that if a strain grows faster
in a specific growth phase, prolonging that phase while keeping
other phases fixed will increase the strain’s relative fitness.
“Fitness profiles”—measurements of relative fitness with sys-
tematically varied growth phase durations—were characterized
and used to find the underlying cause of fitness gain in strains
that previously evolved in a glucose-limited environment. While
the fitness profiles approach is very promising, it is also very
labor intensive and expensive compared with ours.
We have released Curveball, an open-source software package

that implements our approach (http://curveball.yoavram.com).
This software is written in Python (30), an open-source and free
programming language, and includes a user interface that does
not require prior knowledge of programming. Curveball has al-
ready been used successfully to estimate relative fitness in E. coli
(22). It is free and open (i.e., libre and gratis), so that additional
data formats, growth and competition models, and other analy-
ses can be added by the community to extend its utility.

Conclusions
We developed and tested an approach to analyzing growth curve
data and applied it to predict the relative growth and fitness of
individual strains within a mixed culture. Competitive fitness is

A B C D

E F G H

Fig. 8. Frequency-dependent growth. Results from simulated experiments, which include frequency-dependent interactions, analyzed using our competition
model, which assumes density-dependent growth. Top row shows the fit of competition models (solid lines) to total densities from mixed growth (markers), as
in Fig. 4. Bottom row shows actual (markers) and predicted (dashed lines) relative strain frequencies, as in Fig. 5. Each column corresponds to a different type
of frequency dependence. Growth of strain i in the presence of strain j follows dNi=dt =Nirið1− ððNνi

i + cjN
νj
j Þ=Kνi

i ÞÞ+ γiðNiNj=ðNi +NjÞÞ, with γ1 = γ2 > 0 for
mutualism (A and E); −γ1 = γ2 > 0 for exploitation of the green strain by the red strain (B and F); γ1 = γ2 < 0 for competition (C and G); and γ1 =−γ2 > 0 for
exploitation of the red strain by the green strain (D and H); growth parameters as estimated from experiment A; competition coefficients c1 = c2 = 1. Ten
replications per pair of γ1 and γ2.
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defined as the relative change in frequency during growth in mixed
culture. Therefore, any process that affects relative growth in a
mixed culture might affect competitive fitness. Current approaches
use growth curve experiments because they are easy to obtain,
despite their clear deficiencies. Our approach allows the use of
such growth curve data, incorporating growth curves measured in a
mixed culture, and thus incorporates various processes that occur
in a mixed culture, including actual competition dynamics. By
predicting growth in mixed culture and estimating competitive
fitness, our approach can improve the understanding of competi-
tive fitness in microbes.

Materials and Methods
Strains and Plasmids.
Fluorescent experiments. E. coli strains 1 and 2, used in both experiment A and
B, were DH5α-GFP (J.B. Laboratory, Tel Aviv University, Tel Aviv, Israel) and
TG1-RFP (E. Ron Laboratory, Tel Aviv University, Tel Aviv, Israel), respectively;
E. coli strains 3 and 4, used in experiment C, were JM109-GFP (N. Ohad
Laboratory, Tel Aviv University, Tel Aviv, Israel) and K12 MG1655-Δfnr-RFP
(E. Ron Laboratory, Tel Aviv University, Tel Aviv, Israel), respectively. GFP or
RFP genes were introduced using plasmids that also included genes conferring
resistance to kanamycin (KanR) and chloramphenicol (CapR) [R. Milo Labora-
tory, Weizmann Institute of Science, Rehovot, Israel (31)]. lacI experiment: E.
coli strains were selected from populations previously evolved by Cooper and
Lenski (15).

Media.
Fluorescent experiment. Experiments were performed in LB media [5 g/L Bacto
yeast extract (BD, 212750), 10 g/L Bacto tryptone (BD; 211705), 10 g/L NaCl
(Bio-Lab; 190305), and 1 L DDW] with 30 μg/mL kanamycin (Caisson Labs;
K003) and 34 μg/mL chloramphenicol (Duchefa Biochemie; C0113). Green or
red fluorescence of each strain was confirmed by fluorescence microscopy
(Nikon Eclipe Ti; SI Appendix, Fig. S1). LacI experiments: Experiments with
lacI strains were performed in DM (Davis–Mingioli minimal broth) with
0.021% lactose (Fig. 6) or 0.2% glycerol (Fig. 7).

Growth and Competition Experiments.
Fluorescent experiments. Strains were inoculated into 3mL of LB+Cap+Kan and
grown overnight with shaking. Saturated overnight cultures were diluted
into fresh media so that the initial OD was detectable above the OD of
media alone (1:1–1:20 dilution rate). In experiment B, to avoid a lag phase,
cultures were pregrown until the exponential growth phase was reached as
determined by OD measurements (3–6 h). Cells were then inoculated into
100 μL LB+Cap+Kan in a 96-well flat-bottom microplate (Costar) in 3 sub-
experiments: 32 wells contained a monoculture of the GFP-labeled strain;
30 wells contained a monoculture of the RFP-labeled strain; 32 wells con-
taining a mixed culture of both GFP and RFP-labeled strains. Two wells
contained only growth medium.

The cultures were grown at 30 °C in an automatic microplate reader
(Tecan Infinite F200 Pro), shaking at 886.9 rpm, until they reached stationary
phase. OD595 readings were taken every 15 min with continuous shaking
between readings.

Samples were collected from the incubated microplate at the beginning of
the experiment and once an hour for 6–8 h: 1–10 μL were removed from
4 wells (different wells for each sample), and diluted into cold PBS buffer
(DPBS with calcium and magnesium; Biological Industries; 02-020-1). These

samples were analyzed with a fluorescent cell sorter (Miltenyi Biotec;
MACSQuant VYB). GFP was detected using a 488-nm/520(50)-nm FITC laser.
RFP was detected with a 561-nm/615(20)-nm dsRed laser. Samples were di-
luted further to eliminate “double” event (events detected as both “green”
and “red” due to high cell density) and noise in the cell sorter (2). LacI ex-
periments: Strains were inoculated into 1 mL of LB media and grown over-
night. Saturated overnight cultures were diluted and preconditioned to the
DM media supplemented with lactose or glycerol by transferring 1 μL into
1 mL of said growth media and incubating for 24 h. The next day, 2 μL of the
preconditioned culture was transferred into 89 μL of the same media, with
variable IPTG concentrations, in a 96-well microplate. The microplate then
incubated in a microplate reader (VersaMax) at 37 °C until cells reached
stationary phase. OD450 readings were taken every 5 min.

Data Analysis.
Fluorescent experiments. Fluorescent cell sorter output data were analyzed
using R (32) with the flowPeaks package that implements an unsupervised
flow cytometry clustering algorithm (33). Growth curve data were analyzed
using Curveball, an open-source software written in Python (30) that im-
plements the approach presented in this manuscript. The software includes
both a programmatic interface (API) and a command line interface (CLI), and
therefore does not require programming skills. The source code makes use
of several Python packages: NumPy (34), SciPy (35), Matplotlib (36), Pandas
(37), Seaborn (38), LMFIT (39), Scikit-learn (40), and SymPy (41). LacI experi-
ments: Growth curves of the lacI strains were analyzed using the same
models but different software implementation. We note specific differences
in the analysis wherever these apply.

Fitting Growth Models. To fit growth models (Eqs. 2a and 2b) to monoculture
density data, we used the least-squares nonlinear curve fitting procedure in
SciPy’s least_squares function (35). We then calculate the Bayesian in-
formation criteria (BIC) of several nested models, defined by fixing the value
of specific growth parameters (Appendix A and SI Appendix, Table S1 and
Fig. S2). BIC is given by the following:

BIC=n · log

0
@

Pn
i=1

�
NðtiÞ− N̂ðtiÞ

�2
n

1
A+k · logn,

where k is the number of model parameters, n is the number of data points,

ti are the time points, NðtiÞ is the OD at time point ti, and N̂ðtiÞis the expected
density at time point ti according to the model. We selected the model with
the lowest BIC (42, 43). Other metrics for model selection can be used, but
BIC was chosen for its simplicity and flexibility. Lag duration, max specific
growth rate, and min doubling time (Table 1) were estimated from the
fitted growth model, NðtÞ (Eqs. 2a and 2b). Lag duration is the time at which
the line tangent to NðtÞ at the point of maximum derivative (i.e., the in-
flection point) intersects with N0, the initial population size (44). The maxi-
mum specific (i.e., per-capita) growth rate is max

t
ðð1=NÞ · ðdN=dtÞÞ; specific

growth rate in useful as a metric to compare different strains or treatments
as it does not depend on the population density. Min doubling time is the
minimal time required to double the population density, NðtÞ. LacI experi-
ments: Model selection was not performed. Rather, we fitted the growth
models (Eqs. 2a and 2b) but assumed that the rate at which the physiological
state adjusts to the new growth conditions is equal to the specific growth
rate at low density ((m= r)), to achieve more stable model fitting, as

Table 1. Estimated growth parameters

Experiment A Experiment B Experiment C

Strain parameter A1 (red) A2 (green) B1 (red) B2 (green) C1 (red) C2 (green)

Initial density ðN0Þ 0.124 0.125 0.23 0.286 0.204 0.188
Max density ðKÞ 0.650 (0.643, 0.658) 0.528 (0.525, 0.532) 0.628 (0.624, 0.632) 0.619 (0.612, 0.625) 0.741 (0.735, 0.746) 0.633 (0.627, 0.638)
Max specific

growth rate
0.376 (0.371, 0.382) 0.268 (0.262, 0.275) 0.369 (0.355, 0.384) 0.256 (0.251, 0.261) 0.420 (0.391, 0.426) 0.228 (0.226, 0.231)

Min doubling time 1.844 (1.809, 1.88) 2.695 (2.636, 2.77) 2.451 (2.397, 2.506) 4.372 (4.269, 4.481) 2.075 (2.035, 2.124) 3.117 (3.087, 3.147)
Lag duration 1.578 (1.513, 1.64) 3.930 (3.82, 4.028) 0.014 (0.002, 0.029) 0.004 (0.002, 0.013) 0.039 (0.033, 0.081) 0.711 (0.684, 0.749)

Parentheses provide 95% confidence intervals (bootstrap, 1,000 samples). Min doubling time is the minimal time required to double the population
density. Densities are in OD595; growth rate is in hours−1; doubling time and lag duration are in hours. See SI Appendix, Table S2, for additional parameter
estimates.
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suggested by Baranyi (45). This was not necessary for the fluorescence ex-
periment in which model fitting was stable.

Fitting Exponential Models. The following represents a common approach to
estimating growth rates from growth curve data and was used as a bench-
mark for our approach (Fig. 2 and black dashed lines in Fig. 4 and Fig. 5). A
polynomial p(t) is fitted to the mean of the growth curve data N(t). The time
of maximum growth rate tmax is found by differentiating the fitted poly-
nomial and finding the time at which the maximum of the derivative
max(p(t)) occurs. Then, a linear function at+b is fitted to the log of the
growth curve logN(t) in the neighborhood of tmax (e.g., at 5 surrounding
time points). The parameters a and b are then interpreted as the growth
rate r = a and the log of the initial population density b = logN0.

Fitting Competition Models. To fit competition models (Eqs. 3a and 3b), we
used the Nelder–Mead simplex method (also called downhill simplex
method) from SciPy’s minimize function (35) to find the competition pa-
rameters ci that minimize the difference between N1 +N2 (Eqs. 3a and 3b)
and the total OD of mixed cultures. Other model parameters were fixed to
the values estimated from monoculture growth curves. N1 and N2 were
calculated using numerical integration of Eqs. 3a and 3b with SciPy’s odeint
function (35). LacI experiments: To estimate the effect of lac operon ex-
pression on relative fitness, strains must grow in the presence of different
IPTG concentrations, which is impossible in a mixed culture. Therefore, we
did not perform mixed-culture experiments, and competition parameters
were set to ci =1 rather than estimated from growth in a mixed culture.

Data Availability. Data have been deposited on Figshare (DOI: 10.6084/m9.
figshare.3485984.v1).

Code Availability. Source code is available at https://github.com/yoavram/
curveball; an installation guide, tutorial, and documentation are available at
http://curveball.yoavram.com.

Figure Reproduction. Data were analyzed and Figs. 1–6 were produced using
a Jupyter notebook (46) that is available as a supporting file and at https://
github.com/yoavram/curveball_ms.

Appendices
Appendix A: Mono-Culture Model. We derive our growth models
from a resource consumption perspective (21, 47). We denote by
R the density of a limiting resource, and by N the density of the
cell population, both in total mass per unit of volume.
We assume that the culture is well-mixed and homogeneous

and that the resource is depleted by the growing cell population
without being replenished. Therefore, the intake of resources
occurs when cells meet resource via a mass action law with re-
source uptake rate h. Once inside the cell, resources are con-
verted to cell mass at a conversion rate of e. Cell growth is
assumed to be proportional to R ·N, whereas resource intake is
proportional to a power of cell density, R ·Nv. We set YdNv.
We can describe this process with differential equations for R

and N:
8>><
>>:

dR
dt

=−hRNv

dN
dt

= ɛehRN.
[A1a, A1b]

These equations can be converted to equations in R and Y:

Y =Nv ⇒

dY
dt

= vNv−1dN
dt

=

vNv−1 · ɛeh RN = vɛehRNv,

which yields

8>><
>>:

dR
dt

=−hRY

dY
dt

= μhRY ,
[A2a, A2b]

with μ= ev
To solve this system, we use a conservation law approach by

setting M = μR+Y (48). We find that M is constant

dM
dt

= μ
dR
dt

+
dY
dt

≡ 0,

and we can substitute μR=M −Y in Eq. A2b to get

dY
dt

= hY ðM −Y Þ= hMY
�
1−

Y
M

�
[A3]

Substituting again Nv =Y , dYdt = vNv−1dN
dt , and defining K =M

1
v,

r= h
vK

v, we get

dN
dt

= r ·N ·
�
1−

�
N
K

�v�
, [A4]

which is the Richards differential equation (49), with the maxi-
mum population density K and the specific growth rate at low
density r.
We solve Eq. A4 via Eq. A3, which is a logistic equation and

therefore has a known solution. Setting the initial cell density
Nð0Þ=N0 we have

NðtÞ= K	
1−

	
1−

	
K
N0


 
v
e−rvt


1
v
.

Eq. A4 is an autonomous differential equation (dN=dt doesn’t
explicitly depend on t). To include a lag phase, Baranyi and
Roberts (16) suggested adding an adjustment function αðtÞ,
which makes the equation nonautonomous (explicitly dependent
on t):

dN
dt

= r · αðtÞ ·N ·
�
1−

�
N
K

�v�
[A5]

Baranyi and Roberts suggested a Michaelis–Menten type of
function (45)

αðtÞ= q0
q0 + e−mt,

which has 2 parameters: q0 is the initial physiological state of the
population, and m is the rate at which the physiological state
adjusts to growth conditions. Integrating αðtÞ gives

AðtÞd
Z t

0

αðsÞds=
Z t

0

q0
q0 + e−ms ds= t+

1
m
log

�
e�mt + q0
1+ q0

�
.

Therefore, integrating Eq. A5 produces Eqs. 2.
The term 1− ðN=KÞv in Eq. A5 is used to describe the de-

celeration in the growth of the population as it approaches the
maximum density K. When v= 1, the deceleration is the same as

in the standard logistic model
	
dN
dt = r ·N ·

	
1− N

K




and the

density at the time of the maximum population growth	
d2N
dt2 ðtÞ= 0



is half the maximum density, K2. When v> 1 or 1> v,
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the deceleration is slower or faster, respectively, and the density
at the time of the maximum growth rate is K=ð1+ vÞ1=v (see
ref. 49, who uses different variables: W=N,A=K,m= v+ 1,
k= r · v).
We use 6 forms of the Baranyi–Roberts model (see SI Ap-

pendix, Fig. S2 and Table S1). The full model is described by Eqs.
2 and has 6 parameters. A five-parameter form of the model
assumes v= 1, such that the curve is symmetric as in the standard
logistic model, but still incorporates the adjustment function αðtÞ
and therefore includes a lag phase. Another five-parameter form
has both rate parameters set to the same value ðm= rÞ, which was
suggested in order to make the fitting procedure more stable (45,
50). A four-parameter form has both of the previous constraints,
setting m= r and v= 1 (45). Another four-parameter form of
the model has no lag phase, with 1=m= 0⇒ αðtÞ≡ 1, which yields
the Richards model (49), also called the θ-logistic model (51),
or the generalized logistic model. This form of the model is useful
in cases where there is no observed lag phase: Either because the
population adjusts very rapidly or because it was already adjusted
prior to the growth experiment, possibly by pregrowing it in fresh
media before the beginning of the experiment. The last form is the
standard logistic model (52), in which v= 1 and 1=m= 0.

Appendix B: Mixed Culture Model. We consider the case in which 2
species or strains grow in the same culture, competing for a
single limiting resource, similarly to Eq. A1:

8>>>>>>><
>>>>>>>:

dR
dt

=−h1RNv1
1 − h2RN

v2
2

dN1

dt
= ɛe1h1RN1

dN2

dt
= ɛe2h2RN2

[B1a–B1c]

We define Yi =Nvi
i , andMi = eɛiviR+Yi + ɛeivi

ɛejvj
Yj (where j is 1 when i

is 2 and vice versa) and find that dMi
dt ≡ 0 and Mi is constant. We

then substitute ɛeiviR=Mi −Yi − ɛeivi
ɛejvj

Yj into the differential equa-

tions for dYi
dt . Denoting Ki =M

1
vi
i and ri = hi

vi
Kvi
i , we get

8>>><
>>>:

dN1

dt
= r1N1

�
1−

Nv1
1

Kv1
1
− c2 ·

Nv2
2

Kv1
1

�

dN2

dt
= r2N2

�
1− c1 ·

Nv1
1

Kv2
2
−
Nv2

2

Kv2
2

�
,

[B2a, B2b]

where Cj = ɛeivi
ɛejvj

. To get Eqs. 3 from Eqs. B2, we include a lag phase
by adding the adjustment function αiðtÞ= q0, i

q0, i + e−mit ; see details in
A5 in Appendix A.
We get a similar result if the strains are limited by 2 resources

R1 and R2 that both strains consume:
8>>>>>>>>>>>><
>>>>>>>>>>>>:

dR1

dt
=−h1R1N

v1
1 − h2R1N

v2
2

dR2

dt
=−h1R2N

v1
1 − h2R2N

v2
2

dN1

dt
= ɛe1h1R1N1

dN2

dt
= ɛe2h2R2N2

[B3a–B3d]

Here, we notice first that d
dt logðR1Þ= d

dt logðR2Þ and therefore
ρ= R1

R2
is a constant. We then substitute R1 =R,R2 = ρR in Eqs.

B3 and continue as above. This changes the definition of the
competition coefficients to cj = ɛeiviRi

ɛejvjRj
.

If the uptake rates hi depend on the resource Ri rather than
the strain Ni then

8>><
>>:

dR1

dt
=−h1R1N

v1
1 − h1R1N

v2
2

dR2

dt
=−h2R2N

v1
1 − h2R2N

v2
2

[B4a, B4b]

Then we define H = h1=h2 and ρ= R1
RH
2
and again continue as

above.
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