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Answers to Chapter 2

Question 2.1. Red blood cells
Figure made with blood.R:
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a. Since the production of red blood cells relies on a source we use Eq. (2.3), and rewrite that
as dN/dt = m− dN .

b. Donating blood corresponds to Panel (a), where blood is taken at t = 5, and the steady
state, N̄ = m/d, has been scaled to one (by setting m = d = 1).

c. Receiving blood corresponds to Panel (b), where blood is given at t = 5.

Question 2.2. Pesticides on apples
Figure made with a previous version of Grind:
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a. An expected time course is depicted in Panel (a).
b. The pesticide concentration would approach its steady state P̄ = σ/δ.
c. The model becomes dP/dt = −δP with the initial condition P (0) = σ/δ. Solving P (0)/2 =
P (0)e−δt yields t1/2 = ln[2]/δ.

d. From dP/dt = 2σ − δP with P̄ = 2σ/δ, one obtains the same ln 2/δ days for the half life.
e. From 50 = ln 2/δ one obtains δ = 0.014 per day.

Question 2.3. ATP
a. Since dA/dt is measured in grams per day, p would be grams of ATP produced per day.

Note that ADP and ATP cycle, according to the reaction ADP + P
k


δ

ATP, meaning that

ATP is resynthesized when its end-product ADP spends energy to bind phosphate. Thus,
the parameter p combines the mass-action parameter k and the concentrations of ADP and
phosphate.

b. The steady state Ā = p/δ g, and because we know there is 60 g of ATP we know that
p/δ = 60 g.

c. When δĀ = δ60 = 60×103 g of ATP per day, we estimate that δ = 103 per day, or δ = 0.69 per
minute. The expected ‘life span’ on an ATP molecule would therefore be about 1/0.69 = 1.44
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minutes.

Question 2.4. Bacterial growth
a. The doubling time is defined as t = ln[2]/r.
b. Since the neutrophil have to prevent bacterial growth we require that dB/dt < 0. Solving

dB/dt = rB − kNB = 0, and neglecting the trivial B = 0 solution, we obtain N = r/k for
the critical number of neutrophils in a ml of blood.

c. The dimension of r is per hour. Since the total term kNB has dimension “number of bacterial
per hour” (as measured in a ml of blood), the dimension of k should be “per neutrophil per
hour”. This can also be checked from the expression N = r/k that should be “neutrophils”
on the both the left- and right-hand side.

d. “bacteria per neutrophil per hour”. This is the maximum number of bacteria that one
neutrophil can encounter and kill per hour.

e. The critical number now depends of the concentration of bacteria, i.e., solving dB/dt =
rB − kNB

h+B = 0 for N now gives N = r
k (h + B). This is a straight line with slope r/k,

intersecting the vertical axis atN = rh/k. Thus, the larger the infection, the more neutrophils
are required. Note that this line is a nullcline: below this line dB/dt > 0, and above it
dB/dt < 0.

f. h has the dimension number of bacteria per ml. When B = h the model is dB/dt = rB−kN/2
saying the neutrophils are killing at a rate k/2, i.e., half their half-maximal killing rate.

Question 2.5. Physics: a cup of tea
a. Setting dT/dt = c(TE − T ) = 0 readily gives T̄ = TE , i.e., ultimately the tea approaches

room temperature.
b. c is a rate, with dimension 1/t.
c. Three parameters: c, TE and the initial value T0.

Question 2.6. Physics: acceleration
a. The dimension of the velocity, v, is m/s and that of the acceleration, a, is m/s2, which makes

perfect sense.
b. For the plastic we write dp/dt = k(t) = at + k(0), and the corresponding solution is p(t) =

1
2at

2 + k(0)t+ p(0).
c. No, the amount of plastic will continue to increase at an accelerating rate.

Answers to Chapter 3

Question 3.1. Carrying capacity
a. The per capita birth rate is minimal when a population approaches its carrying capacity.
b. the per capita death rate is maximal when a population approaches its carrying capacity.
c. The individual well-being is expected to be best in an expanding population: the per capita

birth rate is maximal and the per capita death rate is minimal.
d. With dN/dt = rN [1−N/(k

√
N)] = 0 one obtains the carrying capacity from N/(k

√
N) = 1

or
√
N = k giving N̄ = k2. This still is a finite carrying capacity, at which circumstances are

poor. For the best circumstances the population has to remain below its carrying capacity.

Question 3.2. Homeostasis
a. No, the steady state of dB/dt = m−dB = αP −dB is B̄ = αP

d . In such a model the number
of peripheral B cells remains proportional to the number of bone marrow precursors, P .

b. For instance with density dependent death, dB/dt = m − dB(1 + eB), or with density
dependent production, dB/dt = m/(1 + eB) − dB, because with such a negative density
dependence the steady state, B̄, will depend less than proportional on m = αP . Actually,
the steady state of both density dependent models is solved from m− dB − deB2 = 0, i.e.,

B̄ =
d±
√
d2 + 4edm

−2ed
with one positive root B̄ =

√
d2 + 4edm

2ed
− 1

2ed
,



3

in which we see that steady state depends on the square root of the source m = αP . Thus
both models allow for some of the saturation observed by Agenes et al. [1], but do not predict
a plateau at large numbers of progenitors. You may want to try alternative models starting
with the Grind model provided as agenes.R.

c. Yes clearly, in the absence of homeostasis the steady number of peripheral B cells is propor-
tional to the number of bone marrow precursors, and in the data it is not.

d. No, it is accounting for a steady state, but not for density dependent population regulation.

Question 3.3. Overfishing herring
Figure made with herring.R. Bullets and circles denote stable and unstable steady states,
respectively:
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a. Plotting dN/dt = f(N) = rN(1−N/K) as a function of N (or y = rx(1− x/K) as function
of x), yields a parabola crossing the horizontal axis at N = 0 and N = K. The maximum of
the function f(N) = rN − rN2/K is found by setting its derivative, ∂Nf = r − 2rN/K, to
zero. This gives N̂ = K/2. Substituting this maximum into the population growth function,
one obtains the maximum population growth of f(N̂) = rK/4; see Panel (a).

b. The optimal population size is the one yielding maximum growth, i.e., N = K/2. At this
optimal density, the total population growth, rK/4, could in principle be harvested.

c. We just add the harvest as a negative term to the model: dN/dt = rN(1 − N/K) − Q,
with a total catch of Q = rK/4 herring per unit of time. The new model only has one
steady state at N = K/2, which is unstable in the direction of lower densities; see Panel
(b). Starting above this state, e.g., at N = K, while allowing for this maximum harvest, one
would mathematically still expect an approach to this equilibrium. However, any disturbance
of the population size bringing it below the level N = K/2, leads to extinction because the
population entered the basin of attraction of N̄ = 0. Harvesting less than the maximum
yield, Q < rK/4, allows for two steady states; see Panel (c). The upper one is stable and the
lower one is unstable (a saddle point). The population remains vulnerable to extinction after
large perturbations bringing the population size below the saddle point.

d. The first thing one needs to think about is the parameter values of the model. One could con-
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sider the Herring population in the North sea, and realize that a natural non-harvested pop-
ulation will have a carrying capacity amounting to huge number of individuals (or biomass).
Fortunately, one can always scale the population density by the carrying capacity of the
population. Thus, we can define a scaled carrying capacity, K = 1, defining that H = 1
corresponds to a natural Herring population at carrying capacity in the North sea. The next
parameter to consider is the natural rate of increase, r. We first need to define a time scale,
and for a Herring population with a yearly reproduction cycle, a time scale of years seems
a proper choice. Then we are thinking of a growth rate per year, and using our biological
intuition about fish of the size of Herring, it seems obvious that a growth rate of 1% per
year seems slow and that they will not easily grow faster than 100% per year. Thus, setting
r = 0.1 per year, or r = 0.2 per year, seem reasonable choices. One can actually check this by
studying the recovery rate of a crashed Herring population in the absence of fishing: setting
H = 0.1 and Q = 0, and run the model for a few decades to test how long it takes for the
population to recover and approach its carrying capacity. Running the herring.R script for
Q = rK/4 with a noisy carrying capacity reveals that the population ultimately goes extinct,
confirming that a fixed quota of Q = rK/4 is not sustainable.

e. The steady state is computed from dH/dt = rH(1−H/K)− fH = 0, which gives the trivial
H̄ = 0 and the non-trivial H̄ = K(1−f/r) as long as f < r. The total harvest at steady state
is fH̄ = fK(1 − f/r). The derivative of the harvest, ∂f (fH̄), is K − (2K/r)f , and setting
that to zero to find a maximum gives f = r/2. Substituting that into H̄ gives H̄ = K/2, i.e.,
half of the carrying capacity. For the total harvest we compute fH̄ = rK/4, which is the
same as the fixed quota, Q, defined above. Thus, economically this should be the same.

f. The model dH/dt = rH(1 − H/K) − fH with f = r/2, is mathematically the same as a
model with a linear density dependent birth rate and a density independent death rate (as
discussed in Eq. (3.6)), and since this has a stable steady state at H̄ = K(1−f/r) = K/2, one
no longer expects the population to go extinct; see Panel (d). This is confirmed by subjecting
the model to the same fluctuations of the K parameter (using the herring.R script). We
conclude that defining a fixed or a fractional quota does not make a difference for the total
yearly harvest, but makes a huge difference in sustainability. A very simple model therefore
suggest that it is much better to define fractional quota, and that this need not have any
economic consequences.1

Question 3.4. Biofilm
Figures made with the model biofilm.R:
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a. The function y = bx
h+x is an increasing saturation function intersecting the vertical axis in the

origin, and the function y = d + ex is a straight line intersecting the vertical axis in y = d;
see Panel (a). When d < b these lines tend to intersect in two points, where the per capita

1A simpler argument leading to the same result is to see that the optimal harvest is obtained when the harvest
function, fH, crosses the growth function, rH(1−H/K), in its maximum, i.e., in rK/4 obtained at H = K/2.
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birth rate equals the per capita death rate. The steady state at low population densities is
unstable, and the one at high densities corresponds to the stable carrying capacity.

b. Because the birth function goes from quadratic to linear, and the death function from linear
to quadratic, these tend to intersect three times: in the origin, at a low density and at a high
density. See Panels (b) and (c) where (b) is a zoom-in at low population densities depicting
the unstable intersect. (The red line depicts the birth rate and the blue line the death rate.)

c. We therefore find three steady states, with a stable origin and a stable carrying capacity,
and a saddle point in the middle defining the population threshold corresponding to an Allee
effect.

d. When the biofilm enhances survival, one should decrease the death rate, e.g., dB/dt =
bB

1+B/k − dB
1+B/h , where we have put the negative density dependence in the birth rate to allow

for a carrying capacity (and the Allee effect in the death rate). The per capita death rate
is d when the population is small, decreases to d/2 when B = h, and approaches zero when
B →∞.

Question 3.5. Stem cells
The Figure was made with the model stem.R:

S
D

●

S

D

0
0

K(1− d
p)

a. Defining p as the division rate, and d as a death rate, a natural model would be dS/dt =
pS(1 − S/K) − dS, where we could define a time scale of days, i.e., the dimension of p and
d are d−1, and that of K is cells. Because the size of the substrate naturally limits the
number of stem cells, the division (birth) rate is density dependent. Note that this equation
corresponds to the logistic growth model of Eq. (3.6).

b. Solving dS/dt = 0 gives the non-trivial solution S̄ = K(1 − d
p), which is smaller than K

because sites are continuously freed up by cell death.
c. Because the fraction S/K of the dividing stem cells differentiates, one obtains dD/dt =

p
KS

2 − δD.
d. The production rate is p

KS
2, which has the parabolic form of y = ax2. Note that this

despite the quadratic form this production has a correct dimension cells d−1 because p has a
dimension d−1, and K has dimension cells. The production rate remains bounded, however,
because there can be no more than S̄ = K(1 − d

p) stem cells, i.e., the maximum production

is pK(1− d
p)2 cells d−1.

e. The dS/dt = 0 nullcline is given by S̄ = K(1− d
p) and the dD/dt = 0 nullcline by D = p

KδS
2,

which is a parabola going through the origin (see the figure). Since dD/dt > 0 when S is
large and D is small the differentiated cells increase on the right-hand side of their nullcline.
Stem cells increase below their steady state. The vector field reveals that this steady state is
stable.

Question 3.6. Regression to the mean
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a. Since everything is random, the first expectation is that one should find not correlation
between the per capita change,(Nt+∆ −Nt)/Nt, and the previous density, Nt.

b. We nevertheless find a significant correlation. Although all Nt values are random, relatively
small Nt values tend to create a large deviate Nt+∆ − Nt, which is subsequently “boosted”
by dividing by a small Nt value. In statistics this is known as the “regression to the mean”
phenomenon. Thus, testing for density dependence in a random time series is expected to
lead to statistically significant evidence.

c. This “tought-experiment” illustrating the main message of the Shenk et al. [14] and Freckleton
et al. [4] papers tells us that one needs to be careful when searching for evidence for density
dependence in time-series data.

Question 3.7. Fitting the Logistic growth Gause data from 1934
a. Yes, the fits look quite reasonable and we obtain very similar estimates for the two growth

rates and carrying capacities of both species. Apparently, the logistic equation can adequately
capture the in vitro growth curves of these two Paramecium species.

b. Fitting both the initial condition, N(0), and the natural rate of increase, r, does not work
well because they are correlated, i.e., a high r can be compensated for by a low N(0). Both
parameters are therefore not identifiable from this data (see the low P-value for N(0)). To
obtain a more reliable estimate for r, we therefore fix N(0) by the first data point in the data.
Finally, we check the confidence range of r and K by bootstrapping (sampling) the data a
100 times. Now both parameters seem identifiable.

c. The confidence ranges of the parameter estimates of P. aurelia, 1 . r . 1.2 and 99 . K . 108,
and these of P. caudatum, 0.75 . r . 1.4 and 53 . K . 70, overlap in the growth rates,
but not in the carrying capacities. Thus, the two species clearly have a markedly different
carrying capacity, but need not have different growth rates.

d. Fitting the data with four free parameters, or with a shared growth rate (i.e., with three free
parameters), provides quite similar fits that nevertheless differ considerably in the summed
squared residuals, i.e., SSR=1111 and SSR=1282, respectively. An F-test, i.e., F [1, 24] = 3.69
indicates that this difference is not significant (P = 0.067). Hence the 4-parameter model is
not significantly better than the 3-parameter model.

e. The two species differ markedly in their carrying capacity and hardly in their growth rate.
Since P. aurelia has the highest carrying capacity its usage of the resource should be more
efficient. Since we can only estimate a net growth rate, r, and do not know their birth and
death rates, we cannot estimate their R0s, and we therefore no nothing about the difference
in fitness between the two species.

Question 3.8. Habitat destruction
a. Solving the non-trivial solution of cP (1−P )−eP = 0, i.e., of c−cP−e = 0, gives P̄ = 1−e/c.

The model is actually a scaled version of Eq. (3.6).
b. According to the P̄ = 1− e/c result, the species is absent from a fraction e/c of the patches

in a pristine environment. Since the fraction of empty patches increases with the extinction
rate, and decreases with the colonization rate, this is a quite natural property of the model.

c. Solving the non-trivial solution of cP (α − P ) − eP = 0, i.e., of cα − cP − e = 0, gives
P̄ = α− e/c, which has a similar form as the answer from the pristine environment.
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d. Solving P̄ = α− e/c = 0 gives α = e/c.
e. A species that was present at a frequency P̄ = 1− e/c = 0.01 in the pristine environment has

an extinction to colonization ratio e/c = 0.99. For the perturbed environment one therefore
finds that the species is expected to go extinct when α = 0.99, i.e., when just 1% of the
patches is destroyed (∆ = 1 − α = 0.01). This counterintuitive result could well be realistic
because this species is so rare because it is a poor colonizer that easily goes extinct. Such a
species needs many patches to survive globally.

Question 3.9. Red blood cells
Figure made with the model epo.R:
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a. Scaling the maximum concentration of EPO to one, we write the declining Hill function
E = 1

1+(B/h)n . Because this should be a steep sigmoid function we set n = 5; see Panel (a),

where we have set h = 2.8× 1011 (see below).
b. We defined a minimum production rate, s0 ' 109 cells kg−1 d−1, in the absence of EPO.

Hence we could write s0+s1E for the total production rate. Because the maximum production
when E = 1 is 1010 cells kg−1 d−1, i.e., s0 + s1 = 1010, we obtain that s1 ' 9 × 109. The
total production is plotted in Panel (b).

c. Together this leads to

dB

dt
= s0 + s1E − dB where E =

1

1 + (B/h)n
,

s0 ' 109, s1 ' 9×109, and d = 1/120. Knowing that the normal steady state is B̄ = 3.6×1011

RBC, one can solve the unknown h parameter from dB/dt = 0. For n = 1 one can do this
by hand,

s0 +
s1

1 + B̄/h
= dB̄ ↔ s1

1 + B̄/h
= dB̄ − s0 ↔ s1

dB̄ − s0
= 1 +

B̄

h
↔

s1

dB̄ − s0
− 1 =

B̄

h
↔ s1 − dB̄ + s0

dB̄ − s0
=
B̄

h
↔ h = B̄

dB̄ − s0

s0 + s1 − dB̄
' 1.03× 1011 .

The general case, i.e., n > 1 can be solved by Mathematica (see the epo.nb script), or by the
function uniroot.all() in R (see the epo.R script), and for n = 5 this leads to h = 2.8×1011.

d. Running the model for these parameters indeed leads to the normal steady state of B̄ = 3.6×
1011 cells kg−1. Patients not producing EPO have the steady state of B̄ = s0/d = 1.2× 1011

cells kg−1, which is 3-fold lower than the normal number of RBC.
e. Running the model after halving s0 and s1 leads to a 23% loss of the RBC in the blood, i.e.,

for s0 = 5 × 108 and s1 = 4.5 × 109 one finds B̄ = 2.7 × 1011 cells kg−1, which is quite a
decrease from the normal B̄ = 3.6 × 1011 cells kg−1. For the current parameters, the model
therefore fails to perfectly explain the similar RBC numbers in elderly individuals (if a 50%
reduction in productive bone marrow tissue is realistic).
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Question 3.10. Generalized logistic growth
a. The per capita growth term in the standard logistic equation is of the form r(1 − N/K) =
r − kN , where k = r/K. Summing per capita birth and death rates of the form b(1−N/kb)
and d(1 +N/kd), respectively, also yields a per capita growth rate of the form r− kN , where
r = b− d and k is a combination of all four parameters.

b. This would be a per capita birth rate of the form b(1−(N/k)m), which is concave when m > 1
(like blue red line in Fig. 3.3c, and convex when m < 1 (like the green line in Fig. 3.3c). The
concave shape would mean that the negative density dependence on the birth process kicks
in at relatively high population densities, which would be realistic when resources become
limiting only after the population has expanded. The convex shape would imply that effect
of competition on the birth rate is steepest at low densities, which would be realistic for a
population expanding spatially, and growing at its border. Thus, any positive value of m
seems legitimate.

c. The death rate would be of the form d(1 + (N/k)m), which for m > 1 would mean that the
increase of per capita death rate keeps accelerating when the population expands. For m < 1
the increase of the per capita death rate decelerates with the population size. Both could be
realistic and hence any positive value of m seems legitimate.

Question 3.11. Life stages
Figure made with a previous version of Grind:

x

0 0.5 1

y

0

0.5

1
(a)

L

A

0
0 r

d1ε
x

0 0.5 1

y

0

0.5

1
(b)

L

A

0
0 r

d1ε

a. To define how the mortality of larvae depends on the density of the adults, A, we need to
define a function, f(A), that increases with A. Choosing for simplicity, e.g., f(A) = d1(1+εA),
we would have a linearly increasing function, where d1 defines the natural death rate of larvae
in the absence of adults, and 1/ε is the adult density at which the death rate doubles (to
2d1). For the larvae, L, and the adults one would then write

dL

dt
= rA−mL− f(A)L = rA−mL− d1(1 + εA)L and

dA

dt
= mL− d2A ,

where m is the maturation rate of the larvae, and r the rate of reproduction by the adults.
b. To simplify the algebra we rewrite the ODE for the larvae into dL/dt = rA−m′L− d′1LA,

where m′ = m+ d1 and d′1 = d1ε, and solve the larvae nullcline from rA−m′L− d′1LA = 0.
Solving for A we define A as the vertical axis, and L as the horizontal axis, and obtain
A = m′L

r−d′1L
. This is zero when L = 0 (i.e., goes through the origin), and has a vertical

asymptote at L = r/d′1. The slope in the origin is computed from the derivative ∂LA,

m′

r − d′1L
+

m′d′1L

(r − d′1L)2
which for L = 0 gives

m′

r
.

See Panel (a). For the adults dA/dt = mL − d2A = 0 gives A = mL
d2

, which is a
straight line through the origin with slope m/d2. If m/d2 > m′/r = (m + d1)/r the
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two nullclines intersect in a non trivial stable steady state. Otherwise the origin is the
only steady state (see Panel (b)). (Also see the online tutorial for sketching nullclines on
tbb.bio.uu.nl/rdb/bm/clips/nullclines for the a rotated version of the same phase space).

c. Assuming a quasi steady state for the larvae, one has to solve L from dL/dt = 0, giving
L̂ = rA

m′+d′1A
.

d. Substituting L̂ into the adult equation gives dA/dt = mrA
m′+d′1A

− d2A for the quasi steady

state model. This is one of the models with a density dependent birth rate (see Table 3.1).
e. From A = (m/d2)L we get dL/dt = (r′ −m′)L − dL2 where r′ = rm/d2 and d = d′1m/d2,

which has the form of a logistic growth equation.
f. In many insect species the adults live much shorter than the larvae. Then dA/dt = 0 would

be most realistic.

Question 3.12. Seedlings over-shadowed by adult plants
Figure made with the model seedling.R:

J
A

(a)

J

A

0
0 s

d1+m

J
A

(b)

J

A

0
0 s

d1+m
s
d1

k

a. Because shadowing is expected to be linear (i.e., proportional to A), a natural model would
look like:

dJ

dt
= s− d1J −mJ(1−A/k) and

dA

dt
= mJ(1−A/k)− d2A ,

where f(A) = 1− A/k defines a ”shadowing” function. For the nullcline of the seedlings we
set dJ/dt = 0, i.e.,

s−d1J−mJ+
m

k
JA = 0↔ s−d1J−mJ = −mJ

k
A↔ A =

k(d1 +m)

m
− sk

mJ
↔ A = α− β

J
,

where α = k(d1+m)
m = k + kd1/m and β = sk/m. To sketch this we define A as the vertical

axis and J as the horizontal axis. Next we
1. find the intersection with x-axis by solving A = 0, i.e.,

α = β/J or J = β/α =
sk

m

m

k(d1 +m)
=

s

d1 +m
,

2. find a horizontal asymptote by sending J →∞, which gives A→ α, or A→ k + kd1/m,
3. find a vertical asymptote by sending J → 0, which gives A→ −∞,
4. and compute the derivative, A′ = β

J2 , to find out that the slope is always positive, i.e.,
there are no minima and maxima,

https://tbb.bio.uu.nl/rdb/bm/clips/nullclines


10

(see the online tutorial on sketching functions). So this is a hyperbola approaching the
negative y-axis, intersecting the x-axis, and approaching the horizontal asymptoteA = k+kd1

m ;
see Panel (a). For the nullcline of the adult plants one sets dA/dt = 0:

mJ − m

k
JA− d2A = 0↔ mJ = A(d2 +mJ/k)↔ A =

mJ

d2 +mJ/k
=

kJ

kd2/m+ J
=

kJ

h+ J

where h = kd2/m. This is a Hill function when A is plotted as a function of J . Indeed,
1. setting J = 0 gives A = 0, which is the origin of the phase space,
2. letting J →∞ gives A→ k, which is a horizontal asymptote,
3. we ignore the vertical asymptote at J = −h, because one can safely ignore negative

population densities,
4. we fill in the special point J = h = kd2/m because that gives A = k/2.
(see the online tutorial on sketching functions). So this is an increasing Hill function starting
in the origin and approaching the horizontal asymptote A = k; see Panel (a). The point where
the nullclines intersect is a stable steady state because the vector field is pointing towards it
in all four regions around it.
Actually, our shadowing function, f(A) = 1 − A/k, is not completely correct because f(A)
will become negative whenever A > k, i.e., above the horizontal line in Panel (a). To prevent
this one can write f(A) = max[0, 1 − A/k], which returns f(A) = 0 when A > k. This is
depicted in Panel (b), and has little effect because the steady state is necessarily located
below the line A = k.

b. Yes, these nullclines cross whenever k + kd1
m > k, which is always true. Intuitively, this can

be understood because the seed bank always allows some seedlings to be present, and some of
these should always mature to become adult plants. The population cannot become infinitely
large because the seedlings are limited by the seed bank, and on top of that the adult plants
are limiting their own production.

c. Yes, the vector field points towards the steady state in every section of the phase space.
Note that arrows point rightwards on the left-hand side of the dJ/dt = 0 nullcline because
dJ/dt > 0 for small values of J , and that arrows point upwards below the dA/dt = 0 nullcline
because dA/dt > 0 for small values of A. Hence, this is a feasible model because it allows
the vegetation to approach some carrying capacity.

d. Yes, this model allows for homeostasis because there is a negative density dependence from
adults onto juveniles: the higher the adult density the more juveniles die (the minimum
fraction being d1

d1+m).

Question 3.13. Tumor growth
Figure made with a previous version of Grind:
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a. Since the total biomass is given by A = cπr2, one obtains that the radius r =
√

A
cπ =
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c′
√
A, where c′ is a new scaling constant. The total growth rate, G, is proportional to the

circumference, i.e., G ∝ 2πr, which after substituting the radius becomes G ∝ 2πc′
√
A or

G = b
√
A, where b is a “birth rate” that is proportional to the square root of the biomass.

On the other hand, the total death rate should be proportional to the total biomass, A. A
natural model would therefore be dA/dt = G− dA = b

√
A− dA.

b. The carrying capacity is solved from b
√
A − dA = 0, or b − d

√
A = 0 giving Ā = (b/d)2.

There is a trivial steady state, A = 0, corresponding to having no tumor.
c. The per capita growth dA/dt

A = b√
A
− d. Which for A → ∞ approaches the horizontal

asymptote −d, which is perfectly reasonable (see the Figure). However, for small population
sizes, i.e., A → 0, the per capita growth rate blows up, which is not a good property of the
model.

Question 3.14. The Fisher equation

0 20 40 60 80 100

0.
0

0.
4

0.
8

Position

D
en

si
ty

a. The model defines a vector of left and right neighbors by initializing two vectors filled with
with zeros. The left neighbor of compartment i is then defined as compartment i−1, and the
left neighbor of the first compartment is set as the last compartment. For the right neighbors
this is just the other way around. The dtN line then computes the derivatives for the whole
vector of compartments.

b. Starting at position 30, this code creates a wave traveling left- and right-wards. The wave
traveling left-wards re-enters the space on the right (see the Figure).

c. If the Allee effect is sufficiently strong and the diffusion sufficiently slow it should be possible
to stop the wave. Try this!

Answers to Chapter 4

Question 4.1. Density dependent death
Figure made with a previous version of Grind:
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a. In the model dN/dt = (b− cN)N , the per capita death rate is cN : see Panel (a)
b. The net per capita growth rate is b− cN : see Panel (b).
c. The trivial steady state is N = 0, and solving b − cN = 0 gives the non-trivial steady state
N̄ = b/c.

d. The R0 is not defined because the individuals have no expected life span, i.e., at low densities
the generation time goes to infinity .

e. The derivative with respect to N is b− 2cN . Substituting N = b/c yields λ = −b < 0. Thus
the return time TR = 1/b is fully determined by the birth rate and is independent of the
density dependent death rate c.

Question 4.2. Return time
a. For dN/dt = f(N) = bN(1 − N/k) − dN there are two steady states, the origin N̄ = 0,

and the carrying capacity N̄ = k(1− d/b). For the return time to the carrying capacity one
computes the derivative ∂Nf(N) = b − d − 2bN/k and substitutes the steady state value to
obtain

λ = b− d− 2b

k
k(1− d/b) = d− b and TR =

−1

λ
=

1

b− d .

For dN/dt = g(N) = bN − dN(1 +N/K) there are also two steady states, the origin N̄ = 0,
and the carrying capacity N̄ = k(b/d− 1). For the return time to the carrying capacity one
computes the derivative ∂Ng(N) = b − d − 2dN/k and substitutes the steady state value to
obtain

λ = b− d− 2d

k
k(b/d− 1) = d− b and TR =

−1

λ
=

1

b− d .

Thus, in both models the return time decreases when the net rate of increase, r = b − d,
increases (which underlies the r versus K-selected paradigm).

b. For dN/dt = f(N) = s−dN with steady state N̄ = s/d, the derivative ∂Nf(N) = −d, which
immediately gives λ = −d and TR = 1/d.

c. The s and k parameters are not rates, but have dimension [N time−1] and [N ], respectively.
Because both depend on the units of the population size, one can always scale the population
size such that s = 1 and k = 1. For instance, scaling the non-replicating population by
its steady state, N̄ = s/d, by defining a scaled population as n = d

sN , and then substitute
N = s

dn into dN/dt = s− dN , one obtains the scaled ODE

s

d

dn

dt
= s− s

d
dn or

dn

dt
= d− dn ,

which has the death rate as its only parameter, see Section 15.4.
d. The ODE dN/dt = s(1−N/k)− dN can be written as dN/dt = s− (s/k + d)N = s− δN ,

where δ = s/k + d. This is of the same form as dN/dt = s− dN , and hence the return time
is given by RT = 1

δ = 1
s/k+d , which is shorter than 1/d. Note that the parameter s is now

part of the return time because s/k is a rate.

Question 4.3. Whales
Figures made with the model whales.R:
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After defining the probability that an individual female finds a male as a saturation function,
p(N) = N/(h + N), one needs to allow for a carrying capacity by including negative density
dependence in the birth and/or the death terms:
a. Assuming density dependent birth one would write something like

dN

dt
=

bN

1 +N/K

N

h+N
− dN , (A.4.1)

and assuming density dependent death one could write

dN

dt
= bN

N

h+N
− dN(1 + (N/k)2) , (A.4.2)

and in reality one could have a combination of the two. Curves corresponding to Eq. (A.4.1)
are depicted in the upper row; those corresponding to Eq. (A.4.2) in the lower row.

b. The per capita birth rate (in red) and the death rate (in blue) are depicted in Panels (a) and
(b). The total birth rate (in red) and the death rate (in blue) are depicted in Panels (c) and
(d).

c. The population growth rates are shown in Panels (e) and (f). The basins of attraction are
defined by the intersections by the black line located at dN/dt = 0 (see the arrows).

Answers to Chapter 5

Question 5.1. Sketch the per capita birth rate
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Figure made with the file birth.R:
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a. Plotting y = b(RT−cN)
h+RT−cN as a function of N needs to be done in several steps. First, y = 0 when

N = RT /c, i.e., when all of the nutrient is contained in the cells. At low population densities
the population approaches the birth rate y = bRT

h+RT
, and when the saturation constant, h, is

much smaller than the total resource density, RT , this will approach the maximum birth rate
b. When N increases the per capita birth rate will decrease. The full function has a vertical
asymptote at N = h+RT

c , which is located beyond the point, N = RT /c, where y = 0. We

find the horizontal asymptote by first writing y = bRT /N−bc
h/N+RT /N−c , and then taking the limit

N → ∞ to find that y → b. We therefore obtain the concave hyperbolic function depicted
above.

b. This concave shape is what we considered most realistic in Chapter 3. For instance see Fig.
3.3c and Fig. 3.5b.

Question 5.2. Neutrophils
Figure made with neutrophils.R:

B
N

● ●

(a)

N

0
0

K

s
d

r
k B

N

●

(b)

0
0

K

s
d

r
k

B
N

● ● ●

(c)

0
0

K

s
d

rh
k

B
N

●

(d)

B

0
0

K

rh
k

s
d

B
N

● ●

(e)

B

N

0
0

K

s
d

rh
k

a. The nullcline is derived by setting dB/dt = rB(1 − B/K) − kNB = 0 giving B = 0 and
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N = r
k (1 − B/K). Plotting N on the vertical axis and B on the horizontal axis, the latter

is a straight declining line starting at N = r/k and ending at B = K (just like the prey
nullcline of the Lotka-Volterra model). The nullcline of the neutrophils is defined by the
line N = s/d. These lines will only intersect when r

k > s
d . In Panel (a) the uninfected

state, (B̄, N̄) = (0, s/d), is unstable because bacteria can invade, and there is a stable state
corresponding to a chronic infection. In Panel (b) the uninfected state is stable, as small
infections cannot grow.

b. Comparing Panel (a) with (b) we observe that bacterial invasions are immediately controlled
when s/d > r/k (which is similar to the kN > r obtained in Chapter 2).

c. The nullcline of the ODE for the bacteria is derived by setting dB/dt = rB(1−B/K)− kNB
h+B =

0 giving B = 0 and the parabola N = r
k (1 − B/K)(h + B).2 This parabola intersects the

horizontal axis at B = −h and B = K, intersects the vertical axis at N = rh/k, and has
a maximum at R = (K − h)/2. All qualitatively different situations are sketched in Panels
(c)–(e). The situation in Panel (d) is like that of Panel (b), where small infections cannot
grow. In Panel (e) the situation is like that in Panel (a), with one stable state corresponding
to a chronic infection. In Panel (c) the uninfected state, (B̄, N̄) = (0, s/d), is a stable node,
the steady state marked by the open circle is a saddle point, and the steady state marked by
the bullet is a stable node, corresponding to a chronic infection.

d. In Panel (d) the normal neutrophil level N̄ = s/d is sufficient for controlling an infection
of any size, which happens whenever s/d is larger the top of the parabola. Technically,
this can be computed by substituting B = (K − h)/2 into the equation for the nullcline

N = r
k (h + B)(1 − B/K), giving s

d > r(h+K)2

4kK . In Panel (e) the normal neutrophil level
N̄ = s/d is too low to control any bacterial infection, which happens when s/d is smaller than
the intercept of the parabola with the vertical axis at rh

k , giving s
d >

hr
k as the condition for

immediate control. In Panel (c) this condition is fulfilled and small infections are immediately
controlled by normal neutrophil levels, whereas large bacterial infections grow. The situation
of Panel (c) occurs when s/d is higher than the intercept and lower than the top of the
parabola. Technically, this means that

rh

k
<
s

d
<
r(h+K)2

4kK
.

The maximum size of a controllable infection can be computed by substituting N = s/d into
the equation for the nullcline of the bacteria, i.e., s

d = r
k (1 − B/K)(h + B) and solving this

quadratic equation for B (not shown).
e. A large transient output from the bone marrow tends to overcome the thresholds defined

above.

Question 5.3. Lotka-Volterra models
a. This would indeed be compatible with dT/dt = rT (1−T/K)−kTN and dN/dt = aTN−dN

for the tumor, T , and natural killer cells, N , respectively. Here k is a mass-action killing rate
and a the mass-action activation rate allowing the natural killing cells to divide.

b. In Chapter 6 we will encounter the SI model, dS/dt = rS(1 − S/K) − βSI and dI/dt =
βSI − dI, for the susceptible individuals, S, and infected individuals, I, respectively. Here β
is an infection rate and d the death rate of infected individuals.

c. The natural killer cells probably have a maximum killing rate, and a maximum rate of
activation, which would change the model to dT/dt = rT (1 − T/K) − kTN

hk+T and dN/dt =
aTN
ha+T −dN (see Chapter 7). The SI model is frequently written as dS/dt = rS(1−S/K)− βSI

S+I

and dI/dt = βSI
S+I − dI, because I

S+I is the fraction of infected individuals in the population

2This is identical to the prey equation of the Monod-saturated predator-prey model in Chapter 7.
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(see Chapter 6). This is a more natural term when the susceptible individuals tend to meet
an average number of other people, irrespective of their health status.

Question 5.4. Scaling
The Lotka-Volterra equations are

dR

dt
= [r(1−R/K)− aN ]R and

dN

dt
= [caR− d]N .

a. Defining x = R/K and scaling time by dividing all rates by r one obtains

dKx

dt
= [(1−Kx/K)− aN/r]Kx and

dN

dt
= [

ca

r
Kx− d/r]N ,

where the “new” t runs r-fold faster that the non-scaled t. Defining α = a/r this simplifies
into

dx

dt
= [(1− x)− αN ]x and

dN

dt
= [cαKx− d/r]N ,

with only one parameter in the resource equation. Defining y = αN , i.e., N = y/α, we
remove that parameter from dx/dt

dx

dt
= [(1− x)− y]x and

1

α

dy

dt
= [cαKx− d

r
]
y

α
,

where dy/dt can be simplified by lumping the parameters

dy

dt
= [γx− δ]y ,

where γ = cαK = cKa/r and δ = d/r.
b. We went from five to two parameters for which we even know the scaled fitness R0 = γ/δ,

and that γ/δ > 1 is required for co-existence.
c. The δ parameter is the time-scaled death rate of the predator, and has a dimension t−1 on

the new time scale. The γ parameter is a dimensionless conversion rate.

Question 5.5. Desert
Figures made with a previous version of Grind:
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a. If there is no vegetation one sets V = 0 to obtain dW/dt = a − cW with the steady state
W̄ = a/c

b. If there is twice the amount of rain the parameter a becomes 2a, which means W̄ = 2a/c.
c. The steady state is now solved from the system dW/dt = dV/dt = 0. Since V = 0 cancels

from dV/dt = 0 one obtains the steady state W̄ = e/d from the vegetation equation. This is
independent of rain and evaporation!

d. Knowing that W̄ = e
d , we solve V from dW/dt = 0 = a− b e

d V − c e
d , or V̄ = ad

eb − c
b .
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e. The steady state remains W̄ = e/d and because V̄ depends on a we see that the extra water
ends up in the vegetation.

f. The vegetation nullcline is solved from dV/dt = dWV − eV = 0 which means that V = 0
and W = e/d. The water nullcline is solved from dW/dt = a− bWV − cW = 0 or a− cW =
bWV , i.e., V = a

bW − c
b , which is a decreasing hyperbolic function with horizontal asymptote

V = −(c/b) and vertical asymptote W = 0. There are two possibilities: See Panel (a) and
(b). The vector field shows steady state W̄ = a/c without a vegetation is a unstable saddle
in Panel (a) and is stable in Panel (b). For the non-trivial steady state in Panel (a) we can
derive the full Jacobian

J =

(
−bV̄ − c −bW̄
dV̄ dW̄ − e

)
=

(
−bV̄ − c −bW̄
dV̄ 0

)
,

because W̄ = e
d , and giving trJ = −bV̄ − c < 0 and det J = 0 + bdW̄ V̄ > 0. One can also

retrieve the graphical Jacobian from the local vector field, i.e.,

J =

(
− −
+ 0

)
also giving trJ < 0 and detJ > 0 .

Both methods agree that the non-trivial steady state in Panel (a) is stable.
g. Increased rainfall increases a, which will move the water nullcline up and its intersection

with the horizontal axis to the right. Since the vertical vegetation nullcline is unaffected, the
amount of water in the soil remains the same, and the vegetation increases.

Question 5.6. Kingfishers
Figures made with the model kingfisher.R:
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The answer in Chapter 14 suggests the following model

dF

dt
= rF (1− F/K)− aFB and

dB

dt
= i(BT −B)F − aFB − eB ,

for the fish, F , and the birds, B. The nullcline of the fish is a conventional straight Lotka-
Volterra nullcline going from B = r/a when F = 0 to F = K when B = 0. The nullcline of the
birds is solved from 0 = i(BT −B)F − aFB − eB, which has only one solution

B =
iBTF

iF + aF + e
,
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which is a saturation function of F , i.e., B = 0 when F = 0, and B → iBT
i+a when F → ∞.

Plotting the fish on the horizontal axis and the birds on the vertical axis we obtain Panel (a)
depicted above, which has two steady states, the origin and a non-trivial steady state. Note
that the fish at carrying capacity is not a steady state because the birds increase by immigration

when B = 0. The graphical Jacobian of the non-trivial steady state is J =

(
−a −b
+c −d

)
, showing

that it is stable because the trace, −a− d, is negative and the determinant, ad+ bc, is positive.
The origin is unstable because both the birds and the fish increase in its neighborhood.
a. This phase portrait looks very reasonable, suggesting that the model is fine.
b. In the absence of the eB term, dB/dt = 0 whenever F = 0. Hence the initial number of

birds present at an empty lake would never change.
c. If we had chosen the model where the immigration is a saturation function of the fish, we

would have to solve

dB

dt
= i(BT −B)

F

h+ F
−aFB− eB = 0 ↔ iBTF − iBF −aFB(h+F )− eB(h+F ) = 0

to obtain

B =
iBTF

eh+ F (i+ ah+ e) + aF 2
,

which is an optimum function which resembles an increasing Hill function when F 2 is small,
and approaches zero when F is large; see Panel (b) depicted above. For the steady state this
brings little novelty, both are therefore reasonable.

Question 5.7. Biotic and abiotic resources
a. For the abiotic resource, R, we first write a source term, s, and a loss term, d, i.e., dR/dt =
s−dR. For the consumer we define a per capita birth rate bR

h+R that obeys a Monod saturation

of the resource concentration. Adding the same loss rate we arrive at dN/dt = bRN
h+R − dN ,

where d is the rate of outflow from the chemostat (which we assume to be much larger than
the death rate of the consumers), and h is the resource concentration at which the birth rate
is half of its maximum. Since the resource is only used when the consumer grows, we add this
birth rate as a consumption term to the ODE of the resource, i.e., dR/dt = s− dR − cbRN

h+R ,
where c is the amount of resource contained in a single consumer individual.

b. The biotic resource maintains itself by growth and because it has a carrying capacity, we
write a logistic growth model dR/dt = rR(1 − R/K). Adding mass-action consumption we
arrive at dR/dt = rR(1 − R/K) − aRN , where a is an attack rate, and aR is the daily
consumption per consumer. Since the birth rate is a saturation function of the consumption,
we write dN/dt = baRN

h+aR − dN , where h is the level of consumption, aR, at which the birth
rate is half of its maximum, and d is the death rate of the consumers.

c. The consumer equations are mathematically identical, because both are based upon a sat-
urated birth rate and density independent death rate. The resource equations differ in the
form of the consumption term, and in the process whereby the resource is produced. Hence,
for abiotic resource the consumption is proportional to the birth rate (e.g., algae consuming
nitrogen), and otherwise the birth rate should be a saturation function of the per capita
consumption.

Question 5.8. Evolution to self-extinction
Figure made with extinction.R:
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a. Since the consumer can only invade when caR > δ we find that aK > δ/c.
b. In the script extinction.R we plot R̄ and N̄ using the curve function; see Panels (a) and

(b). The non-monotonic nature of the N̄ function is a consequence of the parabolic nature of
the Logistic growth equation: the total growth rate of the resource is highest at intermediate
resource densities, i.e., when R = K/2, which is approached when

R̄ =
δ

ca
=
K

2
or a =

2δ

cK
,

which corresponds to the maximum of N̄ in Panel (b). The same script also draws nullclines
for various values of the attack rate to show that N̄ depends non-monotonically on a due to
concomitant shifting of the dR/dt = 0 nullcline and rotation of the dR/dt = 0 nullcline. See
Panel (c).

c. Yes. Define the ODE for the invader (or mutant) as dM/dt = cαaRM−δM , where α defines
the fold change in the attack rate. Fill in the non-trivial steady state of the resource, R̄ = δ

ca ,
to see that

dM

dt
= cαa

δ

ca
M − δM > 0 ↔ α− 1 > 0 ↔ α > 1 ,

which proves that the invader expands whenever its attack rate exceeds that of the resident
consumer.

d. No, a mutant consumer with a higher attack rate will always outcompete the resident con-
sumer. Hence, in the absence of trade-offs, one would expect resource-consumer systems
to evolve extremely high attack rates, and host-parasite systems to evolve extremely high
infection rates. As a consequence they become vulnerable to extinction by stochastic events.

e. In consumer-resource systems the attack rate is also affected by evasion mechanisms of the
resource, i.e., there is a selection pressure on the resource to decrease a. Additionally, in a
spatial environment patches in which resources or consumers go extinct will be invaded by
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immigrants from nearby patches. However, a chronic virus like HIV that is evolving for many
generations within a host, is similarly expected to increase its infection rate, a, while the
host’s target cells are incapable to co-evolve.

f. According to Eq. (5.3) the steady state of the resource remains R̄ = δ
ca , which suggests that

R̄ → 0 when a → ∞. The steady state of the consumer, N̄ = sc
δ − d

a , which was solved by
substituting R̄ into Eq. (5.2), reveals that N̄ is an increasing function of a. When a → ∞
this function approaches N̄ → sc

δ ; see Panel (d). Since consumers with a higher attack rate
are expected to invade, one expects the resource to go extinct, while the consumers approach
N̄ = sc

δ , i.e., approach the scaled production of the resource divided by the loss rate of the
consumers.

Question 5.9. Cryptic oscillations
a. Since bacteria rapidly evolve resistance to bacteriophages, it is quite likely that at this time

point the bacterial population is largely taken over by phage-resistant E. coli, which then
approach the carrying capacity of the medium.

b. One could postulate that a small subpopulation of sensitive E. coli remains present, and
maintains the predator-prey oscillations with the T4 phage. This would be visible in the
phage densities, but not in the bacteria when these are dominated by the phage-resistant E.
coli.

c. If the sensitive subpopulation remains small due to the dominance of the phage-resistant
E. coli, it seems quite natural that the phage densities decline. This major decline of both
densities could even explain the longer period of the oscillation. Given what we learned
about the Paradox of enrichment in Fig. 5.6, it would be best to test this with a dedicated
mathematical model.

d. A mathematical model would require four variables: sensitive uninfected bacteria, S, resistant
bacteria, R, infected bacteria, I, and phages P . In its most simple form it would be something
like

dS

dt
= bBS(1−B/k)− dBS − βSP ,

dR

dt
= bB(1− s)R(1−B/k)− dBR ,

dI

dt
= βSP − dII and

dP

dt
= bdII − dPP ,

where B = S + R + I is the total number of bacteria, bB is the maximum birth rate of
bacteria, k is the bacterial density at which the birth rate vanishes, s is the fitness cost of the
resistance, dx are death rates, and b a burst size. A first model like this, which also allows for
resistance mutations of the bacteria is available on the website as phages.R. Note that you
may have to change the mass-action infection rate into a saturated term to obtain oscillations
(see Chapter 7).

Question 5.10. Phages and bacteria
a. The time delay λ defines that bacteria that become infected at time t, i.e., the term
δB0(t)P (t), will burst and disappear at time t+λ, see the term −δB0(t−λ)P (t−λ). Burst-
ing bacteria then produce b phages. In the R-script the function lagvalue(tlag) returns a
vector with the values of all 5 variables at time t − λ. The second and fifth element of that
vector correspond to B0(t− λ) and P (t− λ), respectively.

b. The fig2B0 data correspond to bacterial growth in the absence of phages, and the fig2B

data comes from an experiment with phages.
c. Fitting the first data provides a very similar estimate for the consumption rate, v.
d. Yes, this looks like a good fit, and the parameter estimates are similar. Since the resistant

bacteria are growing slower than predicted, it would have been better to also estimate a
fitness cost.

e. No the data are equally well described with an ODE model without a fixed time delay. The
value of the eclipse time, 1/λ, is much longer now because it is exponentially distributed.
The estimated fitness cost hardly changes.
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f. The model has no death rate of the bacteria and no clearance of the phages. Given the short
time scale of the experiment this is probably not important.

Question 5.11. Gillespie algoritm
a. If we were to set d = 0 and hence interpret b as a natural rate of increase, one obtains that

the replication rate becomes zero, and looses its natural stochasticity, when R = k (we would
definitely lose all the stochasticity when N = 0 and R = k).

b. One would need to define an additional event for the division of killer cells, happening at a
rate βRN , independently of the kill events happening at a rate aRN .

c. One would have to define predators having consumed a particular number of prey, e.g.

dR

dt
= bR(1−R/k)− dR− aR

n∑
i=0

Ni ,
dN0

dt
= 2βNn − aRN0 − δN0 + rN1 ,

dN1

dt
= aRN0 − aRN1 − δN1 − rN1 + rN2 , . . . ,

dNn

dt
= aRNn−1 − δNn − rNn − βNn ,

where the new parameter r defines a reversal to a previous satiation level, and Nn are the
satiated predators giving birth at a rate β. Note that both the mother and the offspring
revert to N0 after birth, and that one would need to define many more different events.

d. Run say a 100 simulations starting at R = 100 and N = 0 with b = 0, and find in each
simulation the time point where R = 50. Report the average of these 100 time points and
compare that to t = ln[2]/d.

Question 5.12. Return time
We calculate the return time of the non-trivial steady state of the Lotka-Volterra model consid-
ering both density dependent birth and density dependent death. For simplicity we do this for
the case where this equilibrium is a stable spiral point. To save time we first write the model
in a general form and compute the return time for this general model. The two cases of density
dependent birth and death can then be “substituted” into the general form. A general form of
the Lotka-Volterra model is

dR

dt
= rR− γR2 − aRN and

dN

dt
= caRN − δN .

a. For the return time of the general form we first solve the non-trivial steady state by setting
dN/dt = 0 and dR/dt = 0, which gives

R̄ =
δ

ca
and N̄ =

r

a
− γ

a
R̄ =

r

a
− γδ

ca2
,

respectively. The Jacobian of the general model is

J =

(
r − 2γR̄− aN̄ −aR̄

caN̄ caR̄− δ

)
=

(
−γδ
ca − δ

c

cr − γδ
a 0

)
,

where cr − γδ/a > 0 because caN̄ > 0. The trace of this matrix is negative, i.e., tr = −γδ
ca ,

and the eigenvalues of this Jacobian are given by

λ± =
tr±

√
tr2 − 4 det

2
= − γδ

2ca
±
√
D

2
,

where D = tr2 − 4 det is the discriminant of the matrix (and “det” the determinant). Since
we are considering a spiral point, the eigenvalues have to be complex, implying that the
discriminant D < 0. The imaginary part of the eigenvalues defines the period of the dampened
oscillation, and the real part how fast its amplitude grows or contracts, i.e., the return
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time depends on the real part only. Thus, for the return time we consider the real part,
Re(λ) = − γδ

2ca , to obtain a return time

TR =
−1

Re(λ)
=

2ca

γδ
=

2

γ

1

R̄
.

Thus, the return time is independent of the net rate of increase, r, depends on the density
dependence parameter, γ, and is inversely related to the steady state of the resource.

b. We write the model with density dependent birth as

dR

dt
= bR(1−R/k)− dR− aRN = bR− bR2/k − dR− aRN ,

which in the general form means that r = (b− d) and γ = b/k. To obtain the return time of
the non-trivial steady state of this model, we only need to substitute γ = b/k into the general
expression for the return time, because the return time is independent of r, and because R̄
came from dN/dt = 0, which has not changed. We obtain that

TR =
2

b

k

R̄
=

2cak

bδ
,

where k/R̄ is a ratio of resource densities (i.e., k is the density at which the birth rate
become zero). Note that the dimension is correct: k/R̄ is dimensionless and 2/b has the
dimension time. Thus, the return time of this density dependent birth depends on the birth
rate parameters, b and k, and not on the density independent death rate, d.

c. We write the model with density dependent death as

dR

dt
= bR− dR(1 +R/k)− aRN = bR− dR− dR2/k − aRN ,

which in the general form means that r = (b− d) and γ = d/k. Now we substitute γ = d/k
into TR and obtain that

TR =
2

d

k

R̄
=

2cak

dδ
,

where k/R̄ is another ratio of resource densities (i.e., k is the density at which the death rate
doubles). Now the return time depends on the density dependent death rate parameters, d
and k.

d. In both cases the return time is determined by a self-dampening effect of the resource onto
itself, i.e., Re(λ) = −(γ/2)R̄. Increasing the birth rate, or the death rate, decreases the return
time because it speeds up the dynamics around the steady state. Increasing k increases the
return time because it weakens the density dependent regulation. Weakening the consumer,
i.e., increasing R̄, decreases the return time because that also increases the self-dampening
effect of the resource.

Answers to Chapter 6

Question 6.1. SARS
a. First count the total number of infected patients I(t). R0 = 3 in two weeks means that
β = 1.5 per week. For a time scale of weeks the model therefore is dI/dt = 1.5I − 0.5I = I.
The equation to solve is 3× 109 = I(0)ert, where r = (β − δ) = 1, and where one starts with
one infected individual, i.e., I(0) = 1. Solving 3 × 109 = et yields t = 22 weeks for the time
required to have I(t) = 3× 109.
For completeness, one could argue that it is more interesting to calculate the time required
to have killed half of the population, but this is more difficult. For that one also should
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keep track of the total number of dead individuals dD/dt = δI. With I(t) = e(β−δ)t and

D(0) = 0 the solution of dD/dt = δe(β−δ)t is D(t) = δ[e(β−δ)t−1]
β−δ . Solving I(t)+D(t) = 3×109

for β = 1.5 and δ = 0.5 per week gives a total time of t = 21 weeks. The difference is
small because the number of dead patients approaches a fixed fraction δ

β−δ = 0.5 of the total
number of patients that are alive.

b. No, it should go slower because the pandemic will limit itself by depleting the number of
susceptibles. Thus it seems much better to study this with an SI model with a frequency
dependent transmission rate, with the same R0. Because the SARS pandemic went so much
faster than the human birth and death rates, Eq. (6.2) would simplify to

dS

dt
= −βSI/N and

dI

dt
= βSI/N − δI where N = S + I ,

which initially, i.e., when S = N , is indeed identical to the above dI/dt = βI−δI. Simulating
this model for S(0) = 6 × 109 and I(0) = 1, with β = 1.5 and δ = 0.5 per week with the
R-script sars.R shows that this still takes about 21 weeks (because such a pandemic grows
exponentially and susceptibles only become depleted when the pandemic has spread all over
the world). Another improvement of the model that would slow down the pandemic is to
allow for an incubation period, and use a a frequency dependent SEIR model (for a deadly
disease, i.e., r = 0). Allowing for an incubation time for half a week would marked slow down
the pandemic (see the R-script sars.R).

Question 6.2. Evolution of virulence
Figure made with the script virulence.R:

(a)

v

R
0

(b)

v

R
0

a. Since infected individuals appear at a maximum rate βS̄, and have an expected life span of

1/(d+ v) time units, the R0 = βS̄
d+v = β

d+v
s
d .

b. Substituting β = cv we obtain R0 = cvS̄
d+v = cv

d+v
s
d .

c. The R0 of the infection is a saturation function of the virulence (see Panel (a)). Since one
expects the variant with the highest reproductive number, R0, to win the competition, one
expects the most virulent variant to win. Virulence is therefore expect to increase over time.

d. When β = cv
h+v one obtains R0 = cv

h+v
1

d+v
s
d .

e. To sketch the latter as a function of the virulence, v, we observe that for v → 0 the fitness
approaches R0 ' cv

h
1
d

s
d , which is an increasing function of v. When v � h, the fitness

approaches R0 = c
d+v

s
d , which is a decreasing function of v. In combination one therefore

expects a curve with an optimal virulence (see Panel (b)), where the trade-off between the
increased transmission and the decreased life span is balanced (see the tutorial on sketching
functions). Thus, one expects the virulence to evolve towards this optimum.

Question 6.3. Sexually transmitted disease (STD)
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Figure made with the model aids.R:

S
I

(a)

S

I

0
0

a
d+ε

δ
β

S
I

(b)

S
I

0
0 a

d+ε
δ
β

a. In the absence of foreign infections infected individuals appear at a maximum rate βS̄, and

have an expected life span of 1/δ days, meaning that the R0 = βS̄
δ = β

δ
a
d .

b. No the infection will never disappear from this subpopulation because there is always a small
source of infected individuals. The steady state number of infected individuals will always be
larger than Ī = εS̄/δ, which is the minimum approached when β → 0.

c. The dS/dt = 0 nullcline is defined as I = a
βS − d+ε

β . The nullcline has a vertical asymptote
at S = 0 because when S → 0 the first term goes to infinity. The nullcline has a horizontal
asymptote because when S → ∞ the number of infected individuals approaches I = −d+ε

β .
The nullcline intersects the horizontal axis in the carrying capacity S = a

d+ε ; see Panel (a)

and (b). The dI/dt = 0 nullcline is defined by I = εS
δ−βS , which has the vertical asymptote

at S = δ
β . When S → 0 the slope of the nullcline approaches ε

δ , which increases with S (see
Panel (a) and (b)). Note that this vertical asymptote corresponds to the classical vertical
nullcline of the SI model without a source, i.e., the epidemic grows at the right-hand side
of this asymptote. Panel (a) therefore corresponds to the case where R0 > 1 because the
epidemic can maintain itself without a source, and Panel (b) reveals the opposite case where
R0 < 1 and the source maintains a small infection. In both Panels the Jacobi matrix of the
non-trivial steady state is given by

J =

(
− −
+ −

)
giving trJ < 0 and detJ > 0 ,

i.e., the endemic state is stable (even if R0 < 1).
d. Because the probability of becoming infected by an HIV-infected partner is relatively low for

heterosexual couples, implying that β and R0 are small, the situation depicted in Panel (b)
is quite realistic for non-promiscuous Dutch subpopulations.

e. A model defining both the people at home and those on holidays would look like

dS

dt
= a− dS − βSI − hS + rŜ ,

dI

dt
= βSI − δI + rÎ

dŜ

dt
= hS − rŜ − β̂Ŝ and

dÎ

dt
= β̂Ŝ − rÎ ,

where Ŝ and Î define the individuals on holidays (people go on vacation at rate h and return
at rate r), and β̂ is the infection rate due to having sex with foreigners. Since the typical
time scale of a vacation (weeks) is much shorter than that of an HIV infection (years), it is
fair to make the Quasi Steady State Assumption (QSSA), dŜ/dt = dÎ/dt = 0, and to write
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that

S̄ ' h

r + β̂
S and Î ' β̂

r
Ŝ =

β̂

r

h

r + β̂
S .

Hence the hS − rŜ in dS/dt can be simplified into

(
h− rh

r + β̂

)
S =

(
h(r + β̂)

r + β̂
− rh

r + β̂

)
S =

−hβ̂
r + β̂

S = −εS .

Similarly, the rÎ in dI/dt can be simplified to

rÎ = r
β̂

r

h

r + β̂
S = εS .

Thus, the ε parameter in the first model of the question can be derived mechanistically by a

QSSA, and is defined as ε = hβ̂

r+β̂
.

Question 6.4. COVID-19 herd immunity in the Brazilian Amazon
a. A recovery time of 10 days would correspond to r = 0.1 d−1. Solving the death rate, d,

from f = d
d+r yields d = fr

1−f ' fr = 0.0002 d−1. From β ' rR0 one would estimate that
β ' 0.25. Although the 106 day half life of the antibodies is not the same as the half life of
protective immunity, we could use it to define an initial guess of the waning rate, w. Solving
ln[2]/w = 106 yields w ' 0.006 (which corresponds to assuming that recovered individuals
become susceptible again when their antibody levels have halved).

b. The daily number of deaths is defined as dI in the model. In the R-script this is added as
an extra column to the output of the model (using Grind’s tweak option).

c. It al seems correct. The model starts with S = 2.2× 106 susceptible inhabitants of Manaus.
d. The summary statistics provided by summary(fit1) suggest that all 5 free parameters are

identifiable. The parameter values are estimated to be β ' 0.36 d−1, r ' 0.14 d−1, f ' 0.0016
d−1, w ' 0.005 d−1 and I(0) = 15750, from which one can compute that d ' 0.0002 d−1

and R0 = 2.48. The waning rate, w, appears to be an identifiable parameter, and hence the
estimated half life of the immunity is ln[2]/0.005 ' 134 days; a little more than 3 months.
This small waning rate explains the late increase in the epidemic, which seems realistic (and
may be a prelude to the second peak).

e. Assuming exponential growth one would solve I(t) = eρ0t, i.e., ln[I(t)] = ρ0t, or
ln[15750]/0.215 ' 45 days before 1 April 2020 (i.e., around 15 February). This can be
checked by running the model with one infected individual, and shifting time 45 days in the
data. For instance,

s["I"] <- 1

run(250,1,ymax=150,tweak=tweak,show="D")

points(data$time+45,data$D)

reveals an excellent correspondence with the shifted data.
f. No it is impossible to have a larger second peak when part of the population still has some

immunity. The second wave is caused by a novel variant of SARS CoV-2. One would at least
need to define an ODE for people infected with the second variant (I2), a novel infection
rate for (waned) susceptibles (β2SI2/N), and a third one for reinfection of recovered people
(β3RI2/N).

Question 6.5. SIR model
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Figure made with the model sir.R:
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(b)
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a. The R0 = β
δ+r and the initial growth rate ρ0 = β − δ − r.

b. Because S̄ = N in the uninfected steady state the Jacobian is

J =

(
−d −β
0 β − δ − r

)
, (A.6.3)

and hence the largest eigenvalue λ1 = β − δ − r. This eigenvalue indeed defines the initial
growth rate r0, and since requiring instability means λ1 > 0, or β > δ+r, this also corresponds
to requiring R0 > 1.

c. Setting
dI

dt
=

βSI

S + I
− (δ + r)I = 0 gives

βS

δ + r
= I + S ,

or I = S(R0−1), which is a line through the origin with slope R0−1. For the other nullcline
we set

dS

dt
= s− dS − βSI

S + I
= 0 giving (s− dS)(S + I) = βSI or I =

sS − dS2

(β + d)S − s ,

which defines a line that is too unpleasant to sketch by hand. Better use the sir.R model
(see the Panel (a)).

d. The fact that the dI/dt = 0 nullcline goes through the origin means that the epidemic can
grow when the susceptible population is extremely small (see the upward arrow near the
origin). This is a unpleasant consequence of using the fraction of infected individuals in the
number of daily encounters: at low population densities the number of individuals encountered
should actually go to zero. Thus, this problem should be solved by realizing that the infection
term should depend on both the expected number, n, of individuals encountered per day, and
the fraction, f = I

S+I , of infected individuals among them. This frequency dependent model
only deals with the latter by making the rate at which a susceptible individual is infected
directly proportional to the fraction, f , of infected individuals. If one were to write that the
expected number of individuals encountered per day should be a saturation function of the
population density, e.g., n = S+I

h+S+I , and that the infection rate should be proportional the

fraction of infected individuals encountered, i.e., fn = I
S+I

S+I
h+S+I = I

h+S+I , we obtain from

dI

dt
=

βSI

h+ S + I
− (δ + r)I = 0 that the nullcline, I = S(R0 − 1)− h ,

is intersecting the horizontal axis at S = h
R0−1 (see Panel (b)).
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Question 6.6. Influenza virus infecting epithelial cells
Figures made with the model epithelial.R:
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Assuming dV/dt = dF/dt = 0 in the first ODE for the virus and the factor leads to V = pV
cV
I

and F = pF
cF
I, showing that the QSSA-virus and QSSA-factor densities are both proportional

to the infected cells. The QSSA model therefore becomes

dE

dt
= bE(1− (E + I)/K)− dE − β′EI(1− I/h′) and

dI

dt
= β′EI(1− I/h′)− δI ,

where β′ = βpV /cV and h′ = hcF /pF . For convenience, we drop the primes when performing
the phase plane analysis. For the nullcline of the healthy cells one sets dE/dt = 0 giving E = 0
and

E = K(1− d/b)− I − Kβ

b
I(1− I/h) = κ− I − αI(1− I/h) ,

where κ is the carrying capacity of the healthy epithelium, and α = Kβ/b. When the infection
rate is very low, i.e., when α→ 0, this is a declining straight line starting at E = κ when I = 0,
and ending at I = κ when E = 0 (see the dotted line in Panel (a)). From that line one subtracts
a parabola, αI(1 − I/h), that is zero when I = 0 or I = h, and has a maximum, αh/4, that is
attained at I = h/2. Since one has to preclude negative infection rates by setting (1− I/h) to
zero whenever I > h, the dE/dt = 0 nullcline coincides with the dotted line whenever I > h (see
Panel (a) where we have set h ' κ/2). For the nullcline of the infected cells one sets dI/dt = 0
giving I = 0 and

E =
δ/β

1− I/h which starts at E∗ =
δ

β
,

and approaches a vertical asymptote at I = h (see the dashed line in Panel (a)). Around the
origin dE/dt ' (b − d)E > 0, i.e., below the blue line the healthy epithelial cells grow. The
infected cells increase above the red dI/dt = 0 nullcline because they require a minimum number,
E∗, of target cells. The origin is an unstable steady state because the trivial nullclines intersect
and dE/dt > 0 in its neighborhood. These nullclines will at least intersect in one non-trivial
steady state (when κ > δ/β, which is anyway required for successful infection), because the
dI/dt = 0 nullcline starts below the dE/dt = 0 nullcline and approaches infinitely high values
when I → h. This intersection is the state approached by the trajectory corresponding to an
infection in Panel (a), and is indeed a stable point because the vector field points towards it in
all regions.

Next, consider an alternative model using a declining Hill function for the effect of interferon on
the infection rate. The QSSA version of that model would look like

dE

dt
= bE(1− (E + I)/K)− dE − βEI

1 + (I/h)n
and

dI

dt
=

βEI

1 + (I/h)n
− δI ,
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where we have already dropped the primes. This QSSA model readily reveals that choosing
n = 1 would not allow for a large effect of interferon because the infection term would just
become a saturation function of I, and not decline at maximum interferon levels. Choosing
n ≥ 2 would suffice because x/(1 + x2) is a function with an optimum. Sketching the nullclines
would follow a similar procedure because the non-trivial dE/dt = 0 nullcline now is the same
dotted line minus this optimum function (see Panel (b)), i.e.,

E = K(1− d/b)− I − (Kβ/b)I

1 + (I/h)n
= κ− I − αI

1 + (I/h)n
,

giving E = κ when I = 0 and E = κ − I when I → ∞ (see the dotted line in Panel (b)). For
the nullcline of the infected cells one sets dI/dt = 0 giving I = 0 and

E =
δ

β
(1 + (I/h)n) =

1

R0I

(1 + (I/h)n) ,

which is an increasing parabola starting at E∗ = δ
β = 1

R0I
when I = 0 (see Panel (b)). The

similarity between Panels (a) and (b) is reassuring as it suggests that these results do not depend
on the shape of the function defining the effect of interferon of the infection rate. One can create
more steady states by making this function steeper (which need not be realistic). For a high
exponent, n, of the Hill function one can indeed obtain a stable steady state corresponding to an
infection limited by the availability of target cells, and a saddle point separating the two basins
of attraction (see Panel (c)).

Answers to Chapter 7

Question 7.1. Michaelis Menten
a. From the conservation equation one obtains that the concentration of freely available enzyme

is given by E = E0 − C. From the reaction scheme one derives for the complexes dC/dt =
k1ES − (k−1 + k2)C, which after substituting the conservation equation becomes

dC

dt
= k1(E0 − C)S − (k−1 + k2)C .

For the formation of product one simply writes dP/dt = k2C.
b. To solve dC/dt = 0 we first collect all the terms containing C,

dC

dt
= k1E0S − (k1S + k−1 + k2)C .

Because dC/dt = 0 we obtain k1E0S = (k1S + k−1 + k2)C, and by solving for S

C =
k1E0S

k1S + k−1 + k2
=

E0S

Km + S
where Km =

k−1 + k2

k1
.

Thus, C as a function of S looks like a standard Hill function y = x
h+x .

c. By defining Km the simplification was already done. This means the the product equation
can be written as dP/dt = k2E0S

Km+S .
d. The beautiful trick of adding dC/dt = 0 to dS/dt = −k1ES + k−1C readily simplifies the

substrate equation into dS/dt = −k2C. Filling in the quasi steady state expression for C
gives dS/dt = − k2E0S

Km+S .
e. This is indeed very similar, we just replaced k1 by a and k−1 + k2 by h.
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Question 7.2. Parameters
The biological interpretation and dimension of the parameters are:
a. 1. a1: Maximal per capita growth rate of the resource (1/t)

2. K: Carrying capacity (numbers or biomass).
3. b1: Maximal amount of resource consumed per consumer per unit of time (R/t).
4. c1: Population density R where N catches/feeds at its half maximal rate (numbers or

biomass).
5. a2: per capita death rate of the consumers (1/t).
6. b2: Maximum per capita birth rate of the consumers (1/t).
7. c2: Population R where the birth rate of N is at half its maximum value (numbers or

biomass).
b. Yes, typically one obtains b2 = αb1 where α < 1 is the conversion factor. If population sizes

are measured in biomass the normal trophic conversion factor is α = 0.1, i.e., typically there
is a 90% loss between tropic levels. If the population sizes are measured in numbers α could
be anything because small consumers could feed on a large resource.

c. Choosing c1 = c2 means that the growth of the consumer is proportional to what it eats.
Setting c1 > c2 means that the growth rate saturates earlier than the catching rate, which is
to be expected when the birth rate of the consumer saturates as a function of its consumption;
see Eq. (7.19). Setting c1 < c2 therefore seems strange because it means that the catching
rate is saturated earlier than the birth rate.

Question 7.3. Type I functional response
Figure made with a previous version of Grind:
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a. The nullcline of the consumer is only defined when R < L because whenever R > L, one
obtains dN/dt = (caL − d)N with a per capita growth rate ρ = caL − d, which is either a
positive or a negative constant, that can never switch sign. Considering R < L and solving
dN/dt = caNR − dN = 0 yields the familiar R = d

ca nullcline. For the resource we consider
both cases, i.e., {

dR/dt = rR(1−R/K)− aNR when R < L and

dR/dt = rR(1−R/K)− aNL otherwise ,

to obtain {
N = r

a

(
1− R

K

)
when R < L and

N = rR
aL (1− R

K ) otherwise ,

where the former is the straight line intersecting the vertical axis at N = r
a and the horizontal

axis at R = K, and the latter is a parabola intersecting the horizontal axis at R = 0 and
R = K. Putting these together results in the picture shown above (where we ignore the case
that d

ca > K). (Also note that if L < d
ca , the consumers would always decrease and R = K

would be the only attractor.)
b. The stability of the steady states has not changed in the model because nothing changed in

the immediate neighborhood of the steady states of the model. Thus, the origin, (0, 0), and
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the carrying capacity, (K, 0), remain saddle points, and the non-trivial point is stable like in
the Lotka-Volterra model.

c. No, the consumer nullcline has to be located at a resource density where changing the resource
density changes dN/dt.

d. No, the non-trivial steady state has to be located in the part where the resource nullcline is
a declining straight line (see the answer in b), and there the steady state is stable.

Question 7.4. Luckinbill
Figures made with a previous version of Grind:
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a. The oscillatory behavior suggests a Monod saturation

dP

dt
= aP (1− P/K)− bDP

h+ P
and

dD

dt
=

cDP

h+ P
− dD .

b. Increasing the viscosity of the medium decreases the likelihood of meeting prey, which cor-
responds to increasing the h parameter; see Panel (b). Halving the concentration of food
decreases the K parameter; see Panel (c).

c. See Panels (a)–(c).
d. The agreement between model and data seems perfect; a Monod saturated functional re-

sponse provides a good explanation.
e. Formally the populations cannot go extinct in the model; the noise in the data would require

stochasticity in the model.

Question 7.5. Wolves
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Figure made with the model wolves.R:
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There are many different possibilities. For instance, let R be the prey, and W be the wolves:
a. One could define R̂ = RW/(c + W ) as the number of prey that can be caught, i.e., if there

are enough wolves (W � c) all prey can be caught (R̂ → R). Taking R̂ through a normal
Monod saturation gives

f(R,W ) =
R̂

h+ R̂
=

RW

hc+ hW +RW

dR

dt
= rR(1−R/K)− aRW 2

hc+ hW +RW
and

dW

dt
=

aRW 2

hc+ hW +RW
− dW ,

with R0 = a/d.
b. To sketch the predator nullcline one solves

aRW

hc+ hW +RW
= d or W =

hc

R(R0 − 1)− h ,

which has a vertical asymptote at R = h/(R0 − 1) and a horizontal asymptote at W = 0.
The prey nullcline is not so easy to sketch. We have drawn it with Grind in the top panels
above, where it looks like a upward parabola that can intersect the nullcline of the wolves in
downslope, Panel (a), or in its upslope, Panel (b). From the vector field one can see that in
both cases the carrying capacity op the prey is stable. This is an Allee effect because small
numbers of wolves cannot invade when the prey is present at its maximum density. From the
vector field we can also conclude that in both cases the lower intersection point is a saddle
point, with a separatrix defining the Allee effect. Note that this cannot be inferred from the
graphical Jacobian J =

(− −
+ +

)
of this point. The vector field does not allow us to infer the

stability of the upper intersection point in Panel (a). The graphical Jacobian is the same,
J =

(− −
+ +

)
, as that of the saddle point, but numerically one can test that this can be stable;

see the bullet in Panel (a) made with Grind’s newton() function. The graphical Jacobian of
the upper intersection point in Panel (b) has a positive trace, J =

(
+ −
+ +

)
, meaning that this is

an unstable point. This implies that in Panel (b) the model either approaches a stable limit
cycle, or the carrying capacity.

Alternatively, one could use a mass action predation term and write a more phenomenological
model,

dR

dt
= rR(1−R/K)− aRW 2

h+W
and

dW

dt
=
aRW 2

h+W
− dW .
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One could also employ the Beddington functional response and define f(R,W ) = R
h(1−cW )+R as a

functional response that decreases the saturation constant when the number of wolves increases
(and use a maximum function to prevent that h(1− cW ) becomes negative).

Question 7.6. Saturation in consumers
Figure made with a previous version of Grind:

N

0 1 2

R

0

0.5

1
(a)

N

R

K

K(1− a/r)
�����������

dh
ca

N

0 1 2

R

0

0.5

1
(b)

N

R

K

h
a/r−1

�����������

dh
ca

a. The non-trivial prey nullcline is solved from

r(1−R/K) =
aN

h+N
or R = K

(
1− a/rN

h+N

)
,

which is an inverse Hill function intersecting the vertical R-axis at R = K. If a/r < 1 one
obtains a “limited predation” nullcline with a positive asymptote at R = K(1 − a/r); see
Panel (a). If this is negative, i.e., if a/r > 1, the nullcline intersects the horizontal N -axis
N = h/(a/r − 1); see Panel (b). The non-trivial consumer nullcline is solved from

caR

h+N
= d or R =

d

ca
(h+N) ,

which is a straight line with slope d
ca that intersects the vertical axis at R = dh

ca .
b. For the non-trivial steady states in both panels we derive the Jacobian

J =

(
− +
− −

)
giving trJ < 0 and detJ > 0 ,

i.e., they are stable. The origin is and carrying capacities are both unstable (saddle-points).

Question 7.7. Eutrophication
Figures made with a previous version of Grind:

A

0 0.5 1

Z

0

1

2
(a)

A

Z

h√
R0−1

← K →
A

0 0.5 1

Z

0

1

2
(b)

A

Z

h√
R0−1

← K →



33

a. For the algae, A, and the zooplankton, Z, one writes something like

dA

dt
= rA(1−A/K)− bZ A2

h2 +A2
and

dZ

dt
= cbZ

A2

h2 +A2
− dZ(1 + eZ) ,

where e is the extra death due to intra-specific competition. The nullcline for the algae has
been constructed in the text. For the zooplankton one obtains from dZ/dt = 0 that Z = 0 or

cb
A2

h2 +A2
− d− deZ = 0 or Z =

cb

de

A2

h2 +A2
− 1

e
,

which is a sigmoid function intersecting the vertical axis at Z = −1/e, and the horizontal
axis at A = h/

√
R0 − 1, where R0 = cb/d. When e = 0 the Z-nullcline is a vertical line.

b. The carrying capacity, K, of the algae will depend on the total amount of nutrients that are
available for the algae. Studying eutrophication therefore corresponds to increasing K.

c. There are many possibilities, see Panel (a) and (b). The effect of eutrophication corresponds
to moving along a sigmoid zooplankton nullcline from the lowest to the highest algae nullcline.
Steady states may stabilize or destabilize, and may appear or disappear.

d. Models suggest that changing a single parameter can have various different effects, depending
on the precise initial circumstances. It is difficult to generalize, and reliable predictions are
nearly impossible to make. A model plays the important role of suggesting various possible
outcomes; possibly including undesired outcomes.

Question 7.8. Ratio-dependent predation
Figures made with ratio.R:

R
N

●
●

●

(a)

R

N

0
0

K

R
N

●
●

●

(b)

R

N

0
0

K

R
N

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c)

R

N

0
0

K

a. This model has the same two regimes as models based upon the Beddington functional
response, with a limited-predation scenario in Panel (a), and a humped consumer nullcline
with a stable steady state in Panel (b), and with an unstable steady state in Panel (c). Panel
(c) reveals that the behavior of the model is problematic as all trajectories approach the
origin, which is an unstable steady state. Like in the question on the SIR model, this is a
consequence of the consumer nullcline going through the origin.

b. No, by increasing K in Panel (b) one will never find a Hopf bifurcation [9].
c. The functional response approaches infinity around the origin. The model better defines that

very small predator populations still require a minimum prey density, e.g., because territory
cannot become infinitely large.

Question 7.9. Nullcline construction
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Figures made with chemoMonod.R:
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The red line in Panel (a) is the line y = s − wR and the blue lines in depict the consumption
term y = aRN

h+R for various values of N . At all intersection points dR/dt = 0 because for the
growth is perfectly balanced by the consumption. Copying the intersection points in Panel (a)
for all values of N into a plot with N on the vertical axis gives the red nullcline depicted in
Panel (b).

Question 7.10. Exponential functional response
Figure made with a previous version of Grind:
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a. For R→∞ the functional response (1− e− ln[2]R/h)→ 1, which means that at high resource
densities the consumption of a consumer is a per unit of time.

b. Since one can scale time by the natural rate of increase r, the resource density by its carrying
capacity, and the consumer by the a parameter, the generic form of both models is:

dR

dt
= R(1−R)− NR

h+R
and

dR

dt
= R(1−R)−N(1− e− ln[2]R/h) ,

which has only one parameter h. Panel (a) shows the nullclines for h = 0.1, 0.2, 0.4, 0.8 and
h = 1.6. The nullclines intersect when R = h because the functional response then equals 0.5.
Since there is no qualitative difference between the two sets of nullclines, we expect similar
behavior for these two models.

Answers to Chapter 8

Question 8.1. Food chain
a. For N = M = 0 one finds R̄ = s/r. For M = 0 one solves R̄ = d/b from dN/dt = 0 and then
N̄ = s/d − r/b. When all three species are present, one solves N̄ = e/c from dM/dt = 0,
then R̄ = s

r+be/c from dR/dt = 0, and finally M̄ = (bR̄− d)/c from dN/dt = 0.
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b. Yes, the steady state of R only depends on its source when the length of the chain is odd.

Question 8.2. Triangular Jacobian
Since dN0/dt only depends N0, and dNi/dt only depends on Ni−1 and Ni, the Jacobi matrix is
of the triangular form

J =


−(p+ d) 0 0 0 . . . . . . 0

2p −(p+ d) 0 0 . . . . . . 0
0 2p −(p+ d) 0 . . . . . . 0

...
0 . . . 0 . . . 0 2p −d

 , (A.8.4)

with a characteristic equation corresponding to Eq. (8.11).

Question 8.3. Accumulating mutations
a. Mathematically this would seem appropriate, and it is similar to Eq. (8.9).
b. The problem with a cascade like this is that the variables described by ODEs are continuous,

whereas actual cell numbers cannot become lower than a single cell. Solving this cascade,
either mathematically or numerically, would immediately populate all the Ni equations, and
hence yields very small densities into the equations for the senescent and leukemic cells at
very early time points. For the senescent cells this is not a problem because they die and
disappear, but since the leukemic cells have a growth rate that could be much faster than the
division rate of the progenitor cells, they will start to expand much earlier than expected.

c. Note that the vector in the leukemia.R document is indexed from 1 to ndiv (and not from
0 to n), and that R allows one to write all the ODEs for dNi/dt as a single (fast) vector
operation. The leukemic cells appear way too early in this model.

d. This model violates the constraint that size of a population of cells should be described by
an integer number. When populations are large this is typically not a problem, but small
populations should be described by stochastic models describing the behavior of individual
cells. This problem is also known as the “atto-fox” problem (see Section 15.8). When pNi < 1
one should define this term as the probability that a single cell divides forming exactly two
daughter cells in the next generation. The formal procedure to do this is called a Gillespie
simulation [6], in which every term of the model is translated into an event happening with a
probability depending on the current population densities. If you like this question we could
turn this model into a project.

e. No the Smith-Martin model would only delay the formation of the leukemic cells by n ×∆
days, i.e., by the total time spent in the B-phase division, which is short even if cells divide
once per year.

Question 8.4. Chaos
Figures made with a previous version of Grind:
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a. See Panel (a). Yes, for their values of b1 the steady state is unstable.
b. See Panel (b). Yes, the unstable steady state around which the trajectory cycles is located

above the nullcline of the top-consumer, and since the average consumer density is expected
to be higher than this, we expect the top-consumer to invade.

c. Use Grind for the last 3 items.

Question 8.5. Detritus
A natural model would be

dR

dt
= [bF − dR − c1N ]R ,

dN

dt
= [c1R− dN − c2M ]N and

dM

dt
= [c2N − dM ]M ,

where F = K −R −N −M . This shows that the dN/dt and dM/dt equations do not change.
For N = M = 0 one now obtains R̄ = K − dR/b, which increases linearly with the total amount
of nutrients, K, in the system. When N > 0 and M = 0, one solves R̄ = dN/c1 from dN/dt = 0,
and from [b(K − R̄−N)− dR − c1N ] = 0 one solves that

N̄ =
c1bK − bdN − c1dR

c1(b+ c1)

which increases linearly with K, and becomes positive when K > (bdN − c1dR)/(c1b). When
N > 0 and M > 0 one again solves N̄ = dM/c2 from dM/dt = 0, M̄ = c1R−dN

c2
from dN/dt = 0.

After substitution of N̄ and M̄ one solves R̄ from dR/dt = 0, i.e.,

R̄ =
b(c2K + dN − dM )− c1dM − c2dR

b(c1 + c2)
.

Thus, the steady state resource density again only depends on K when the food chain has an
odd length.

Question 8.6. Maintenance and reproduction
Figures made with the model daphnia.R:
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dE

dt
=
e(aA− k)D

H + aA− k −mE = 0 leads to E =
(e/m)(aA− k)D

H + aA− k ,
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and substituting this into the ODE for the adult Daphnias gives

dD

dt
=
e(aA− k)D

H + aA− k − d0D −
d1D

1 + aA/h
.

This looks complicated, but its nullcline solved by setting dD/dt = 0 corresponds to D = 0 and
A = c, where c is a constant, because the ODE becomes independent of D when the D = 0
solution is factored out. Since the ODE for the algae was just a Lotka-Volterra prey equation,
one obtains a classic Lotka-Volterra phase portrait. The nullclines of this QSSA model are
depicted with a trajectory of the QSSA model in Panel (a) and with a trajectory of the full
model in Panel (b). Note that the time scale of Daphnia is much slower in the full model and
that the trajectory hence hovers around the nullcline, i.e., the quasi state state, of the algae.

Question 8.7. Kinetic proofreading
For receptors having n different phosphorylation sites one writes

dC0

dt
= k1FL− (k−1 + k2)C0 ,

dCi
dt

= k2Ci−1 − (k−1 + k2)Ci and
dCn
dt

= k2Cn−1 − k−1Cn ,

for i = 1, 2, . . . , n − 1, with the conservation equation F = R − ∑n
i=0Ci. Summing these

equations gives an ODE for the total amount of complexes,

dĈ

dt
= k1FL− k−1Ĉ = k1(R− Ĉ)L− k−1Ĉ ,

Setting dĈ/dt = 0 reveals that

Ĉ =
k1RL

k−1 + k1L
=

RL

Km + L
,

where Km = k−1/k1, which is nothing more than the normal Michaelis Menten expression. This
is a natural result because we are just counting the number of phosphorylation steps, and at
each step we have the same off rate, k−1. Setting all ODEs in the first equation to zero, one
obtains

Ci =

(
k2

k−1 + k2

)i
C0 and Cn =

k2

k−1
Cn−1 =

k2

k−1

(
k2

k−1 + k2

)n−1

C0 ,

for i = 0, 1, . . . , n− 1. Since these ultimately all depend on C0 we solve dC0/dt = 0,

k1(R− Ĉ)L− (k−1 + k2)C0 =
k1KmRL

Km + L
− (k−1 + k2)C0 =

k−1RL

Km + L
− (k−1 + k2)C0 = 0 ,

to obtain that

C0 =
k−1RL

(Km + L)(k−1 + k2)
=

RL

Km + L

k−1

k−1 + k2
=

k−1

k−1 + k2
Ĉ .

Hence

Cn = Ĉ

(
k2

k−1 + k2

)n
=

RL

Km + L

(
k2

k−1 + k2

)n
,

where the first term is the Michaelis-Menten function describing the saturation in the total
number of complexes at large ligand concentrations, and the second term provides the fraction
of Cn in this total. The final term introduces a novel dependence of Cn on the off-rate, k−1,
which becomes steep for large n (when k−1 is sufficiently large).
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Answers to Chapter 9

Question 9.1. Migration
Figures made with the model lotkaComp.R:
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a. A 2-dimensional Lotka-Volterra competition model with a small immigration term, ε, would
be

dN1

dt
= ε+ r1N1(1−A11N1 −A12N2) and

dN2

dt
= ε+ r2N2(1−A22N2 −A21N1) ,

with carrying capacities N̄1 ' 1/A11 and N̄2 ' 1/A22, as long as the immigration term is
sufficiently small. To simplify this further we scale the populations such that their carrying
capacity is close to one (see Section 15.4). By defining ni = AiiNi (and hence Ni = ni/Aii),
we can rewrite this into

1

A11

dn1

dt
= ε+

r1n1

A11

(
1− A11n1

A11
− A12n2

A22

)
↔ dn1

dt
= i1 + r1n1(1− n1 − γ1n2) ,

where i1 = A11ε and γ1 = A12/A22, and similarly

dn2

dt
= i2 + r2n2(1− n2 − γ2n1) ,

where i2 = A22ε and γ2 = A21/A11. Note that once one has sufficient experience with scaling,
one can just set Aii = 1 in the first equation (like we did in the text).

b. For the four panels in Fig. 9.2, and small immigration terms, i1 and i2, one now obtains
the nullclines in Panels (a)–(c) (where we collapse the first two cases with non-intersecting
nullclines into Panel (a)).

c. From the vector field one can see that the steady states close to the carrying capacity are
stable. The steady state in the middle of Panel (b) is unstable, whereas that in the middle
of Panel (c) is stable.

d. In Panel (c) there is normal coexistence. In the other panels there is no true competitive
exclusion, but since in the steady states near the carrying capacity the density of the rarest
species is very low, one can consider it to be almost excluded.

Question 9.2. Equilibrium co-existence
Figure made with a previous version of Grind:
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N1

N
2

T − d1
b1

T − d2
b2

b2T−d2
b1+b2

a. Since the trees can just overgrow the grass they experience areas occupied by grass as “empty
space”, and they do not suffer from the presence of the grass. The grass can only expand into
true empty space, which is reflected by the T −N1−N2 term, and suffers from the expansion
of trees into grassy areas, which is reflected the b1N1N2 term.

b. The dN1/dt = 0 nullcline corresponds to the line N1 = T− d1
b1

= T
(
1− 1

R01

)
. The dN2/dt = 0

nullcline is given by N2 = T − d2
b2
−N1

(
1 + b1

b2

)
. The vector field demonstrates that the non-

trivial steady state is stable, and that the two carrying capacities, N̄i = T−di/bi, are unstable
when the nullclines intersect.

c. These lines will intersect, and give rise to the phase space shown above, when b2T−d2
b1+b2

> b1T−d1
b1

,
revealing that the maximum growth rate rmax = b2T −d2 of the grass should at least be faster
than that of the trees.

d. Yes, this is a counterexample. The reason is that the competition between these two species is
not defined by their parameters, but by the structure of the model. Although the trees and the
grass compete for the same resource, i.e., space, their competitive relationship is asymmetric
just because trees are larger and can shadow the grass. One could argue that the trees and
the grass (partly) belong to a different ecological guild, and that the model implicitly adds
another resource dimension, i.e., light, allowing the trees to be superior over the grass with
respect to this additional resource. For bacteria growing in a petri dish one could envision
that N1 produces a toxin killing N2, which would enable the first species to overgrow the
second one, irrespective of their respective birth and death rates. Again, the toxin would add
another dimension allowing an independent ranking of competitive dominance. Finally, this
deepens our understanding of the classical r-selected and K-selected species, as this model
would allow K-selected species to invade into areas occupied by r-selected species, irrespective
of their parameters.

Question 9.3. Non-equilibrium co-existence
Figure made with noneqco.R after finding appropriate parameters:
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a. These are the standard phase planes of the Monod-saturated model, and the Lotka-Volterra
model, respectively.

b. The initial slope of the saturated functional response should be steeper than that of the linear
one (see Panel (a)).

c. The best approach is to first make a system where the Monod saturated consumer co-exists
with the resource on a stable limit cycle. Then add the second consumer, and make sure
that it can invade on this limit cycle. The nullcline of the Monod saturated consumer has to
be located at a lower resource value than that of the linear consumer to enable the Monod
saturated consumer to invade in the steady state of the linear consumer with the resource,
i.e., h

a1/d1−1 <
d2
a2

(see Panel (b) made with the cube.R extension of Grind), where the black
ellipse depicts a stable limit cycle.

d. Yes, one can always give the species with the linear functional response a saturation function
with a large saturation constant.

Question 9.4. Larvae and adults
a. A natural model would be:

dL

dt
= rA− dL(1 + eL)−mL and

dA

dt
= mL− δA ,

where we assume density dependent death by competition between the larvae. The steady
state can be solved by first setting dA/dt = 0 giving A = mL/δ. Substituting this into
dL/dt = 0 gives

L̄ =
1

e

[m
d

(r
δ
− 1
)
− 1
]
, Ā =

m

δ
L̄ ,

which requires α = r/δ > 1 and m(α − 1)/d > 1. The carrying capacity of this population
would be defined as either L̄ or Ā.

b. Adding two predators changes to model into

dL

dt
= rA− dL(1 + eL)−mL− c1LN1 ,

dA

dt
= mL− δA− c2AN2 ,

dN1

dt
= (c1L− d1)N1 and

dN2

dt
= (c2A− d2)N2 .

Solving the steady state of the latter two gives L̄ = d1/c1 and Ā = d2/c2. Substituting this
into dL/dt = 0 and dA/dt = 0 gives

N̄1 =
rd2

c2d1
− m

c1
− d

c1

(
1 +

ed1

c1

)
and N̄2 =

md1

c1d2
− δ

c2
.

Since one can always choose parameters such that N̄1 > 0 and N̄2 > 0 co-existence is possible.
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Question 9.5. Gradients with sharp borders
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a. Solving dN1/dt = N1(b1(1−N1)−d1−dS) gives the trivial N̄1 = 0 solution and the carrying
capacity N̄1 = 1− d1+dS

b1
= 1− 1/R0. This declines when the concentration of salt increases

(because dS increases with the salt).
b. See Panel (a): N̄1 declines linearly with dS . The species can no longer be maintained when

1− d1+dS
b1

= 0, i.e., when dS = b1 − d1.

c. In the absence of salt the two nullclines are parallel lines with slope −1, N2 = 1 − d1
b1
− N1

and N2 = 1 − d2
b2
− N1, respectively. N1 will outcompete N2 because it has a higher R0

at low concentrations of salt. See Panel (b). Along the gradient dS will increase, and the
dN1/dt = 0 nullcline will be given by N2 = 1− d1+dS

b1
−N1. The nullcline will shift downward

and at some value of dS overlap the dN2/dt = 0 nullcline. Beyond that N2 will outcompete
N1 and approach its carrying capacity N2 = 1− d2

b2
.

d. See Panel (c). Along a smooth gradient we expect a sharp transition between the species
due to competitive exclusion.

Question 9.6. Density dependent birth rate
Figure made with a previous version of Grind:
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a. R0 = b/d or R0 = b
d

a
h+a , depending on its definition.

b. The QSS of the resource is R = 1− aN by substitution gives

dN

dt
=

[
b

a(1− aN)

h+ a(1− aN)
− d
]
N ,

which can be simplified into
dN

dt
=

[
b

1− aN
H − aN − d

]
N .

where H = 1 + h/a, which is larger than one.
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c. The maximum birth rate is ab
a+h . Hence R0 = b

d
a

h+a , which is the same as the second answer
in a.

d. To sketch the per capita birth rate as a function of N we need to consider the function
y = b 1−aN

H−aN knowing that H > 1. For N = 0 this gives y = b/H, and for y = 0 we find
N = 1/a. A horizontal asymptote is found by dividing numerator and denominator by N ,

i.e., y = b 1/N−a
H/N−a , and letting N →∞ to find that y → b. A vertical asymptote is located at

N = H/a. Because H > 1 we know that the intersections with the horizontal and vertical
axis fall below the asymptotes. See the sketch in the Figure above.

e. This concave shape is what we considered most realistic in Chapter 3. For instance see Fig.
3.3c and Fig. 3.5b.

f. The QSS now equals R = 1/(1 + aN) which gives a per capita birth rate of b
1+h/a+hN which

is convex. Again the devil is in the details, as the shape of the consumers density dependence
depends on the nature of the resource.

Question 9.7. Fitting Lotka-Volterra competition to the Gause data from 1934
a. Yes, by writing A11 = 1/kA, A22 = 1/kC , A12 = α/kA and A21 = β/kC , Eq. (9.20) becomes

the same as Gause’s handwritten model. The solitary data is well-described when rA =
1.11, kA = 104.73, rC = 0.916, and kC = 60.277.

b. For Paramecium aurelia we obtain α ' 1.05 and for P. caudatum we obtain β ' 0.64.
However, this does not mean that P. aurelia suffers more from P. caudatum than the other
way around, because these parameters remain to be divided by the —quite different— carrying
capacities.

c. Calling plane(xmax=110,ymax=110) for the estimated parameters, reveals that the nullclines
fail to intersect, and that P. aurelia is the strongest competitor. Note that this probably the
first time in your life that you sketch nullclines based upon measured parameters.

d. When P. aurelia suffers more from P. caudatum than from itself, it could be that the species
are competing for more than one resource, and that P. caudatum consumes more from that
resource than P. aurelia. However, this may not be required because α ' 1, and that the
standard error around its estimate includes α = 1.

e. We indeed find similar results, but this is at least partly due to the fact that we have such a
good initial guess of the parameter values (try other values to test how much this depends on
the initial guess). Note that using all data we do obtain evidence that the two growth rates
are truly different.

f. The confidence intervals for α and β overlap, and hence we cannot conclude that α > β.
Additionally the confidence interval for α includes α = 1, so it would have been an over-
interpretation to explain why α > 1. The final call to pairs() depicts the relationships
between all parameter estimates in the 100 bootstraps, e.g., depicts the positive correlation
between α and β.

g. P. aurelia grows faster and has a higher carrying capacity than P. caudatum, and suffers about
as much from the competition within its own species as from inter-specific competition. The
parameter estimates suggest that P. caudatum suffers less from P. aurelia than from itself,
which would suggest some niche differentiation.

Question 9.8. Tilman’s competition model
Figure made with tilmanMin.R:
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a. Solving α11c11R1 +α12c12R2− δ1 = 0 gives R∗11 = δ1
α11c11

and R∗12 = δ1
α12c12

. Similarly, solving

α21c21R1 + α22c22R2 − δ2 = 0 gives R∗22 = δ2
α22c22

and R∗21 = δ2
α21c21

.
b. In Fig. 9.5a R∗11 < R∗21 and R∗22 < R∗12, i.e., each consumer requires less than the other

consumer of the resource it consumes most. In Fig. 9.5b this is the other way around, which
leads to unstable steady state, corresponding to a founder controlled situation. (Note that
Grind indicates the stability of the steady state by a bullet or a circle, and that the fact that
the black production vector in Fig. 9.5b falls in between the two colored consumption vectors
confirms that the 4-dimensional steady state exists (see the online tutorial)).

c. A consumer always needs both resources but is limited by the resource providing the lowest
birth rate, aijcijRj . If one of the resources were to decline it would ultimately become
limiting.

d. To sketch these nullclines one first ignores the minimum function to find that the dN1/dt = 0
nullcline is given by the vertical line R∗11 = δ1

α11c11
and the horizontal line R∗12 = δ1

α12c12
(see

the green lines in Panel (a)). Only resource densities (R1, R2) larger than these two lines
allow dN1/dt > 0, i.e., N1 can only grow in the region defined by the upper-right green
square. Similarly, the dN2/dt = 0 nullcline is constructed from the lines R∗22 = δ2

α22c22
and

R∗21 = δ2
α21c21

(see the orange lines in Panel (a)). Note that the upper circle denotes the point
R1 = R2 = 1 where both resources are at carrying capacity, si/di.

e. Apparently, the steady state is now stable when R∗11 > R∗21 and R∗22 > R∗12! In the stable
situation of Panel (b) the steady state is located on the vertical part of the dN1/dt = 0
nullcline, i.e., where N1 is limited by R1, and the horizontal part of the dN2/dt = 0 nullcline,
i.e., where N2 is limited by R2. Thus, this still corresponds to a situation where each consumer
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is limited by the resource it consumes most. Note that in Panels (a) and (b)(
∂R1N

′
1 ∂R2N

′
1

∂R1N
′
2 ∂R2N

′
2

)
=

(
0 +
+ 0

)
and

(
∂R1N

′
1 ∂R2N

′
1

∂R1N
′
2 ∂R2N

′
2

)
=

(
+ 0
0 +

)
,

respectively (see the online tutorial on tbb.bio.uu.nl/rdb/bm/clips/tilman).
f. The nullclines in Panels (c) and (d) were made the quasi steady state model in tilmanMin.R,

and correspond to the Tilman diagrams of Panels (a) and (b), respectively. This confirms that
the intersect in Panel (a) corresponds to the classical Lotka-Volterra competition situation
with an unstable non-trivial state, and two stable carrying capacities on the axes.

Question 9.9. Co-existence by trade-offs?
a. No this is not an appropriate model for substitutable resources because the birth rate increases

with every non-essential resource that is added to the ecosystem. Consumers are expected to
approach their maximal birth rate at sufficiently high densities of just one resource if these
are non-essential.

b. One could argue that this would become a model for essential resources when the birth rates,
βij , on the individual resources are made smaller than the death rates, δi. Consuming a
combination of resources then becomes essential, but this interpretation remains somewhat
contrived.

c. One can define a trade-off by adding terms like c12 = c− c11, c21 = c− c22 and c31 = c− c32

to the model, which defines a total consumption rate, c, that is the same for all consumers,
and play with the other consumption rates. For substitutable resources defined by Eq. (9.22)
(in the file additive.R), one indeed finds that the three consumer nullclines intersect in one
steady state in a Tilman diagram spanned up by two resources, but this requires that all
other parameters like the saturation constants and the death rates are also the same. For
essential resources defined by Eq. (9.25) (in the file essential.R), defining this trade-off is not
sufficient to let the three consumer nullclines intersect in one steady state. Thus, the result
seems rather artificial: it is not based upon an appropriate model, and requires unreasonable
parameter constraints. This would be a good project to study further.

Question 9.10. Fitness
a. Writing out Eq. (9.13) explicitly, and combining parameters

R∗i =
hi

bi/di − 1
=

hi
ri − 1

, (A.9.5)

where ri = bi/di, we have an expression for which species wins (i.e., the one with the lowest
R∗i ). Writing

R̂0i =
bi
di

R̄

hi + R̄
=

ri
hi/R̄+ 1

,

we can solve for ri and write Eq. (A.9.5) in terms of R̂0i :

R∗i =
hi

R̂0i(hi/R̄+ 1)− 1
where R̄ =

s

d
.

The species with the lowest fitness R̂0i can therefore be the superior competitor when its
hi is sufficiently smaller than that of the other competitors. In conclusion, R̂0 does not
uniquely identify the superior competitor, and the critical resource density, R∗, remains the
best indicator.

b. The model competition.R provides an example where an r-selected species, with the lowest
R0 and carrying capacity, outcompetes a K-selected species.

Answers to Chapter 10

https://tbb.bio.uu.nl/rdb/bm/clips/tilman
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Question 10.1. Invasion criterion
Figure made with a previous version of Grind:
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a. Since the diet of the two established species does not overlap, their resource usage curves
should not overlap. The curve of the invading species should be located in the middle, and
have an equal overlap with both species (here indicated by the α). See Panel (a).

b. Since N1 and N3 do not compete the model simplifies to

dN1

dt
= rN1(1−N1−αN2) ,

dN2

dt
= rN2(1−N2−αN1−αN3) and

dN3

dt
= rN3(1−N3−αN2) ,

where we have scaled all carrying capacities to one.
c. Because N2 ≈ 0 the steady state before invasion is N̄1 = N̄3 = 1, and hence dN2/dt '
rN2(1 − 2α). For invasion one requires dN2/dt > 0, meaning that 1 − 2α > 0, giving that
α < 1/2. Since N2 has an overlap of one with itself, the total overlap with the two other
species should be less than the overlap with itself.

Question 10.2. Random Jacobian
a. At low connectivities the characteristic equation tends to be defined by the diagonal elements,

i.e., λ = −1.
b. Running the script, and plotting the fraction of stable systems as function of the connectivity,
P , confirms that Eq. (10.13) holds for large n. For small n the largest eigenvalue tends to be
λ = −1.

c. When all diagonal elements are set toAii = −c, the condition for stability becomes σ
√
nP < c.

Setting the diagonal elements to random values drawn from a random distribution readily
destabilizes the system (e.g., uncomment the diag(A) <- -abs(rnorm(n,mean=1,sd=0.5))

line). Thus, it appears to be a quite string assumption that all diagonal elements are equal
and negative.

d. No answer provided: this would be good project.

Question 10.3. Roberts’ random Lotka-Volterra model
Table made with the script roberts.R:
a. A piece of R-code for drawing n × n random positive and negative z-values and collecting

these in an interaction matrix with ones on the diagonal is:

z <- rnorm(n*n,zmean,zmean/10)

k <- ifelse(runif(n*n)<0.5,1,-1)

A <- matrix(k*z,nrow=n,ncol=n)

diag(A) <- 1

Since all species survive when all off-diagonal Aij elements are zero, one trivially finds maximal
diversity when z̄ → 0. Because the steady state computed algebraically is very different from
the steady state approached by numerical integration whenever some species go extinct, we
compute both states in the roberts.R script, and run many simulations to measure the
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average diversity, n̄, and the percentage of feasible systems, %F. To sweep parameters one
should vary n and zmean. Since Eq. (10.13) derived from the analysis of random Jacobi
matrices suggested that steady states tend to be stable when σ

√
nP < 1, and we here have a

fully connected interaction matrix, i.e., P = 1, and an average interaction strength, z̄ (instead
of a standard deviation of off-diagonal elements in a Jacobi matrix), we hypothesize that the
Roberts version of Eq. (10.13) would be something like z̄

√
n < c, where c is an unknown

constant. Running many simulations with n = 16, 64 and 144, while sweeping z̄ = c/
√
n one

indeed finds

n z̄ = 0.2√
n

z̄ = 0.25√
n

z̄ = 0.3√
n

z̄ = 0.4√
n

z̄ = 0.5√
n

z̄ = 1√
n

n̄ %F n̄ %F n̄ %F n̄ %F n̄ %F n̄ %F

16 16 100 16 100 16 100 15.8 80 15.5 65 11.2 0
64 64 100 64 100 63.9 100 62.5 40 61.3 10 42.8 0
144 144 100 143.9 100 143.7 85 142.1 15 136.5 0 98.9 0

where n̄ is the number of species that remains present, and %F is the percentage of feasible
systems in the simulations. Thus, increasing the average absolute interaction strength de-
creases the percentage of feasible systems, and scaling the interaction strength by

√
n yields

a similar critical interaction strength in systems markedly differing in the initial diversity,
n. Moreover, a system classified as unfeasible can typically persist with the majority of the
species being present.

To better understand the
√
n in these conditions, it is important to realize that the total

interspecific interaction strength of a species, Fi =
∑

j AijN̄j for i 6= j, is the sum of a set of
random numbers, i.e., random Aij elements multiplied with their corresponding steady states
N̄j . Since the variance of the sum of independent random variates is the sum of their variances,
e.g., var(rnorm(10000, 0, 1) + rnorm(10000, 0, 2)) ' 5, the expected variance of all the Fis is
proportional to n, and hence their expected standard deviation is proportional to

√
n. Eq.

(10.13) and our hypothesized z̄
√
n < c therefore reflect that the Fis should be sufficiently

similar for many species to co-exist. Moreover, because the statistical result on the sum of
the variances is very general, and does not depend on the nature of the random distributions
that are being summed, one expects similar results for any independent random filling of
the interaction (or Jacobi) matrix (e.g., even after filling the A matrix with fixed values,
Aij = ±z like Roberts [11] did). Since many species are only expected to co-exist when they
are sufficiently similar, these general results obtained with randomly created Lotka-Volterra
systems resemble the ideas on neutral coexistence [8, 13].

b. Yes, because the replication rates, ri, cannot be cancelled after setting dNi/dt = 0 in Eq.
(10.14), whereas they could in Eq. (9.20), variation in the growth rates decreases the diversity.
By having faster growth rates some species will be better than others, i.e., the system is less
neutral.

c. Yes, drawing the diagonal elements from a normal distribution with an average of one, de-
creases the diversity, and readily leads to integration errors because some populations become
very large.

Question 10.4. Random Lotka-Volterra competition models
Table made with the script randomCompetition.R:
a. To model resource competition we draw symmetric off-diagonal elements, 0 < Aij = Aji < 2z̄,

from a uniform distribution (such that the average is z̄), in the model dNi/dt = biNi(1 −∑
j AijNj)− diNi.

A <- matrix(0,nrow=n,ncol=n)

diag(A) <- 1

A[lower.tri(A)] <- runif((n*n-n)/2)*2*barZ

tA <- t(A)

A[upper.tri(A)] <- tA[upper.tri(tA)]
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which uses general R functions to select the diagonal, and the lower and upper triangle of a
matrix. The R-function t() computes the transpose of the interaction matrix. The bi and di
values can be set to fixed values, e.g., bi = 1 and di = 0 for all i, to compare to the results of
Roberts [11], or can be drawn from normal distributions, to allow the species to have different
birth and death rates (while making sure that bi > di, or R0i > 1, for every species i.

b. Repeating the analysis of Roberts [11] for a situation where all interactions are competitive,
(and all species still have the same growth rate bi = 1, and no death rate (di = 0)) yields
very similar results:

z̄ = 0.3√
n

z̄ = 0.4√
n

z̄ = 0.5√
n

z̄ = 0.75√
n

z̄ = 1√
n

n n̄ n̄ n̄ n̄ n̄

16 16 16 15.9 13.1 10
64 64 64 63.8 56.9 39.1
144 144 144 143.3 128.5 88

For low average values of the off-diagonal Aij elements, i.e., z̄ ≤ 0.4/
√
n, most species tend

to survive, otherwise a subset of species tends to go extinct. Because the critical average
interaction strength, z̄, at which a few species are excluded again scales with

√
n when we

increase n, this also resembles Eq. (10.13), which again suggests that the species have to
be sufficiently similar (because the standard deviation of the total interspecific competition,
Fi =

∑n
i AijN̄j for i 6= j, is expected to be proportional to

√
n).

c. Restricting di = 0 for all i, and allowing for different growth rates bi does not change these
results as the bis cancel from the steady state when all di = 0. This can be checked by
running the script. Allowing for death, and drawing birth and death rates from two normal
distributions (while restricting bi > di or R0i > 1 for every species), species start to become
excluded at somewhat lower interaction strengths (also shown by running the script).

d. The properties of the species that survive can be compared to those that were excluded by
the code defined at the end of the script:

present <- (frun > 0.01)

meanN <- mean(frun[present])

meanR0present <- mean(b[present]/d[present])

meanR0absent <- mean(b[!present]/d[!present])

Apresent <- A[present,present]

Aabsent <- A[!present,!present]

meanApresent <- mean(Apresent[lower.tri(Apresent)])

meanAabsent <- mean(Aabsent[lower.tri(Aabsent)])

Running the script for an average interaction strength where a decent fraction of the species
is excluded, e.g., n = 32 and z̄ = 1/

√
n when allowing for random birth and death rates,

reveals that surviving species on average have a higher R0 and lower interaction coefficients,
Aij , which sounds very natural, but also implies that the model is selecting for neutrality.

e. When all species are present, the expected steady state of a population is obtained by solving

b(1− (n− 1)ĀN −N)− d = 0 giving N̄ =
1− d/b

1 + (n− 1)Ā
,

where Ā is the average value of the off-diagonal Aij elements. This in turn allows one to
compute the expected strength of the intra-specific competition,

F̄ = (n− 1)ĀN̄ =
(1− d/b)(n− 1)Ā

1 + (n− 1)Ā
.

Question 10.5. Control by parasites
a. Define T = S + I as the total population size of susceptible and infected birds, and write

dS

dt
= bT (1− T )− dS − βSI and

dI

dt
= βSI − δI



48

b. The R0 of the birds is b/d. The population size has been scaled such that the birth rate
becomes zero at T = 1, and hence the scaled carrying capacity is obtained by solving bT (1−
T )− dT = 0 giving T̄ = b−d

b = 1− 1/R0 = K.
c. The R0 of the parasites is R′0 = βK/δ.
d. In the presence of the parasite the number of susceptibles is solved from dI/dt which gives
S = δ/β = K/R′0.

e. Defining O as the other species one could write

dS

dt
= bT (1− T −O)− dS − βSI , dI

dt
= βSI − δI and

dO

dt
= bO(1− T −O)− d0O ,

with d0 > d. Note that the other species can invade when b(1− T )− d0 > 0, or equivalently
when the R0 = b(1− T )/d0 > 1.

f. Thus, if the infection is sufficiently harmful, i.e., T̄ � K, the other species can invade despite
its lower fitness.

g. If each species is sufficiently down-regulated by its parasite the resource density can stay high
and many species can be maintained [13].

Question 10.6. Cross-feeding
a. Let the first species, N1, feed on saccharose, R1. The second resource, R2 (fructose), will

then be formed when N1 consumes saccharose, splits it into glucose for its own growth and
fructose as a metabolic by-product. Hence the equations for the two resources are

dR1

dt
= w(R̂1 −R1)− b1R1N1 and

dR2

dt
= αb1R1N1 − b2R2N2 − wR2 ,

because R̂2 = 0. Since N1 uses only half of the energy from each saccharose molecule, whereas
N2 uses all of the fructose, those for the bacteria are

dN1

dt
= αb1R1N1 − wN1 and

dN2

dt
= b2R2N2 − wN2 ,

where α = α1 = (1 − α1) = 0.5, and S21 = 1 and all other elements of the stoichiometric
matrix are zero. Note that if one were to scale by concentrations, rather than by energy, one
can also set α = 1.

b. The steady state is

R̄1 =
w

αb1
, R̄2 =

w

b2
, N̄1 = αR̂1 −

w

b1
and N2 = N̄1 −

w

b2
,

which means that N1 will be present when b1/w > R̂1, which is independent of the leakage
rate, and N2 is present when b2/w > B̄1, which depends on α.

c. Following Eq. (10.20) one obtains the same, i.e.,

dN1

dt
= αb1R1N1 − wN1 and

dN2

dt
= b2R2N2 − wN2 ,

when C =

(
α 0
0 1

)
and A =

(
b1 0
0 b2

)
, and for the resources one again obtains

dR1

dt
= w(R̂1 −R1)− b1R1N1 and

dR2

dt
= αb1R1N1 − b2R2N2 − wR2 ,

when R̂2 = 0, S1 =

(
0 0
α 0

)
and S2 =

(
0 0
0 0

)
. For this particular case both models therefore

become identical.
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Question 10.7. Neutral theory of biodiversity
The fact that a model can account for particular (sets of) data does not prove that the model
provides the true mechanistic explanation for the data. Alternative models may also be able to
account for the data. In this case the neutral model functions as a simple “null” model that is
surprisingly good in explaining species-abundance distributions, even in cases where everyone
would agree that the species do have different ecological properties. One should therefore not
disprove the neutral model, but view it as a phenomenological null model, and keep trying
to develop more mechanistic models that are better based upon established interactions and
parameters.

Question 10.8. Huisman
Carefully read the huisman.R script to understand how this defines Eq. (10.15). Running sim-
ulations one finds the answers.
a. No, almost all systems approach a steady state.
b. No, running with m = 3, 5 or 10 resources one typically observes an approach to a steady

state.
c. The standard deviation of the saturation constants, hij , of the consumers that are present

at the end is somewhat smaller than that of all invaders that have been represent, and the
variation of the successful invaders is markedly smaller than that of the consumers that were
unable to invade. The model is therefore selecting for species with similar requirements for
all resources, i.e., for neutrality. Additionally, the consumers that are present at the end tend
to have higher maximum consumption rates, ri, which was to be expected. For each new
consumer the average hij is scaled to 0.5 and hence this cannot change.

Question 10.9. Scheffer
Carefully read the scheffer.R script to understand how this defines Eq. (10.16). Running
simulations one should find the following answers.
a. No, it is hard to find situations when the number of consumers exceeds the number of

resources.
b. Setting various values of nr and nn, even nn>nr in the eps=0 regime, it appears to be difficult

to have several more consumers than resources.
c. There is hardly any difference between the competition coefficients of resources that persist

and those that go extinct. The consumers that persist tend do have higher consumption rates
than those that go extinct.

Question 10.10. Monopolization
a. Yes, since most competition situations are “founder controlled” in the model of Yodzis,

species that grow faster are more likely to outcompete the species that grow slower. Thus,
the diversity of the communities would be somewhat lower when species have different birth
and death rates.

b. No, one would still have that species with a low R0 will survive in those patches were they
arrived much earlier, or in greater numbers, than their competitors with a higher fitness.

Question 10.11. Symbiosis
Figures made with a previous version of Grind:
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a. A natural model makes the birth rate a saturation function of the other species and assumes
density dependent death:

dN1

dt
= N1

[
b1N2

h+N2
− d1(1 + e1N1)

]
and

dN2

dt
= N2

[
b2N1

h+N1
− d2(1 + e2N2)

]
.

Note that it is quite natural that the symbiotic effect has some maximum. The dN2/dt = 0
nullcline is given by

N2 =
1

e2

[
R02

N1

h+N1
− 1

]
,

where R02 = b2/d2. This is a saturation function starting at N2 = −1/e2 when N1 = 0.
See Panel (a). The dN1/dt = 0 nullcline is just the mirror image of this (Panel (a)). The
nullclines intersect in three steady states. The origin and the system at “carrying capacity”
are stable nodes, separated by a saddle point in the middle. The stable manifold of this
saddle point defines the separatrix between the two stable steady states.

b. When N1 is the saprophyte, one would write

dN1

dt
= N1

[
b1N2

h+N2
− d1(1 + e1N1)

]
and

dN2

dt
= N2 [b2 − d2(1 + e2N2)] .

The dN1/dt = 0 nullcline stays the same (see Panel (b)), and the dN2/dt = 0 nullcline is a
horizontal line located at its carrying capacity.

c. The other species could merely increase the birth rate, e.g.,

dN1

dt
= N1

[
b1 +

β1N2

h+N2
− d1(1 + e1N1)

]
and

dN2

dt
= N2

[
b2 +

β2N1

h+N1
− d2(1 + e2N2)

]
,

where βi is the maximum birth rate due to the presence of the symbiont, and bi is the
maximum birth rate in the absence of the symbiont. The nullclines have been depicted with
Grind in Panel (c).

d. Yes, just make sure that R0i = bi/di < 1 in the absence of the other species, and (bi+βi)/di >
1 to enable growth in the presence of the symbiont. Panel (c) depicts the typical phase space
when R0i > 1.

Question 10.12. Infinite Niche-matrix
a. Every single ODE of this system is a function of all variables of the system, i.e., dNi/dt =
f( ~N) = Ni −

∑
j AijNiNj , where ~N is a vector (N1, N2, . . . , Ni, . . . , Nj , . . . ). For the off-

diagonal elements of the Jacobi matrix we observe that for every j 6= i the partial derivative,
∂Nj , of f( ~N) corresponds to −AijNi. Further, because all populations have the same steady
state, Ni = N̄ , these off-diagonal elements become −αN̄ , −α4N̄ , −α9N̄ . For the partial
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derivatives on the diagonal we write that the partial derivative, ∂Ni , of f( ~N) correspond to

1− 2Ni −
∑
j 6=i

AijNj = 1− 2N̄ −
∑
j 6=i

AijN̄ ,

where we pull the i = j term out of the sum term, and the factor two is due to the fact that
Aii = 1 and the partial derivative, ∂Ni , of −N2

i equals 2Ni. Hence the Jacobian is:

J =

. . . −αN̄ 1− 2N̄ −∑j 6=iAijN̄ −αN̄ −α4N̄ −α9N̄ . . .

. . . −α4N̄ −αN̄ 1− 2N̄ −∑j 6=iAijN̄ −αN̄ −α4N̄ . . .

. . .


Moving one of the 2N̄ on the diagonal into the sum we obtain

J =

(
. . . −αN̄ 1− N̄ −∑AijN̄ −αN̄ −α4N̄ −α9N̄ . . .
. . . −α4N̄ −αN̄ 1− N̄ −∑AijN̄ −αN̄ −α4N̄ . . .

)

Finally because N̄ = 1/
∑
Aij all diagonal elements can be simplified as −N̄ , i.e.,

J =

(
. . . −αN̄ −N̄ −αN̄ −α4N̄ −α9N̄ . . .
. . . −α4N̄ −αN̄ −N̄ −αN̄ −α4N̄ . . .

)

b. The Jacobian is equal to −N̄A, where A is the interaction matrix. The eigenvalues of the
Jacobian are equal to those of the interaction matrix.

Answers to Chapter 11

Question 11.1. Geritz & Kisdi [5]
The quasi steady assumption for the resource gives R = e1−bA/r and dE/dt = cbAe1−bA/r − dE
with solution

E(t) =
cbAe1−bA/r

d

(
1− e−dt

)
and Aj+1 = ρAje

−βAj ,

where ρ = cbe(1− e−dτ )/d and β = b/r.

Question 11.2. Insect population
Since the death rate should increase when the amount of resource declines one could write for
the per capita death rate

d = d0 +
d1

1 + r/h
such that

dn

dt
= −d0n−

d1n

1 + r/h
.

Question 11.3. Periodic forcing
Read the Scheffer et al. [12] paper and try to reproduce some of their results.

Answers to Chapter 12
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Question 12.1. Biomanipulation
Figures made with a previous version of Grind:
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a. For F = 0.15, h = 1, k = 10,m = 0.4 and p = 0.5 the phase space is given by Panel (a),
which has three non-trivial steady states. By decreasing the carrying capacity the upper two
states disappear.

b. Depleting the fish by setting F = 0 will transiently remove the lower two steady states from
Panel (a), and the system will approach the attractor located near the top of the parabola. If
the fish were to regrow to same F = 0.15 density, the two lower steady states would reappear,
but the system would remain in the upper attractor because it is locally stable.

c. Changing the carrying capacity k yields the bifurcation diagram of Panel (b). The heavy
solid line depicts stable steady states, the light solid line unstable steady states, and the green
bullets denote the amplitude of a stable limit cycle. There is a transcritical bifurcation at
k = 4, a saddle-node bifurcation at k ' 9, a Hopf bifurcation at k ' 11.5, and another saddle-
node bifurcation at k ' 19.5. The stable limit cycle that is born at the Hopf bifurcation dies
by a so-called “global bifurcation” around k = 12, when it “glues” with the stable manifold
of the saddle point in the middle.

Question 12.2. Early warning signals
The script warning.R contains comments answering most of the questions.
a. Using continue(state=s,x="c",y="X",xmin=0.1,xmax=3,ymax=10) one obtains the classic

picture with two saddle-node bifurcations.
b. Drawing normally distributed disturbances of the population size (with 10% standard devi-

ation) one could run something like the following R-script, where the call to plot() depicts
Xt+1 as a function of Xt, and the call to cor() computes the correlation. One should do
this for various values of c to test if the variation and the auto-correlation increases when the
saddle-node bifurcation is approached:
noiseX <- "state[1]<-abs(state[1]*rnorm(1,1,0.1))"

data <- run(750,after=noiseX,table=TRUE)

plot(data$X[1:nrow(data)-1],data$X[2:nrow(data)],type="p")

cor(data$X[1:nrow(data)-1],data$X[2:nrow(data)])

c. The variance and the autocorrelation should increase when a critical value of c is approached.
d. Use after="parms[1]<-abs(parms[1]*rnorm(1,1,0.1))".
e. Using the parameters in the model defined by warning.R, we basically get no early warning

signal. We learn that one does not always receive an early warning signal when a saddle-node
bifurcation is approached. This would then be absent from the return time and from the
autocorrelation.
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Answers to Chapter 13

Question 13.1. Cell division takes time
a. When t < ∆ the cells in the A-stage disappear at rate dA/dt = −(d + p)A, whereas those

in the B-phase obey dB/dt = pA− dB. Since the two pA terms cancel each other, summing
both gives dN/dt = −dN , which is a natural results because the cells can only die before the
first divided cells appear at t = ∆. The model with a flexible delay gives very similar results
because the n

∆ (Bi terms cancel each other when the dBi/dt equations are summed and n is
sufficiently large such that Bn ' 0.

b. dA/dt = −(p + d)A in the Smith-Martin model at early time points, i.e., the cells in the
A-stage are declining until t = ∆. Running the Smith-Martin model for a short period of
time readily confirms this.

c. The expected time between divisions in the ODE model is 1/p′, and in the Smith-Martin
model it is the sum of the length of the A-stage and B-phase, i.e., 1

p + ∆. To compute the

corresponding division rate, p′, in the simplest ODE model, dN/dt = (p′ − d)N , we take the
inverse of division time in the Smith-Martin model, i.e., p′ = 1

1/p+∆ .
d. No, cells dividing according to the Smith-Martin model will expand slower because they have

a minimum interdivision time ∆. Consider for simplicity that the cells do not die, i.e., d = 0.
Cells in the ODE will then expand at a rate r′ = p′, which for p = 1 and ∆ = 0.5 gives
r′ = 1/(1 + 0.5) = 2/3. The ultimate growth rate, r, of cells in the Smith-Martin model is
given by Eq. (13.3). Evaluating this numerically for d = 0, p = 1 and ∆ = 0.5, we obtain
r = 0.53, which is slower than r′ = 2/3. When cells die, those in the ODE also grow faster
those in the Smith-Martin model (just test a few examples with d > 0).

e. The Smith-Martin model approaches the exponential growth model dN/dt = rN , which is
not different from the dN/dt = (p′ − d)N model when the parameters are set by Eq. (13.3).
When the B-phase is short compared to the length of the A-stage the models will be very
similar. The Smith-Martin model is therefore most appropriate for rapidly dividing cells with
a division time dominated by the length of the B-phase. An example would be proliferating
tumor cells, or lymphocytes during their clonal expansion phase [2].

Question 13.2. Sexual reproduction
Figure made with a previous version of Grind:
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A model with density dependent death rates would be something like

dN1

dt
= N1

[
b1N1

h+N1
− d1(1 + e1N1 + c1N2)

]
and

dN2

dt
= N2

[
b2N2

h+N2
− d2(1 + e2N2 + c2N1)

]
This model is available as the file sexual.R. Note that one has to separate birth from death
because the sexual reproduction should only affect reproduction, and not the death. Assuming
that the chance to find a mate approaches one when the population is close to its carrying
capacity, i.e., assuming h � K, the carrying capacity is approximately Ki ' (R0i − 1)/e1. In
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the absence of sexual reproduction, i.e., when h → 0, the nullclines are solved from bi − di(1 +
eiNi + ciNj) = 0 giving the normal straight lines

N2 =
R01 − 1

c1
− e1

c1
N1 and N2 =

R02 − 1

e2
− c2

e2
N1 ,

which may or may not intersect, intersect in a stable state when there is resource competition,
and intersect in an unstable steady state when there is interference competition. From these
three situations one can sketch the three Panels depicted above. For instance, the dN1/dt = 0
nullcline is given by

N2 =
1

c1

[
R01

N1

h+N1
− 1

]
− e1

c1
N1 ,

which resembles the straight line with slope −e1/c1 for N1 � h, and which gives N2 = −1/c1

when N1 = 0. Panel (a) would correspond to non-intersecting nullclines, Panel (b) to resource
competition (i.e., ci < ei), and Panel (c) to resource competition (i.e., ci > ei). Note that sexual
reproduction implies an Allee effect, and that (0,0), and the two carrying capacities are always
stable (stable states are marked by closed boxes, unstable states by open boxes).

Question 13.3. Paradox of enrichment
a. We could scale the density of the algae at which the birth rate vanishes to k = 2 and scale

time by their expected life span such that d1 = 1 (which implies a time scale of about one
week). We could give the algae a maximum rate of increase of b− d1 = 1 per week by setting
b = 2 per week. Because the carrying capacity K = k(1−1/R0) (see Table 3.1) we then obtain
that K = 1. (An even simpler alternative approach would be to let the algae be described
by logistic growth by setting d1 = 0, then set b = 1 for the weekly time scale, and K = k = 1
to scale the density, as this leads to the same model, i.e., 2R(1 − R/2) − R = R(1 − R)).
Because the saturation of the functional response probably occurs at prey densities below the
carrying capacity, it seems wise to set h � K, e.g., h = 0.1. We could scale the predator
biomass such that its attack rate becomes e = 1, and let us give the predators a 2-fold
longer life span, i.e., d2 = 0.5. To give the predator an R0 = ce/d2 = c/0.5 > 1 we could
set c = 0.6 such that the initial growth rate of the predator at high prey densities is about
0.1, i.e., 10-fold slower than the algae. For these values the predator nullcline is located at
h/(R0− 1) = 0.1/(0.6/0.5− 1) = 0.5, which is just at the right hand side of the maximum of
the prey nullcline at (K − h)/2 = 0.45.

b. Different possibilities for the location of the predator nullcline, without changing that of the
prey, can be made by changing the death rate of the predator.

c. The carrying capacity can be changed by altering the density k at which the birth rate of the
algae vanishes.

d. First settle into a non-trivial steady state by giving proper initial values and then issuing the
f<-newton(s) command. Then call continue(f,x="k",xmin=0.1,xmax=5,y="N") to define
a horizontal axis (where we avoid k = 0 because the model is dividing by k), and we keep the
predator on the vertical axis.

e. Replace the death rate of the predators by d2(1 + εN).
f. This indeed gives a phase plane resembling that of consumer-resource model with a sigmoid

functional response.

Question 13.4. Dampened oscillations
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Figures made with dampen.R:
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a. Time was scaled such that the growth rate of the resource is one, and the resource was scaled
such that the carrying capacity is one.

b. For high value of h the time plots of the Lotka-Volterra model and the Beddington model
coincide (not shown), which was to be expected. For low values of h, e.g., h = 0.1, the
behavior of the Lotka-Volterra model has faster oscillations than the Beddington model (see
Panel (a)). The phase plane in Panel (b) confirms that both models have the same steady
state.

c. When both populations are small their encounters should be proportional to the product of
their densities, and in this regime the Beddingtion term approaches the mass-action term.
When only one of the populations is large the Beddingtion term approach a normal saturation
function, whereby the process is limited by the smallest population. All of this seems quite
reasonable.

d. The return time of both models is the same because the real part of the eigenvalues are
identical. The real part of the eigenvalues is therefore also not changing when h is changed.
The imaginary part of the eigenvalues is larger in the Lotka-Volterra model, which corresponds
to a shorter wave length of the dampened oscillations. Therefore, the trajectory of the
Beddington model completes fewer cycles before the steady state is approached. On a more
critical note, we observe in the example shown in Panel (a) that the resource (R2) obeys
an almost perfect monotonic curve, but that the consumer (N2) has a higher peak than the
consumer (N1) of the Lotka-Volterra model.

Question 13.5. Stem cell renewal
a. When on average half of the stem cell divisions gives a new stem cell, their cell division is

not changing the density of stem cells, and on average gives a single daughter cell into the
population of differentiated cells:

dS

dt
= −dSS and

dD

dt
= pSS − dDD ,

where pS is the fixed division rate of the stem cells, and the d parameters are death rates.
This illustrates that the stem cell population will go extinct and that more than half of their
divisions have to be asymmetric to compensate for their death rate (many models therefore
set dS = 0). Thus, if f is the fraction of asymmetric divisions, and one needs to solve

dS

dt
= −pSS + 2fpS − dSS = pS(2f − 1)S − dSS = 0 with

dD

dt
= 2pS(1− f)S − dDD ,

to derive that the stem cells will be at steady state when f = 1
2 + dS

2pS
(which indeed approaches

f → 1/2 when dS � pS). Note that it is very unlikely that stem cells “know” this parameter
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expression for f , which strongly suggests that the fraction of asymmetric divisions has to
regulated by the (local) environment.

b. The previous equation was already written with a free parameter, f , for the fraction of
asymmetric divisions, and we only need to rewrite that into a function, 0 < f(D) ≤ 1, that
should should decline with the density D. A general choice would be a Hill function, e.g.,

dS

dt
= pS [2f(D)−1]S−dSS = 0 and

dD

dt
= 2pS [1−f(D)]S−dDD with f =

1

1 +D/hf
.

c. To allow for a density dependent division rate of the stem cells one multiplies the parameter
pS with another function, g(D) for growth rate, also declining as a function of D:

dS

dt
= pSg(D)[2f(D)− 1]S − dSS = 0 and

dD

dt
= 2pSg(D)[1− f(D)]S − dDD ,

with f = 1
1+D/hf

and g = 1
1+D/hg

. We have now arrived at the full, and quite complicated

terms of the Lander et al. [10] model. Note that reading this equation is almost more difficult
than deriving it.

d. If differentiated cells also divide we can add a similar growth term to dD/dt:

dS

dt
= pSg(D)[2f(D)− 1]S − dSS = 0 and

dD

dt
= 2pS [1− f(D)]g(D)S + pDG(D)− dDD ,

where G = 1
1+D/hG

. There will be two dynamical regimes because the differentiated cells only
strictly depend on the stem cells when pD < dD, i.e., if their maximal self-renewal rate cannot
fully compensate for their death rate. Note that Lander et al. [10] also allow for asymmetric
division in the early stages of the differentiated cells.

e. Yes in that model the fraction of asymmetric divisions depended almost linearly on the stem
cell density.

Question 13.6. Lymphocyte migration
a. Because the total number of cells is not changing the number of cells in the blood can be

described with a conservation equation. The ODE would have been dB/dt = eSS + eLL −
(iS + niL)B, and replacing the conservation equation with this ODE gives exactly the same
model. Numerically, the version with the conservation equation is more stable because small
numerical errors could make dB/dt+ dS/dt+ dL/dt 6= 0.

b. The steady state is S̄ ' 22, D̄ ' 1.9, and L̄ ' 72.4 cells, and hence there will be B ' 3.7
cells in the blood. Every lymph node is expected to contain 72.4/38 = 1.9 cells, which is also
revealed by D̄ ' 1.9.

c. The only term missing in the denominator is the eLeS term, and hence B̄ = eLeS
eLeS+eLiS+eSniL

The recurrent pattern in the expression is that S̄ and L̄ increase with their own influx times
the efflux of the other compartment. It makes sense that increasing the rate of efflux from
the lymph nodes increases the number of cells in the spleen (and similarly in the blood).

d. Running the model for several days reveals that one needs 20 days of capturing cells to exceed
D(t) = 50. Waiting for almost three weeks to recruit just 50% of the cognate naive T cells
would be dangerously long.

e. Adding on a fi = 9-fold increase in the influx to the draining lymph nodes reveals that it
would take about 2.5 days to accumulate 50% of the cells. Note that this still requires that
cognate cells do not egress from the draining lymph node: otherwise a new steady state is
established where most of the cells reside in the other lymph nodes (because fi < n− 1).

f. To model infection with a gradual angiogenesis, one could replace the fiiLB term by t
h+t (fi−

1)iLB + iLB to define that at t = 0 the influx is iLB, at t = h the influx is (fi−1)iLB
2 + iLB,

and that when t→∞ the influx approaches the previous fiiLB.

Answers to Chapter 14
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Question 14.1. Seedlings over-shadowed by adult plants
Start by assuming that the density of seeds, seedlings and adult plants is distributed evenly
over the field. This allows one to write ODEs for the change in the number of seedlings and
the number of adult plants in the field. Call them J for juveniles and A for adults, respectively.
Because the time scale at which the number of seeds in the seed bank changes is so slow, we can
define a constant, S, for the number (or the density) of seeds in the seed bank underlying the
field. Seedlings can only be produced when a seed sprouts. Seedlings do not replicate, they can
only mature or die. For the production of seedlings we therefore write a term, pS, where p is
the probability that a single seed sprouts. For the death of the seedlings and the adults plants
one could write d1J and d2A, respectively, whereby we assume that these death rates remain
independent of the plant densities. Since the maturation rate of the seedlings depends on the
adult plant densities, we need a term like mJf(A) for the flux of seedlings from the juvenile to
the adult population (where f(A) is a declining function of A). Combining these four terms we
arrive at the following model

dJ

dt
= pS − d1J −mJf(A) and

dA

dt
= mJf(A)− d2A ,

composed of the processes sprouting, death and maturation. Finally, we need to define how the
maturation rate declines with the number of adult plants, i.e., we need to sketch mf(A) as a
function of A. Defining m as the maximum maturation rate, one can define a non-dimensional
function, f(A), that equals one when A = 0 and declines when A increases (one may sketch a
few alternatives). The most simple choice would be a linear decline, e.g., f(A) = 1−A/k, where
k is the adult density where the maturation rate becomes zero. Another natural choice would
be a declining Hill function, f(A) = 1

1+(A/k)n , where h defines the adult density at which the

maturation rate is m/2, and n can be used to define a sigmoid decline (when maturation only
slows down at high adult densities). The linear choice would lead to the simplest model

dJ

dt
= s− d1J −mJ(1−A/k) and

dA

dt
= mJ(1−A/k)− d2A ,

where s = pS. Because 1−A/k can be interpreted as the probability that a seedling is growing
at spot not covered by an adult plant, this linear interaction function may actually be the most
natural one.

Question 14.2. Whales
To develop a proper model for the whales we have to consider three biological processes: birth,
death, and the likelihood of finding a male. One could write a model for the number of females,
N , in the population, and assume that there is a similar number of males (the true population
size would then be similar to 2N). The probability that an individual female finds a male should
increases with the number of males, and approach one at large densities of males. We here opt
for a saturation function, p(N) = N

h+N , where p(N) is the probability, and h is the population
size at which there is a 50% probability of finding a male. This (daily) probability, p(N), needs
to be multiplied with the birth rate (that itself could also be a density dependent function).
Indeed, to allow for a carrying capacity we have to include negative density dependence in
either the birth or the death terms. Starting with the latter, one could define a minimum death
rate, d, defining their maximum life span, 1/d, of several decades, and let the death rate increase
with the whale density, and write d(1 + (N/kd)

n) for the per capita death rate. When N = kd
the death rate has doubled, and when n = 1 the death rate increases linearly with the density
N . This increase can be made steeper than linear by setting n > 1, or slower than linear by
choosing n < 1. If the birth rate were to be density dependent, e.g., because the probability
that calves survive and mature is low when food (krill) availability is low, we could pick one of
the declining density-dependent functions, e.g., f(N) = 1

1+(N/kb)n
, where kb defines the whale
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density at which the birth rate has halved, and n > 1 can be used to make this function sigmoid.
Combining these three functions, one obtains

dN

dt
=
[ b

1 + (N/kb)n
N

h+N
− d(1 + (N/kd)

n)
]
N ,

where one could let kb → ∞, or let kd → ∞, to only consider density-dependent birth, or
density-dependent death, respectively. Note that by treating each process independently we
were able to write three fairly simple terms, that together form a quite complicated ODE.

PS. Our choice of a saturation function, p(N) = N
h+N , is somewhat phenomenological here, but

a sigmoid Hill function would have been inappropriate because at low densities this probability
should increase linearly with the density. Puristically, an exponential function, p(N) = 1 −
e−aN , would have the best choice, because the probability of finding at least one male whale
in a particular area can be described as a Poisson process that can be approximated with an
exponential function.

Question 14.3. Kingfishers
Since the density of kingfishers in the area is assumed to be constant, we define BT as the total
number of birds in the area. Defining B as the number kingfishers at the lake, we obtain that
there should be BE = BT − B kingfishers elsewhere. Since these fly in at a rate depending
on the fish density in the lake, one would obtain iBEf(F ) for the immigration of birds at the
lake, where f(F ) is an increasing function of the density of fish, F , in the lake. One could
sketch a few functions for the per capita immigration rate, if(F ), of kingfishers elsewhere into
the lake surroundings. For simplicity, we could choose for a linear increase, if(F ) = iF , and
hence write a mass-action iBEF = i(BT −B)F term to define the immigration. The maximum
per capita immigration rate would then be iK, where K is the carrying capacity of the fish
in the lake, which is bounded, and therefore seems fine. Alternatively, one could assume that
the immigration rate is a saturation function of the local fish density, and write if(F ) = iF

h+F ,

where i would be the maximum per capita immigration rate, and then write i(BT−B)F
h+F for the

immigration term in the model. For the emigration rate of birds from the lake we read that
they leave after catching fish. If we were to write a mass-action predation term, i.e., aFB in the
fish equation, the emigration term in the bird equation would also be aFB, because we loose
both a fish and a bird when a kingfisher catches a fish. However, this would lead to the strange
situation that birds never leave if there is no fish at the lake, which implies that one has to
define an additional emigration term, e.g., eB, allowing birds to give up and leave anyway after
some time. Arbitrarily choosing for the simplest immigration term, and adding both emigration
terms to dB/dt, one obtains

dF

dt
= rF (1− F/K)− aFB and

dB

dt
= i(BT −B)F − aFB − eB ,

which also adopts the logistic growth given by the story for the fish. Note the birds leaving the
lake immediately arrive “elsewhere” thanks to the conservation equation BE = BT −B.

Question 14.4. Influenza virus infecting epithelial cells
Consider a tissue of a certain size by defining K as the maximum of cells that can be packed
in this tissue. Uninfected epithelial cells, E, will divide when they find empty space, S, around
them, i.e., S = K − E − I, where I is the number of infected cells. The probability of finding
empty space would then be S/K = 1 − (E + I)/K. Defining a maximum division rate, b,
and a death rate, d (such that 1/d corresponds to a few weeks), one would start by writing
dE/dt = bES − dE = bE(1 − (E + I)/K) − dE. Epithelial cells are infected by virus, which
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could be modeled with a mass-action term, βEV (where V represent virus). The infection rate
declines when there is interferon, F . If the effect of interferon on the infection rate is modeled
with a declining Hill function one would write f(F ) = 1

1+(F/h)n , where h is the interferon
concentration at which the infection rate is halved. If the effect of interferon were modeled
with a declining linear function one would write f(F ) = 1 − F/h, where h is the interferon
concentration at which the infection rate becomes zero. Multiplying the infection term, βEV ,
with either of these two non-dimensional functions, allows interferon to reduce the infection rate,
where β remains the maximum mass-action infection rate. Arbitrarily choosing for the linear
function, one obtains

dE

dt
= bE(1− (E + I)/K)− dE − βEV (1− F/h) ,

and since infected cells appear by successful infection and die at a faster rate, one readily writes
for the infected cells, I,

dI

dt
= βEV (1− F/h)− δI ,

where δ � d, and we assume that infected cells do not divide. Finally, infected cells produce
virus and interferon, which both should decay, e.g.,

dV

dt
= pV I − cV V and

dF

dt
= pF I − cFF ,

where the p parameters are production rates, the c parameters clearance rates. For completeness
one could allow virus and interferon to be absorbed to the healthy cells,

dV

dt
= pV I − cV V − aV V E and

dF

dt
= pF I − cFF − aFFE ,

where the a parameters are mass-action absorption rates.

Question 14.5. DNA circles
First write a model for the number of cells, N , and the total number of circles C, i.e.,

dN

dt
= s+ (b− d)N and

dC

dt
= s− dC ,

where we have omitted the division rate, b, from the second equation because cell division does
not affect the number of circles. The steady state of this model would be N̄ = s

d−b and C̄ = s/d.
The fraction of cells containing a circle would be defined as F = C/N . Hence the ODE for F
needs to be written as a quotient of the two derivatives, i.e.,

dF

dt
=
C ′

N
− CN ′

N2
=
s− dC
N

− C(s+ (b− d)N)

N2
=

s

N
− dF − sF

N
− (b− d)F =

s

N
− sF

N
− bF

or,
dF

dt
=

s

N
− F (s/N + b) ,

which is an equation that would be very difficult to write from scratch.

Interestingly, the quasi steady state (quasi because it still depends on N) for this fraction,

F =
s/N

s/N + b
=

s

s+ bN
,

has been used to better interpret experimental data on these circles in circulating T cells [3, 7].
Since bN corresponds to the daily production of cells by division, and s to the daily production
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by the thymus, the observed fraction of circles is expected to approach the fraction of cells
produced in the thymus. Increasing the division rate, b, would decrease F by dilution. Note
that a transient increase of the death rate, d, of the cells will decrease N , which hence would
increase the fraction of cells containing a circle. Finally, one can obtain the full steady state of
the fraction from N̄ = s

d−b and C̄ = s/d, i.e.,

F̄ =
C̄

N̄
=
s

d

d− b
s

=
d− b
d

.

This also reveals that F̄ corresponds to the fraction produced by the thymus (because the total
per capita production at steady state is d, and b reflects the part produced by cell division), and
confirms that F̄ increases when d increases (at high death rates F → 1).

Question 14.6. Maintenance and reproduction
Since we learn little about the algae in this system, one could assume a mass-action consumption
rate, and conventional logistic growth for the algae, to write

dA

dt
= rA(1−A/K)− aAD ,

where aA is the per capita consumption rate of Daphnia, D. Since the death rate of the
zooplankton declines as a function of their per capita consumption, we could sketch a declining
Hill function f(aA) starting at a maximum death rate, d1 + d0, when aA = 0, and approaching
a minimum death rate, d0, when aA→∞, e.g.,

f(aA) = d0 +
d1

1 + aA/h
.

Since the production of eggs should only start at consumption levels at which the organisms
become long-lived, i.e., when aA > h, one could sketch an increasing Hill function, g(aA), with
a saturation constant, k, exceeding h. One could even choose for a sigmoid function to define
that virtually no eggs are produced at low consumption levels, e.g.,

g(aA) =
e(aA)n

kn + (aA)n
,

where e is maximum rate at which eggs can be produced, k > h, and n > 1. An alternative
would be a shifted Hill function,

g(aA) =
e(aA− k)

H + aA− k ,

where k is the consumption level at which eggs begin to be produced, and H is a saturation
constant. Arbitrarily choosing for the latter, one would write for the eggs, E, and the Daphnia,
D,

dE

dt
=
e(aA− k)D

H + aA− k −mE and
dD

dt
= mE − d0D −

d1D

1 + aA/h
,

where m is the rate at which eggs hatch to form novel Daphnias. Note that this remains
a phenomenological model because we are not distributing the consumed resources over the
maintenance and reproduction processes in a conserved manner, and note that one should make
sure that aA− k ≥ 0 when analyzing the model.

Answers to Chapter 15
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Question 15.1. Sketch a few functions
Figures made with a previous version of Grind:

x0

y

0

(a)

x

y

0

0

x0

y

0

(b)

x

y

0

0

(c)

A

L

a/b

(d)

Y

X

−c 0 1

0

(e)

x

y

a− d

q +K0

0

a. First note that y = h
h+x = 1 when x = 0. Second, we see that for x → ∞, y → 0, and

similarly that for x→ −∞, y → 0. There is a vertical asymptote at x = −h. See Panel (a).
b. First note that y = x

h+x = 0 when x = 0. Second, we see that for x → ∞, y → 1, and
similarly that for x→ −∞, y → 1. There is a vertical asymptote at x = −h. See Panel (b).

c. Plotting L = aA
c+bA we first rewrites this into L = a

c/A+b , to see that there is a horizontal

asymptote at L = a/b (see Panel (c)). If we were to plot A = cL
a−bL this would become a

vertical asymptote at L = a/b (not shown).
d. Remove the Y = 0 solution and observe that X = (a/b)(1−Y )(c+Y ) is the parabola shown

in Panel (d).
e. The intersection with the x-axis corresponds to x = ak−dq−dk

a−d , and that with the y-axis to

y = ak
q+k − d. Rewriting the function as y = a k/x−1

q/x+k/x−1 − d and sending x→∞ we see that
y → a − d, meaning that there is a horizontal asymptote at y = a − d. There is a vertical
asymptote at x = q + k. See Panel (e), where the dashed lines denote the two asymptotes.

Question 15.2. Linearization
a. The derivative is ∂xx

2 = 2x.
b. Filling in f(x) ' f(x̄) + ∂x f(x̄) (x− x̄) we obtain that f(3.1) = 9 + 0.1× 2× 3 = 9.6. The

true value is 3.12 = 9.61.

Question 15.3. Linear models

The steady state is x = y = 0 and the Jacobian, J =

(
a b
c d

)
, is the same as the interaction

matrix. Use Fig. 15.6 to create an interaction matrix with the eigenvalues corresponding to the
different types of steady states.
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