
Estimating the turnover of granulocytes by deuterium labeling

This practical describes a few approaches to estimate the life spans of granulocytes from deuterium
data. Most of the granulocytes in the blood are circulating neutrophils, and a recent paper that
was based upon labeling volunteers with deuterated water has stirred up the current consensus that
neutrophils are short-lived [3]. Others have criticized their interpretation, and favor the previous
consensus [2]. In this practical you will repeat a similar analysis and learn that one indeed needs to
be careful when fitting models to data. You will learn:
• to perform non-linear parameter estimation by fitting fairly complicated data,
• that parameter estimates may depend on the initial guess of the parameters,
• that parameters can be unidentifiable even if you have a proper fit to the data,
• and hence that it is important to choose a model that is appropriate for the data at hand.

Introduction. Neutrophils are the most abundant type of granulocytes in the blood and the most
abundant type of white blood cells in most mammals. They form an essential part of the immune
system. They are formed by cell division of precursors cells in the bone marrow. After a few days in
a “post-mitotic” pool they emigrate as non-dividing cells into the circulation as mature neutrophils.
A simple mathematical model would be

dP

dt
= σ − dPP and

dG

dt
= αdPP (t−∆)− dGG , (1)

where P and G are the precursors in the post-mitotic pool, and the mature neutrophils in the blood,
respectively, with turnover rates dP and dG, and where 0 < α ≤ 1. The σ parameter describes the
source of dividing precursors into the post-mitotic pool. Since we typically label people that are at
steady state, one can set dP/dt = dG/dt = 0, and find that P̄ = σ/dP and Ḡ = ασ/dG.

Volunteers and patients can drink heavy water (2H2O) for weeks. During the labeling period deuterium
is build into the newly synthesized DNA strands of cells that divide. Labeled DNA strands will
subsequently disappear by cell death. We will fit data of five volunteers whom have been drinking a
glass of 4% deuterated water for nine weeks [8]. Because the fraction of heavy water in body water is
similar to that in urine, one typically measures the deuterium enrichment in the urine of the volunteers.
Since deuterium can be incorporated at seven positions of the adenosine moiety that is analyzed by
the gas chromatography mass spectrometry (GC-MS), the enrichment of this moiety is expected to
exceed that of the body water. This introduces an additional parameter known as the amplification
factor, c, that we need to estimate. This is achieved by co-fitting the enrichment in the plasma (urine)
with that of a fast population like granulocytes [8].

Parameter estimation with Grind. Today you will work with an R-script called Grind that is
a wrapper around the R-packages deSolve, FME and rootSolve developed by Karline Soetaert and
colleagues [4–7]. These packages allow one to solve differential equations, find their steady state, and
perform nonlinear parameter estimation. Today you only need three of Grind’s easy-to-use functions:
• run() integrates a model numerically and provides a time plot or a trajectory in the phase plane,
• fit() fits a model to data by estimating its parameters, and depicts the result in a timeplot.
• timePlot() plots a data frame having time as the first column.
The run() function calls ode() from the deSolve library, and the fit() function calls modFit from
the FME library. For instance, typing ?modFit, provides help on the modFit() function. The full
manual of grind.R is available on the website http://tbb.bio.uu.nl/rdb/practicals/grindR/.

We will work in the RStudio environment. You will need to install the three Soetaert libraries deSolve,
FME and rootSolve, by using Install Packages in the Tools menu of RStudio. All documents can
be found on the webpage http://tbb.bio.uu.nl/rdb/practicals/Paris2020. Download the R-
scripts grind.R, granulocytes.R, and tcells.R, and store them in a local directory. Later you can
open them via the File menu. Download the data file Vrisekoop pnas08.csv, and store it in the
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same folder. Set the working directory of RStudio to the folder where your R-codes and data are
stored (Set working directory in the Session menu of RStudio). Files will then be opened and
saved in that directory.

First “Source” the grind.R file (button in right hand top corner) to define the Grind functions. Run
the script granulocytes.R line-by-line to define the various models, and a few convenient functions
(button in right hand top corner). The fitting starts after the line Here the session starts. Use
“Run” or “Control Enter” to execute lines from the code panel. In the R-console one can type and
call any function in R.

Urine. For the availability of deuterium in the urine we start with a model for the turnover of body
water, dW/dt = s− δW , where W is in liters and δ per day. The steady state, W̄ = s/δ is the total
amount of body water. When one drinks both normal, W , and deuterated, H, water this becomes

dW

dt
= (1− f)s− δW and

dH

dt
= fs− δH ,

where f is the fraction of D2O in the total daily consumption. Next define the fraction of deuterated
water in the body, u = H/(H +W ) = H/W̄ = H δ

s (given that the total amount remains unchanged).
Since H = s

δu we write

du

dt
=
δ

s

dH

dt
=
δ

s

(
fs− δH

)
=
δ

s

(
fs− δ s

δ
u
)

= δ(f − u) .

Note that s has disappeared, that this has only one parameter (the turnover rate δ). Note that f > 0
in the labeling period, and that f = 0 in the de-labeling period. This ODE is provided by the function
urine() in the accompanying R documents.

This model is linear and the solution is u(t) = f(1 − e−δt), i.e., after a long labeling period this
approaches the expected ū = f . If the experiment starts with a bolus of deuterated water on the first
day, one can just add an exponential decay term to the model,

u(t) = f(1− e−δt) + u(0)e−δt .

One can model the de-labeling phase by setting f = 0 at time τ , after which the same equation
describes exponential decay starting at the of the labeling phase,

u(t) = u(τ)e−δ(t−τ) .

This solution is provided by the function urineSol() in the accompanying R documents.

General model for a population of cells accumulating deuterium in their DNA. To get
started, consider a population of cells with a source and a division rate, e.g., dN/dt = σ + (p− d)N ,
where p < d and N̄ = σ

d−p is the steady state population size. Assuming that source consists of
dividing cells, the total amount of labeled, L, and unlabeled DNA, U , in the cells would be given by

dL

dt
= cu(t)σ + cu(t)p(L+ U)− dL and

dU

dt
= (1− cu(t))σ + (1− cu(t))p(L+ U)− dU ,

where c is the amplification factor reflecting the “efficiency” with which dividing cells incorporate
deuterium into their DNA. Note that the (1− cu(t)) terms demand that cu(t) < 1 (which is typically
no problem because u(t) is small). Rewriting dL/dt into the fraction of labeled DNA

dl

dt
=
d− p
σ

dL

dt
=
d− p
σ

(
cu(t)σ + cu(t)p(L+ U)− dL

)
=

d− p
σ

(
cu(t)σ + cu(t)p

σ

d− p
− d σ

d− p
l
)

= cu(t)(d− p) + cu(t)p− dl = d(cu(t)− l) ,
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we end up with a single parameter model. Both σ and p have disappeared, and the only thing we can get
from the data is the turnover rate d. A sanity check of a long labeling experiment readily confirms that
l(∞) = cf . This equation is provided by the function cells() in the accompanying R documents.
Fortuitously, this model can be used both for populations maintained entirely by the source, i.e.,
dT/dt = σ − dT , and for populations maintained entirely by self renewal, i.e., dT/dt = (p − d)T . In
both cases the turnover rate, d, is the only identifiable parameter [1].

A simple chain model for neutrophils. Since Eq. (1) is a chain of two equations with a time
delay, we next derive the labeling equations for such a chain. For the amounts of labeled DNA of bone
marrow precursors, LP , and mature neutrophils, LN , we write

dLP
dt

= σcu(t)− dPLP and
dLG
dt

= αdPLP (t−∆)− dGLG ,

and for the fraction of labeled DNA

dlP
dt

=
dP
σ

dLP
dt

=
dP
σ

(
σcu(t)− dPLP

)
=
dP
σ

(
σcu(t)− dP

σ

dP
lP

)
= dP (cu(t)− lP )

and
dlG
dt

=
dG
ασ

dLG
dt

=
dG
ασ

(
αdP

σ

dP
lP (t−∆)− dG

ασ

dG
lG

)
= dG(lP (t−∆)− lG) ,

where α disappeared. One can perform a sanity check by considering an infinite labeling experiment:
lP (∞)→ cf and lG(∞)→ lP . Again we lose σ, and each equation only contains its own turnover rate.
The last equation also shows that the fraction of label in the circulating cells will start to go up when
t = ∆, after which lP (t −∆) > lG(t), and will start to decline when lP (t −∆) = lG(t). Finally, note
that the maximum upslope of the circulating cells is dG, which is only achieved when the precursors
get labeled infinitely fast.

Estimating the turnover rate of neutrophils or granulocytes in the blood. The Vrisekoop
et al. [8] paper provides data fraction labeled DNA of granulocytes in five healthy volunteers. For
obvious ethical reasons they have no data on the degree of labeling of their precursors in the bone
marrow. Since the model for the fraction of labeled DNA in neutrophils has four parameters, c, dP , dG
and ∆, we could start by just estimating all parameters from the data. For fitting we need an
initial guess for these parameters. For the simple cu(t) term we could start with c = 5 (or a less
because not all hydrogens are equally replaceable) The time delay typically falls in a range of several
days to a week, making ∆ = 6 days a reasonable initial guess. The turnover of precursors in the
bone marrow is not known. A reasonable fraction (20%) of precursor cells expresses markers of cell
division (like Ki67), but it is difficult to translate the expression of a marker into a rate. Pillay
et al. [3] conclude that neutrophils have an average life span (or residence time) of five days, making
dG = 0.25d−1 a reasonable guess. Lahoz-Beneytez et al. [2] argue that mature neutrophils are short
lived, dG ≥ 1d−1, and that the slow time scale in the data is due to slow turnover in the bone marrow,
making dP = 0.25d−1 a reasonable guess. Since we do not know we need to consider both, and take
c = 5, dP = 5, dG = 0.25,∆ = 6 and c = 5, dP = 0.25, dG = 5,∆ = 6 as alternative initial guesses.

Questions:
1. Fit the urine() function to the data from volunteer one. What is the turnover rate of body water

per day? How confident are you of this estimate? Check the standard errors provided when calling
summary(fit).

2. Which parameter estimates for the neutrophils and their precursors do you obtain for the two initial
guesses?

3. Is one fit better than the other?
4. Is that any different for the four other volunteers?
5. What can you conclude expected life span of neutrophils?

Estimating the amplification factor. Although we have learned in the previous section that
labeling data of mature neutrophils remains insufficient for estimating their turnover rate, the same
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data do allow us to estimate the amplification factor c. This is important because we need to know c
for estimating the life spans of other cell types in the blood [8].

Above we saw that the two turnover rates of the complete model,

dlP
dt

= dp(cu(t)− lP ) and
dlG
dt

= dG(lP (t−∆)− lG) ,

cannot be identified from labeling data on peripheral neutrophils, lG, only. The weekly time scale
we observe in the data can be explained when the bone marrow is slow, i.e., dP ' 0.2d−1, and the
periphery is fast, i.e., dG � dP , and when the bone marrow is fast, i.e., dP � dG, and the blood
is slow, i.e., dG ' 0.2d−1. Since we still would like to estimate the amplification factor, c, from this
data, and because it is cumbersome to work with a DDE model with unidentifiable parameters, we
simplify the model using this separation of the two time scales, i.e., by making a quasi steady state
assumption for the fast population.

For the case dG � dP we assume dlG/dt = 0 to obtain lG = lP (t − ∆), which make intuitive sense
because the labeling of the neutrophils in the circulation would just reflect that of their precursors in
the bone marrow ∆ days earlier. When lG = lp(t−∆) we can also write dlG/dt = dlP (t−∆)/dt, and
because

dlP (t−∆)

dt
= dpcu(t−∆)− dplP (t−∆) ,

we obtain
dlG
dt

= dpcu(t−∆)− dplP (t−∆) = dpcu(t−∆)− dplG ,

which is a single ODE with just three parameters, dp,∆ and c. Similarly for the case dP � dG we
assume dlP /dt = 0 to obtain lP = cu(t), which by substituting the equivalent lP (t−∆) = cu(t−∆)
into dlG/dt gives

dlG
dt

= dGcu(t−∆)− dGlG ,

which is the same ODE with just three parameters. Thus, when the time scales in the bone marrow
and blood differ sufficiently, this would be an appropriate model for describing the labeling of mature
neutrophils in the circulation, that would allow us to estimate c in a reliable and robust manner.
Finally, because we have an analytic solution for u(t) we can compute u(t − ∆) without having to
solve a DDE (see the function simple() in the R-script). The standard sanity check by considering
an infinite labeling experiment readily confirms that lG → fc.

Questions:
1. Fit the neutrophil data with the simplified model and the full model to test whether or not the

simplified model suffices to explain the data. Do you observe a visual difference in the quality of
the fit? Is the SSR different? What does the F-test suggest about the most appropriate model?

2. One can fit all data together by assuming that people only differ in the amount of fluids that they
drink. What do you estimate for the amplification factor of the five volunteers? Keep these five
values because you will need them in the next practical where you will estimate the turnover rates
of naive and memory T cells.

3. Since the predicted asymptote of the neutrophils in an infinite labeling experiment is fc, it may
be difficult to estimate c and f independently. Plot c as a function of f for the five cs and fs you
estimate for the five volunteers.

Estimating T cell turnover. Now that you have a reasonable value for c for every volunteer you
can proceed with the next practical and estimate the turnover rates of their naive and memory T cells.
If you have time open the document tcells.pdf and proceed.

February 27, 2020, Rob J. de Boer
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granulocytes.R

urine <− function (t, state, parms) {
with(as.list(c(state,parms)), {

dtU <− ifelse(t < tau, delta∗(f − U), −delta∗U)
return(list(dtU))
})
}

urineSol <− function(t, state, parms) { # state is a dummy parameter
with(as.list(parms), {

U <− ifelse(t<0, 0, ifelse(t<tau, f∗(1−exp(−delta∗t))+u0∗exp(−delta∗t),
(f∗(1−exp(−delta∗tau))+u0∗exp(−delta∗tau))∗exp(−delta∗(t−tau))))

return(U)
})
}

granulos <− function(t, state, parms) {
with(as.list(c(state,parms)), {

lagP <− ifelse(t−Delta<0, 0, lagvalue(t−Delta,2))
dtU <− ifelse(t < tau, delta∗(f − U), −delta∗U)
dtP <− dP∗(c∗U − P)
dtG <− dG∗(lagP − G)
return(list(c(dtU,dtP,dtG)))
})
}

cells <− function(t, state, parms) {
with(as.list(c(state,parms)), {

dtU <− ifelse(t < tau, delta∗(f − U), −delta∗U)
dtG <− dG∗(c∗U − G)
return(list(c(dtU,dtG)))
})
}

simple <− function(t, state, parms) {
with(as.list(c(state,parms)), {

lagU <− urineSol(t−Delta,NULL,parms=parms) # Use the solution for the delay
dtG <− dG∗(c∗lagU − G)
return(list(dtG))
})
}
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asinsqrt <− function(x) return(asin(sqrt(x))) # Transformation function

ftest=function(ssr1, p1, ssr2, p2, n) {
if (p2 > p1) {

df1 <− p2−p1
df2 <− n−p2
f <− ((ssr1−ssr2)/df1)/(ssr2/df2)
cat(”F[”,df1,”,”,df2,”] =”, f, ”: P = ”,1−pf(f,df1,df2),”\n”)
} else

ftest(ssr2,p2,ssr1,p1,n)
}

myfit <− function(data, model, state, free, ...) {
return(fit(datas=data,odes=model,state=state,free=free,fun=asinsqrt,lower=0,arrest=”tau”,atol=1e−12,rtol=1e

−12,...))
}

select <− function(i) {
person <− subset(rawdata,rawdata$patient == i)
person <− person[(person$time < 200),] # Use early time points only
return(person[2:4])
}

opar <− par();par(mar=c(2.6,2.6,1.6,0.2),mgp=c(1.5,0.5,0)) # for better margins

# Here the session starts:
rawdata <− read.csv(”Vrisekoop pnas08.csv”)
for (i in seq(4,8)) # Set negative values to zero

rawdata[,i] <− sapply(rawdata[,i],max,0)
data <− lapply(seq(5),select) # Urine & granulos from 5 persons

# Example of a model generating a urine curve
p <− c(f=1,delta=0.05,tau=63)
run(100,odes=urine,state=c(U=0.1))

id <− 1 # Select a person
# Good guesses for the urine parameters
p <− c(u0=0.1,f=0.018,delta=0.05,tau=63)
free <− c(”u0”,”f”,”delta”)
fit0 <− myfit(data[[id]][,1:2],urineSol,c(U=0),free,solution=TRUE)
summary(fit0)
p[free] <− fit0$par; P <− p; U0 <− as.numeric(fit0$par[”u0”])

# Add first guess for neutrophil parameters and fit the Granulocyte model
p <− c(P,c=5,dP=0.25,dG=5,Delta=6);p
free <− c(”c”,”dP”,”dG”,”Delta”)
fit1 <− myfit(data[[id]],granulos,state=c(U=U0,P=0,G=0),free,delay=TRUE)
summary(fit1)
# Second guess
p <− c(P,c=5,dP=5,dG=0.25,Delta=6);p
fit2 <− myfit(data[[id]],granulos,state=c(U=U0,P=0,G=0),free,delay=TRUE)
summary(fit2)

print(fit1$par);print(fit2$par)
print(c(fit1$ssr,fit2$ssr))

# Next fit the Quasi steady state model
p <− c(P,c=5,dG=0.25,Delta=6);p
free <− c(”c”,”dG”,”Delta”)
fit3 <− myfit(data[[id]],simple,state=c(G=0),free,tweak=”nsol$U<−urineSol(times,state,parms)”)
summary(fit3)
print(c(fit1$ssr,fit2$ssr,fit3$ssr))

ftest(fit1$ssr,length(fit1$par),fit3$ssr,length(fit3$par),nrow(data[[id]]))
ftest(fit2$ssr,length(fit2$par),fit3$ssr,length(fit3$par),nrow(data[[id]]))

6



# Fit all data together allowing only c and the urine parameters to differ between persons
differ <− c(”c”,”u0”,”f”,”delta”)
par(mfrow=c(3,2))
fit4 <− myfit(data,simple,state=c(G=0),free,differ=differ,tweak=”nsol$U<−urineSol(times,state,parms)”,main=seq(5)

)
cValues <− fit4$par[names(fit4$par)==”c”]
fValues <− fit4$par[names(fit4$par)==”f”]
print(c(CV=sd(cValues)/mean(cValues)))
plot(fValues,cValues,main=round(fit4$ssr,digits=3))
par(mfrow=c(1,1))
print(fit4$par)
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