Estimating the turnover of T cells by deuterium labeling

This practical describes a few approaches to estimate the life spans of lymphocytes from deuterium

labeling data. To perform this practical, first make the practical on estimating the amplification factor

(see the accompanying document granulocytes.pdf). This text is based upon the Appendix of the

paper of Vrisekoop et al. [6] and the review of De Boer and Perelson [4]. You will learn

e how to perform non-linear parameter estimation by fitting fairly complicated data

e that T cell memory is maintained by short lived cells, and that naive T cells are extremely long-lived,

e that the selection of the most appropriate model is of utmost importance because different models
can give different estimates,

e and hence that quantification of cellular population dynamics is far from trivial.

Introduction. In the accompanying practical we have derived a general model for the deuterium
labeling of a population of cells that is maintained by a source, o, by self-renewal at a rate, p, and has
a loss rate, d. The equations for the fraction of labeled DNA in the population, [(¢), and the fraction
of deuterium in the body water, u(t), are the elegantly simple
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respectively. Here ¢ is the amplification factor, § the turnover rate of the body water, and f the
fraction of deuterium in the daily consumption. For the cells, this is a model with a single exponential
which should hence be sufficient for kinetically homogenous populations. It is available as the model
model () in the R-script tcells.R.

Kinetic heterogeneity. A popular model to describe deuterium labeling data of kinetically het-
erogeneous populations was proposed almost 20 years ago by Becca Asquith and her co-workers [1].
They argue that in kinetically heterogeneous populations the label should accumulate faster in sub-
populations that are turning over more rapidly. The initial up-slope during the labeling phase would
then reflect the average turnover rate, p, but the labeled cells should be enriched in fast cells, and die
at a rate d* that is faster than p. The modeling started with a labeling equation that was defined
in terms of the total amount of deoxyadenosine, A, in the population of interest (which remains con-
stant). Since labeled deoxyadenosine, A*, increases in the population when cells divide, they wrote
something like dA*/dt = cu(t)pA — d* A*, where p is the division rate, and d* > p is the loss rate of
labeled cells. After dividing by A this delivered, I(¢), for fraction labeled DNA, A*/A, in the labeling

phase
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which has an initial up-slope, p, a down-slope, d*, and approaches the asymptote pcf/d* in an infinite
labeling experiment. The latter is lower than the maximum labeling, cf, approached by the granulo-
cytes, because p < d*. However, the degree of labeling should become more and more uniform over
all subpopulations over time, i.e., p — d* in an infinite labeling experiment. This nicely accounts for
the fact that the down-slope of labeling experiments decreases with the length of the labeling phase
[1, 2]. This model is available as the function pdstar() in the R-script tcells.R.

Multi-compartment model. A more mechanistic model to describe kinetically heterogeneous pop-
ulations was proposed by Ganusov et al. [5], and basically generalizes the general model into the sum
of several sub-populations with different turnover rates d;, and where L = Y ' o;L;. Here «; is the
fractional size of sub-population i, and the equation for the fraction labeled DNA, [;, obeys the very
similar

dl;
i
The basic procedure to fit this model to deuterium data is to start with one sub-population, n = 1, and
increase the number of compartments, n, until the best fit is obtained or some average turnover rate is

di(cu(t) — lz) .



approached [5, 7]. (What is best should be defined statistically by the F-test, as the quality of the fit
will always improve when the number of parameters is increased). A two compartment version of this
model is provided by the function model2() in the tcells.R script. The average turnover rate of this
model is defined as d = Y7 a;d;, and d is fortunately much more identifiable than the estimates of the
individual «; and d; parameters [3, 5, 7]. The average life span of the cells in the entire population is
defined as 1/d. Finally, note these models are “nested”, as one can define the general one-parameter
model by setting n = 1 and «; = 1, the two-parameter Asquith model by setting n = 2, estimating
di and «q while restricting do = 0, and allow for a three-parameter model by also estimating ds, and
SO on.

Estimating the half lives of T cell subsets in the blood of young healthy volunteers. The

data set that you worked on in the previous practical has 4 additional columns, N4, M4, N8, and M8,

for naive and memory CD4" and CD8" T cells, respectively. Leave your previous R-session open
such that the estimated c-values are kept, and open the R-script tcells.R in another tab. This script
defines the three functions explained above. The functions define ODEs computing U and L, where

L is just a generic name for the fraction labeled DNA of any T cell subset. Run the first part of

the script to define the models. After the line Here the session starts you select a T cell subset,

and pick an identifier for a volunteer, and fit that data to the three models. Compare your fits and
estimates to those in Figure 2 and Tables 1 and 2 of Vrisekoop et al. [6] (note that half lives of for all
volunteers are stored in a list Thalf):

1. Fit the N4 data of every volunteer to each of the three models. Which model describes the data
best (use the ftest () function)? Do the estimates depend on the assumptions of the model? What
is your best estimate for the half life of naive CD4™ T cells?

2. In some of the fits of the Kinetic heterogeneity model the estimated p is larger than the estimated
d*. The authors therefore concluded that newly produced cells have better survival. What do you
think of this?

3. Fit the M4 data of every volunteer to each of the three models. Which model describes the data
best? Do the estimates depend on the assumptions of the model? What is your best estimate for
the half life of memory CD4™ T cells?

4. If you have time repeat all of this for the CD8' T cells.

5. How confident are you of these estimates: check the standard errors reported by fit (and/or
perform bootstrapping)?

6. How is life-long T-cell memory maintained?

7. The average life span of the multi-compartment model can be defined in two ways: as the inverse
of the average turnover rate, 1/d = 1/ 3" a;d;, or as the average of the various life spans 3.7 o /d;.
Can this be very different, and —if so— what do you think is best? What happens if you compare
the estimated life spans, rather than the half lives 1/d, for the naive T cells between the models?

March 1, 2020, Rob J. de Boer
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teells.R

model <— function(t, state, parms) {
with(as.list(c(state,parms)), {
dtU <— ifelse(t < tau, deltax(f — U), —deltaxU)
dtL <— dx(cxU — L)
return(list(c(dtU,dtL)))
)
}

pdstar <— function(t, state, parms) {
with(as.list(c(state,parms)), {
dtU <— ifelse(t < tau, deltax(f — U), —deltaxU)
dtL <— pxcxU — dxL
return(list(c(dtU,dtL)))
)
}

model2 <— function (t, state, parms) {
with(as.list(c(state,parms)), {
dl <— max(0,(d + (alpha—1)*d2)/alpha)
dtU <— ifelse(t < tau, deltax(f — U), —deltaxU)
dtLl <— dlx(cxU — L1)
dtL2 <— d2x(cxU — L2)
return(list(c(dtU,dtL1,dtL2)))

1
}
selectType <— function(i,celltype) {
person <— subset(rawdata,rawdata$patient == i)

person <— person[,c(”time”,”U” celltype)]

person <— person|(person$time < 200),] # Use early time points only
names(person)[3] <— "L” # Rename last column to a generic name
return(person)

}

# Here the session starts:

Thalf <— list()
data <— lapply(seq(5),select Type,” N4”)
id<—5

p <— ¢(f=0.012,delta=0.05,tau=63,c=5,p=0.001,d=0.01)

p[’¢”] <— cValues[id]

free <— c¢("f’,”delta”)

fit0 <— myfit(data[[id]][,1:2],urine,c(U=datal[[id]][1,2]),free,main="urine”)
plfree] <— fitO$par; P <— p

free <— ¢(7d”)
fitl <— myfit(data[[id]],model,c(U=datal[[id]][1,2],L=0),free,main="o0ne”)
summary (fit1)

free <_ C(77p77 777(157)
fit2 <— myfit(data[[id]],pdstar,c(U=datal[id]][1,2],L=0),free,main="pdstar”)
summary (fit2)

p <— ¢(P,alpha=0.5,d2=0.001)
free <— c(”alpha”,”d”,”d2”)




tweak <— "nsol$L<—nsol$L1xparms[\”alpha\”]+(1—parms[\”alpha\”])*nsol$L2”
fit3 <— myfit(data[[id]],model2,c(U=data[[id]][1,2],L1=0,L2=0),free,tweak=tweak,main="two”)
summary (fit3)

d <— round(c(fitl$par[”’d”],fit2$par[’p”],fit3$par[’d”]),5)

h <— round(c(log(2)/fit1$par[”d”],log(2)/fit2$par[’p”],log(2) /fit3$par[’d”]),1)
print(c(” Average_turnover:”,d));print(c(” Half_life:” /h))

Thalf[[id]] <— h

ftest(fit1$ssr,length(fit1$par),fit2$ssr,length(fit2$par),nrow(data[[id]]))
ftest(fit1$ssr,length(fit1$par),fit3$ssr,length(fit3$par),nrow(data[[id]]))
ftest(fit2$ssr,length(fit28par),fit3$ssr,length(fit3$par) ,nrow(data[[id]]))




