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Chapter 1

Preface

This book is an introduction into modeling populations in biology. We will make mathematical
models for populations of bacteria, cells, hosts with parasites, and predators with their prey.
Models are formulated in terms of ordinary differential equations (ODEs), and we will see that
these ODEs for different biological systems often resemble one another. The book covers the
material of a course given to undergraduate biology students at Utrecht University, and aims at
teaching these students how to make and use simple mathematical models in biological research.
There are several other textbooks on this subject, and some unique features of this particular
book are: (1) an emphasis on “parameter free” models and phase plane analysis, (2) the usage
of the epidemiological concept of an R0 (or fitness) to simplify parameter conditions, and (3) a
mechanistic “graphical” approach for model development.

The last point is most important. Rather than just explaining the classic models, we will attempt
to devise a model ourselves by translating the relevant biological processes, like immigration,
birth, death, infection and killing, into intuitive graphs depicting how each process depends on
the population densities. These graphs are subsequently translated into simple mathematical
functions, and by collecting these functions into a system of differential equations we obtain a
“mechanistic” mathematical model that explicitly depends on its underlying biological processes.
Finally, we will compare our “mechanistic” model with the typically more “phenomenological”
classic models covered in other textbooks.

What is the reason for this rather laborious procedure for explaining models to students? I
think it is important that biologists can identify each term in a mathematical model with an
underlying biological process for which they have some knowledge, or at least some intuition.
For example, one often needs biological insight to know how, or even whether, birth, death and
interaction rates depend on the population size, as the results obtained with a model are likely
to depend on these assumptions. By identifying differences between models based upon different
assumptions we learn to become critical readers of mathematical models, and learn to be careful
with the necessary assumptions one has to make when modeling an interesting biological system.

A second emphasis of this book is on phase plane analysis, which means that we sketch nullclines
and trajectories, either by hand or by computer. Phase plane analysis allows one to visualize
the potential steady states of a model, and to determine their stability (again by hand or by
computer software). Phase plane analysis is a relatively simple technique that is easily accessible
to motivated biology students. Most pictures in this book are made an R-software package called
Grind, which is good at drawing nullclines, finding steady states, and numerical integration.
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During the course students work extensively with Grind, and the R-scripts used for making the
figures in this book are available on the website tbb.bio.uu.nl/rdb/bm/models/.

Because the parameter values of biological models are typically unknown, there is a strong em-
phasis in this book on analyzing models with free parameters. This has the enormous advantage
that the results will be general, and that we do not run the risk of ignoring possibilities that may
occur for different parameter settings. Most pictures in this book therefore have no numbers
along the axes (except for zero and one); rather they have parameter expressions for the points
of interest. Such expressions in terms of parameters will be simplified using the epidemiologi-
cal concept reproduction ratio, R0, and the ecological concept “critical resource density”, R∗.
Simplification typically increases our understanding of the underlying biology.

The expected audience of this book is students of biology and ecology. Too many biologists
treat a mathematical model as a “black box” that is too difficult to understand. A main
objective of this course is to open the black box and teach biology students how to develop simple
mathematical models themselves. This allows for a much better understanding, and for a healthy
critical attitude toward the existing models in the field. This course therefore only covers simple
caricature models that are designed to capture the essentials of the biological problem at hand.
Such simple models can be completely understood, and therefore allow for excellent insight and
provide new ideas about the biological problem (May, 2004). Other areas of theoretical biology
are about large-scale simulation models that are designed to summarize the existing knowledge
about a particular system, like the metabolism of a whole cell, or the nutrient flow in a complete
ecosystem. Investigators use such large models for predicting the behavior of the biological
system, e.g., when circumstances are changing. Simple caricature models cannot predict what
will happen, but importantly they are much better at predicting what could happen. Although
large-scale models are not covered in this book, the material covered in this course should also
be useful for students interested in developing large realistic models. First, small modules within
the large models should be developed by the same mechanistic process that we here use for simple
models. Second, it is a sobering lesson to let oneself be surprised by the sometimes unexpected
behavior of simple toy models. This lesson is equally important for scholars developing large-
scale models by combing many such simple models.

Readers are expected to be familiar with phase space analysis, i.e., should know how to
sketch nullclines and solve simple algebraic equations. We provide a set of tutorials on
tbb.bio.uu.nl/rdb/bm/videos.html that can be used to catch up on these topics. During the
course we will use Jacobi matrices for performing stability analysis, and this will be explained in
the beginning of the course using the accompanying ebook by Panfilov et al. (2025). The course
comes with a set of webpages that can be reached via the home page tbb.bio.uu.nl/rdb/bm/.
The ebooks used in this course can be downloaded from tbb.bio.uu.nl/rdb/books/ (the answers
to the exercises of this book are in the file books/bmAnswers.pdf).

Finally, this book originated from a theoretical ecology course given decades ago by Paulien
Hogeweg at Utrecht University. She taught me the strength of phase plane analysis and simple
caricature models. After I started teaching this course its contents and presentation have evolved,
and have been adapted to the questions, and the comments from numerous students attending
this course.

https://tbb.bio.uu.nl/rdb/bm/models/
https://tbb.bio.uu.nl/rdb/bm/videos.html
https://tbb.bio.uu.nl/rdb/bm/
https://tbb.bio.uu.nl/rdb/books/
https://tbb.bio.uu.nl/rdb/books/bmAnswers.pdf


Chapter 2

Introduction

This course is an introduction into theoretical biology for biology students. We will teach you
how to make and analyze mathematical models, with the ultimate aim that you can critically
judge the contributions the assumptions of existing models, and that you can devise useful novel
models whenever you need them in your future biological research. Mathematical models are
used in all areas of biology, and they are typically formulated in ordinary differential equations
(ODEs). We will analyze such models by hand by sketching nullclines and computing steady
states, and by letting a computer perform numerical integration and phase plane analysis. A
major emphasis of this course is to develop differential equations by following a graphical pro-
cedure, depicting each biological process as a function of its relevant variable(s). Experience
with devising mathematical models will help you to understand and evaluate models proposed
by others.

This first chapter introduces some basic concepts underlying modeling with differential equa-
tions. You will become familiar with the notion of a “solution”, “steady state”, “half life”,
and the “expected life span”. Concepts like solution and steady state are important because
a differential equation describes the change of the population size, rather than its actual size.
We will start with simple models that are only convenient to introduce these concepts. To
keep models general they typically have free parameters, i.e., parameters are letters instead of
numbers. Later models in the course are more challenging and more interesting.

2.1 The simplest possible model for a huge problem

Consider the amount of plastic, P , floating in the oceans. Since plastic decays very slowly, P
increases more or less proportionally with the daily amount of plastic, k, that is dumped into
the oceans. A current estimate for the world-wide dumping rate is 8 millions tons of plastic per
year, i.e., k = 2.17× 104 ton per day. Knowing k we write the following mathematical model,

dP

dt
= k , (2.1)

which says that the variable P increases at a rate k per time unit (here per day). In this ODE
P is a variable that changes over time, and the “dimension” of P is tons of plastic in the oceans.
Formally one should write dP (t)/dt = k, because the variable P is a function of time, but for
simplicity P (t) is abbreviated to P . The parameter k in this Eq. (2.1) here is a constant, with
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dimension tons of plastic per day. Actually, k should also be increasing over time, as we have
been dumping more and more plastics, but for simplicity we here consider a time period over
which k is relatively constant (see the last question).

This equation is so simple that one can derive its general solution

P (t) = P (0) + kt , (2.2)

where P (0) is the amount of plastic that was already in the ocean at the time we started dumping
k tons per day. Plotting P (t) over time therefore gives a straight line with slope k, intersecting
the vertical axis at P (0). The slope of this line is k, which is indeed the derivative defined by
Eq. (2.1). Thus, the differential equation Eq. (2.1) gives the “rate of change”, and the solution
of Eq. (2.2) gives the “population size at time t”. Note that the solution depends on both the
initial condition, P (0), and the parameter, k.

Typically, differential equations are too complicated for solving them explicitly, and their general
solutions are not available. In this course we will therefore not consider the integration methods
required for obtaining solutions of ODEs. However, having a solution one can easily check it by
taking the derivative with respect to time. For example, the derivative of Eq. (2.2) with respect
to time is ∂t[P (0) + kt] = k, which is indeed the right hand side in Eq. (2.1). Summarizing, the
solution in Eq. (2.2) gives the amount of plastic at time t, and Eq. (2.1) gives its daily rate of
change. Note that if we were to take measures reducing the amount of plastic that streams into
the ocean, we would only need to change the value of the parameter k. The model remains the
same.

We can change the model by making it somewhat more realistic, e.g., by accounting for the fact
that plastic in the ocean is decaying slowly, i.e., with a very long half-life. Defining a rate of
decay, d, the model becomes

dP

dt
= k − dP , (2.3)

where the parameter d defines the rate at which individual plastic molecules decay. d has a
dimension per day (or per unit of time), and therefore is called a “rate”. In the ODE this can
be checked by observing that the term dP should have the same dimension “tons per day” as
k (otherwise they cannot be subtracted from another). Biological examples of Eq. (2.3) would
be red blood cells produced by bone marrow, shrimps being washed onto a beach, daily intake
of vitamins, and so on. The k parameter then defines the inflow, or production, and the d
parameter is a death rate. Although this seems a straightforward extension of Eq. (2.1), it is
much more difficult to obtain the solution

P (t) =
k

d

(
1− e−dt

)
+ P (0)e−dt , (2.4)

which is depicted in Fig. 2.1a. The term on the right corresponds to the exponential loss of the
initial value, P (0). The term on the left is more complicated, but when evaluated at long time
scales, i.e., for t→∞, the term (1− e−dt) will approach one, and one obtains the “steady state”
P̄ = k/d. We conclude that the solution of Eq. (2.4) ultimately approaches the steady state
P̄ = k/d, which is ultimate amount of plastic in the oceans when we keep on dumping k tons
per day. Note that this predicted steady state value is independent of the initial condition P (0).

Fortunately, we do not always need a solution to understand the behavior of a model. The same
steady state can also directly be obtained from the differential equation. Since a steady state
means that the rate of change of the population is zero we set

dP

dt
= k − dP = 0 to obtain P̄ =

k

d
. (2.5)
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which is the same value as obtained above from the solution for t → ∞. Note that a steady
state also gives a population size, and therefore provides some insight in the behavior of the
model. For instance, the steady state P̄ = k/d predicts that if we were to half the amount of
plastic that we dump in the oceans the world-wide burden of plastic would also half. The decay
rate only determines how slowly this halved burden would be approached. If we could double
the decay rate by using plastics with a shorter half-life, the steady state would also be halved,
and would be approached two-fold faster.

2.2 Exponential growth and decay

Above we have already used the term half-life, and having the model of Eq. (2.3) we can precisely
define what we mean by this. Consider the situation that we completely abandon the usage of
plastic, and the current amount of plastic, P (0), is slowly decaying. To study this we do not
need to change the model, we just set k = 0, to be left with dP/dt = −dP . This is the
famous equation for exponential decay of radioactive particles, with the almost equally famous
solution P (t) = P (0)e−dt, saying that ultimately, i.e., for t → ∞, the amount of plastic, P (t),
will approach zero. Plotting the natural logarithm of P (t) as a function of time would give a
straight line with slope −d per day (because ln[P (0)e−dt] = ln[P (0)] − dt). This exponential
decay equation allows us to introduce two important concepts: the half-life and the expected
life span. The half-life is defined as the time it takes to loose half of the initial population, and
is defined by the solution, P (t) = P (0)e−dt, i.e.,

P (0)

2
= P (0)e−dt which simplifies into ln

1

2
= −dt or t =

ln 2

d
. (2.6)

Since ln 2 ' 0.69 the half life is approximately 0.69/d days. Note that the dimension is correct: a
half life indeed has dimension time because d is a rate with dimension day−1. The other concept
is expected life span: if radioactive particles or biological individuals have a probability d to die
per unit of time, their expected life span is 1/d time units. This is like throwing a die. If the
probability to throw a four is 1/6, the expected waiting time to get a four is six trials. Finally,
note that this exponential decay model has only one steady state, P̄ = 0, and that this state is
stable because it is approached at infinite time. A steady state with a population size of zero is
often called a “trivial” steady state.

The opposite of exponential decay is exponential growth

dN

dt
= rN with the solution N(t) = N(0)ert , (2.7)

where the parameter r is known as the “natural rate of increase”. The solution can easily be
checked: the derivative of N(0)ert with respect to t is rN(0)ert = rN(t). Biological examples of
this equation are the growth of mankind, the exponential growth of a pathogen in a host, the
growth of a tumor, and so on. Similar to the half life defined above, one can define a doubling
time for populations that are growing exponentially:

2N(0) = N(0)ert gives ln 2 = rt or t = ln[2]/r . (2.8)

This model also has only one steady state, N̄ = 0, which is unstable because any small pertur-
bation above N = 0 will initiate unlimited growth of the population. To obtain a non-trivial (or
non-zero) steady state population size in populations maintaining themselves by reproduction
one therefore needs density dependent birth or death rates. This is the subject of the next
chapter.
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In replicating biological populations, this natural rate of increase of dN/dt = rN should obvi-
ously be a composite of birth and death rates. A more natural model for a biological population
that grows exponentially therefore is

dN

dt
= (b− d)N with solution N(t) = N(0)e(b−d)t , (2.9)

where b is a birth rate with dimension t−1, and d is the death rate with the same dimension.
Writing the model with explicit birth and death rates has the advantage that the parameters of
the model are strictly positive (which will be true for all parameters in this course). Moreover,
one now knows that the “generation time” or “expected life span” is 1/d time units. Since every
individual has a birth rate of b new individuals per unit of time, and has an expected life span
of 1/d time units, the expected number of offspring of an individual over its entire life-span is
R0 = b/d (see Chapter 6). We will use this R0 as the maximum “fitness” of an individual, i.e., the
life-time number of offspring expected under the best possible circumstances. In epidemiology
the R0 is used for predicting the spread of an infectious disease: whenever R0 < 1 a disease will
not be able to spread in a population because a single infected host is expected to be replaced
by less than one newly infected host (Anderson & May, 1991); see Chapter 6.

Biological examples of Eq. (2.9) are mankind, the exponential growth of algae in a lake, and
so on. Similarly, the natural rate of increase r = b − d yields a “doubling time” of t = ln[2]/r
time units. A famous example of the latter is the data from Malthus (1798) who investigated
the birth records of a parish in the United Kingdom, and found that the local population had
a doubling time of 30 years. Solving the natural rate of increase r per year from 30 = ln[2]/r
yields r = ln[2]/30 = 0.0231 per year, which is sometimes expressed as a growth rate of 2.31%
per year. More than 200 years later the global human growth rate is still approximately 2% per
year. Exponential growth therefore seems a fairly realistic model to describe the growth of the
quite complicated human population over a period of several centuries.

In this book we will give solutions of differential equations whenever they are known, but for
most interesting models the solution is not known. We will therefore not explain how these
solutions are obtained (see textbooks like the one by Adler (1997) for an overview of methods of
integration). You can also use symbolic software like Mathematica to find the explicit solution
of some of the differential equations used here.

Finally, it is important to realize that most models introduced in this book require a number of
“unrealistic assumptions”: (1) all individuals within a population are equal, (2) each populations
is well-mixed and can therefore be described with a single density, (3) population sizes are so large
that we never have populations containing less than one member, and (4) typically parameters
are constants that do not vary over time. We will see that such “unrealistic” models nevertheless
help us to think clearly about the biology described by the model (May, 2004).

2.3 Summary

An ordinary differential equation (ODE) describes the rate of change of a population. The
actual population size is given by the solution of the ODE, which is generally not available. To
find the population size one can compute the steady state(s) of the model (the ODE), and/or
solve the ODEs numerically on a computer, which gives the model behavior. Steady states
are derived by setting the rate of change to zero, and solving for the actual population size.
Doubling times and half-lives are solved from the solution of the exponential growth (or decay)
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Figure 2.1: Population growth. Panel (a) depicts the solution of Eq. (2.4). Panels (b) and (c) depict
exponential growth on a linear, and a logarithmic vertical axis, respectively. A differential equation
describes the slope of the solution for each value of the variable(s), i.e., in Panel (b) the slope of the
N(t) = N(0)ert curve for each value of N(t) is dN/dt = r. This figure was made with the model
intro.R.

equation N(t) = N(0)ert. The fitness, R0, of a population is the expected number of offspring
of one individual over one generation, under the best possible circumstances.

2.4 Exercises

Question 2.1. Red blood cells
Red blood cells are produced in the bone marrow at a rate of m cells per day. They have a
density independent death rate of d per day.
a. Which differential equation from this chapter would be a correct model for the population

dynamics of red blood cells?
b. Suppose you donate blood. Sketch your red blood cell count predicted by this model in a

time plot.
c. Suppose a sportsman increases his red blood cell count by receiving blood. Sketch a time

plot of his red blood cell count.

Question 2.2. Pesticide on apples
During their growth season apples are frequently sprayed with pesticide to prevent damage by
insects. By eating apples you accumulate this pesticide in your body. An important factor
determining the concentration of pesticide is their half life in the human body. An appropriate
mathematical model is

dP

dt
= σ − δP ,

where σ is the daily intake of pesticide, i.e., σ = αA where A is the number of apples that you
eat per day and α is the amount of pesticide per apple, and δ is the daily rate at which the
pesticide decays in human tissues.
a. Sketch the amount of pesticide in your body, P (t), as a function of your age, assuming you

eat the same number of apples throughout your life.
b. How much pesticide do you ultimately accumulate after eating apples for decades?
c. Suppose you have been eating apples for decades and stop because you are concerned about

the unhealthy effects of the pesticide. How long does it take to reduce your pesticide level by
50%?
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d. Suppose you start eating two apples per day instead of just one. How will that change the
model, and what is the new steady state? How long will it now take to reduce pesticide levels
by 50% if you stop eating apples?

e. What is the decay rate if the half-life is 50 days?

Question 2.3. ATP
Although this book is not about modeling molecular biology, one can consider molecules as
populations that are interacting via chemical reactions, and hence undergo population dynamics.
A famous example is the turnover of ATP, the molecule providing energy to cells when it is
hydrolyzed. The human body requires the hydrolysis of at least 60 kg of ATP per day to meet
its energy needs, i.e., about our body weight per day, but the total amount of ATP in all cells
of a 60 kg individual is about 60 g only. Since the total amount of ATP remains close to this
steady state value, one would write

dA

dt
= p− δA = 0 ,

where A is the total amount of ATP, p is the daily production of ATP by phosphorylation of
ADP, and δ is the daily turnover rate of ATP.
a. What is the dimension of the production parameter p?
b. What is the steady state, Ā, according to this model, and what does this tell you about the

ratio p/δ?
c. Knowing that we hydrolyze δA = 60 × 103 g of ATP per day, what would your estimate be

for the turnover rate of ATP?

Question 2.4. Bacterial growth
Every time you brush your teeth, bacteria enter your blood circulation. Since this a nutritious
environment for them they immediately start to grow exponentially. Fortunately, we have
neutrophils in our blood that readily kill bacteria upon encountering them. A first model would
be:

dB

dt
= rB − kNB ,

where B and N are the number of bacteria and neutrophils measured in a ml of blood, r is
the growth rate of the bacteria (per hour), and k is the rate at which bacteria are killed by
neutrophils.
a. What is the doubling time of the bacteria in the absence of neutrophils?
b. Neutrophils are short-lived cells produced in the bone marrow, and chemotherapy can

markedly reduce the neutrophil counts in the peripheral blood. What is the critical number
of neutrophils that is required to prevent rampant bacterial infections after chemotherapy?

c. What is the dimension of the parameters r and k?
d. The kBN term is called a mass-action term because it is proportional to both the bacterial

and the neutrophil densities. A disadvantage of such a term is that each neutrophil is assumed
to kill an unrealistically large number of bacteria per hour, kB, if the bacterial density
becomes very large. Later in the course we will use saturation functions to allow for maximum
killing rates per killer cell. An example of such a model would be

dB

dt
= rB − kNB

h+B
,

where the total number of bacteria killed per hour approaches kN when B → ∞ (please
check this). What is now the dimension of k?

e. What is now the critical number of neutrophils that is required to prevent bacterial infections
after chemotherapy? Can you sketch this?

f. What is the dimension of h, and how would you interpret that parameter?
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Extra questions

Question 2.5. Physics: a cup of tea
Newton’s law of cooling describes that the rate of heat loss of a body is proportional to the
difference in the temperatures between the body and its environment, and can be written as

dT

dt
= c(TE − T ) ,

where T is the temperature of the object, e.g., a cup of tea, and TE is the (constant) temperature
of the environment. We have learned in this chapter that the solution is a function T (t) that
has c(TE − T (t)) as its derivative. Note that this model is identical to Eq. (2.3) when we write
k = cTE and d = c, and hence that the solution is given by Eq. (2.4).
a. What is the steady state temperature of the object?
b. What is the dimension of the parameter c?
c. How many parameters does the model have?

Question 2.6. Physics: acceleration
Consider the famous equation for velocity and acceleration, x(t) = 1

2at
2 +v(0)t, and let us derive

this from the ODEs,
dx

dt
= v and

dv

dt
= a ,

where x is the total distance covered, v is the velocity, and a is the time derivative of the
velocity, which is defined as the “acceleration”. This is actually a simpler system that the model
for Newton’s law of cooling because the variables x and v only appear in the left hand sides
of their ODEs, i.e., we do not need to find a function with a derivative depending on itself.
Indeed, integrating dv/dt readily gives v(t) = at + v(0), where the integration constant v(0) is
the velocity at time zero, and integrating dx/dt = at+ v(0) gives x(t) = 1

2at
2 + v(0)t.

a. Check the dimensions of the velocity, v, and the acceleration, a.
b. In Eq. (2.1) we considered the case where we dump a fixed amount, k, of plastic in the oceans

on a daily basis. Now consider the more realistic case where k(t) becomes a variable that
increases linearly over time, i.e., write that dk/dt = a, where a is the slope with which k(t)
increases. Starting at a time when k(0) tons of plastic was dumped per day, we write the
solution k(t) = at+k(0). What is the new ODE for the total amount of plastic in the oceans,
and what is its solution?

c. Do you expect the amount of plastic in the oceans to approach a (new) steady state?
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Chapter 3

Density dependence

Populations change size by various biological processes, like migration, production, replication
(birth), death and differentiation. Biological models tend to be complicated, and typically non-
linear, because these processes often depend on the population size(s). This is a form of feedback
that is called density dependence. In this chapter we will develop a number of models for the
growth of a population, where at least one of these processes is regulated by the density of that
population. Considering single populations, the models in the chapter will consist of only one
ODE (i.e., they are one-dimensional), and what we will do is define functions describing how
these biological processes depend on the population density. Using biological knowledge and
intuition we will first sketch a reasonable curve describing this relationship (see Fig. 3.1). This
curve is subsequently described with a simple mathematical function, and since we are aiming
for non-dimensional functions, we can multiply such a function with the appropriate parameter
of the model (and keep the dimensions of the model correct). This ultimately results in a
model with density-dependent interaction terms each corresponding to a well-defined biological
process. We will analyze the model by identifying steady states and by numerical integration.
These results can then be compared with data and the corresponding classic models in the
literature.

We have seen in Chapter 2 that non-replicating populations that are maintained by a fixed
source term, and have a density-independent death rate, e.g., Eq. (2.3), will ultimately approach
a stable steady state where the source balances the death. If such a population is perturbed it
will return to the same steady state at a rate determined by the death rate (the inverse of this
rate is called the “return time”, which we will address later in Chapter 4). This demonstrates
that stable population densities can come about without having any regulation or feedbacks in
the system. This is not true for the replicating population that we considered in Chapter 2
because the only steady state of Eq. (2.9) is N = 0. Whenever b > d, i.e., if the fitness R0 > 1,
this N̄ = 0 equilibrium is unstable (see Chapter 4). If R0 < 1 the equilibrium is stable, and
the population will ultimately go extinct (i.e., for t → ∞ the solution N(0)e(b−d)t → 0 when
d > b). One could argue that Eq. (2.9) also has a steady state when b = d, but this is a
untenable condition because the birth rate and the death rate would have to stay exactly the
same over long time scales. (Technically speaking, one is solving for the variables, and not for
the parameters).
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Figure 3.1: Examples of linear relationships between per capita birth and death rates and the population
density. When the birth rate exceeds the death rate the population will grow (dN/dt > 0). Steady states
correspond to the intersection points where the birth rate equals the death rate.

3.1 Negative density dependence

At high population densities the availability of essential resources is typically low, and this
is expected to result in a lower fecundity and/or higher death rates (see Fig. 3.1). This is
called negative density dependence since both processes reduce the net population growth rate.
Numerous examples from microorganisms and ecology illustrate that fecundity tends to decline
with the population density (see Fig. 3.2 and Walker et al. (2009)). Similarly the contact
inhibition of proliferation of cells growing in a monolayer, or as a tissue, plays a role in limiting
the population size until the resource “space” is filled up (Wieser & Oesch, 1986). At high
population densities, one also expects the death rates of cells or organisms to be high (although
several microorganisms have evolved mechanisms to survive long periods of starvation (Phaiboun
et al., 2015)). Let us start by adding negative density-dependence to the birth and death
processes of our basic models.

Density dependent death

If the death rate were to increase with the population size, the simplest model would be to
have a linear increase of the per capita death rate with the population size (see Fig. 3.1a). A
linear increase need not be realistic, as one could argue that death rates increase steeply at
high densities, or alternatively that the death rate should approach a maximum at the highest
densities. Choosing for a linear increase of the per capita death rate would therefore be “natural”
first choice because it is a compromise between the two alternatives, and is definitely the simplest
possible extension of the density-independent death rate, d, in Eq. (2.3) and Eq. (2.9).

By adding a linear increase to the normal death rate, d, we obtain a simple mathematical
function, F (N) = d + cN , for the graph in Fig. 3.1a, where d is the normal death rate that is
approached when the population size is small, and where c is the slope with which the death
rate increases with N . Since cN should be a rate that can be added to the death rate d, the
dimension of c should be per time unit per individual, and the dimension of F (N) is a rate that
should replace the d parameter in Eq. (2.3) and Eq. (2.9). It is therefore much simpler to define
a non-dimensional function, f(N), that we can multiply with the original death rate, d, i.e.,
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define df(N) = F (N), and solve

f(N) =
F (N)

d
= 1 +

cN

d
= 1 +

N

k
, (3.1)

where k = d/c has same dimension as N . Now we can preserve the original death rate of
the model, and multiply the parameter d in Eq. (2.3) and Eq. (2.9) with f(N). Thanks to
this simplification the exact interpretation of the new density-dependence parameter, k, is the
population size at which the death rate had doubled (i.e., when N = k the per capita death
rate is 2d). This is an intuitive parameter with a simple dimension that one can easily explain
to an audience, and estimate from experimental data (see Fig. 3.2a). Finally, because f(N) = 1
when N → 0 the minimum per capita death rate, d, and maximum generation time, d−1, remain
exactly the same.

For the replicator population of Eq. (2.9), the full model becomes

dN

dt
=
[
b− d

(
1 +

N

k

)]
N . (3.2)

At low population sizes the expected life span of the individuals remains 1/d time units, and
they always have a birth rate b per time unit. Since the R0 is a maximum fitness, it is computed
for an individual under optimal conditions, which here means N → 0. The fitness of individuals
obeying Eq. (3.2) therefore equals R0 = b/d. To search for steady states of Eq. (3.2) one sets
dN/dt = 0, cancels the trivial N = 0 solution, and solves from the remainder that

b− d =
dN

k
that N̄ = k

b− d
d

= k(R0 − 1) (3.3)

is the non-trivial steady state population size. In ecology such a steady state is called the
“carrying capacity”. A negative feedback in the form of a linearly increasing density-dependent
death rate is therefore sufficient to have a carrying capacity. Here, the carrying capacity de-
pends strongly on the fitness of the population, i.e., doubling (R0 − 1) doubles the steady state
population size, whatever the magnitude of R0.

For a population that is maintained by a source, i.e., dN/dt = s− dN , the full model becomes

dN

dt
= s− d

(
1 +

N

k

)
N , with steady states N̄ =

−dk ±
√
dk(dk + 4s)

2d
. (3.4)

Because the square root term is positive and larger than dk, the positive root of this quadratic
equation corresponds to a meaningful steady state, and the negative root has to be ignored.
Because this population has no birth rate the R0 is not defined.

Density dependent birth

Now that we have learned how one can add density-dependent effects to the death terms of
a model, we turn to adding negative density-dependence to the birth or source terms of Eq.
(2.9) and Eq. (2.3). For the replicator model the per capita birth rate should decrease with
the population size (evidence supporting a decreasing birth rate in two “natural” populations is
shown in Fig. 3.2). The simplest functional relationship between a decreasing per capita birth
rate and the population size is again a linear one, and the graph in Fig. 3.1b can mathematically
be described as F (N) = b − cN , where b is the birth rate at low population densities and c is
the slope of the line. Simplifying this into a non-dimensional function we write

f(N) =
F (N)

b
= 1− cN

b
= 1− N

k
, (3.5)
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Figure 3.2: Density dependence in “natural” populations. Panel (a): Heck cattle have been introduced to
the Oostvaardersplassen in the Netherlands as a semi-natural population of grazers. The population was
started with a small group of animals in 1983, and after approximately 20 years the density approached
a carrying capacity of 300–400 cattle. Ecologists have measured birth and death rates over the years
(Figure taken from an article in NRC Handelsblad on 11 December 2010). Panel (b): naive CD8+ T cells
start dividing when their densities are low. The horizontal axis depicts the percentage of naive CD8+

T cells present in young and old Rhesus macaques, and the vertical axis depicts the percentage of naive
CD8+ T cells that have recently divided (Cicin-Sain et al., 2007).

and multiply the original birth rate parameter, b, by this non-dimensional function such that
the model becomes

dN

dt
=
[
b
(

1− N

k

)
− d
]
N . (3.6)

The dimension of the parameter k is again biomass, or individuals, and its exact interpretation
now is that k defines the population size where the birth rate becomes zero (which is again
intuitive and measurable). Because f(N) will become negative whenever N > k, which would
give a negative birth rate, it is technically better to define f(N) = max(0, 1−N/k), where the
function max() returns the maximum of its arguments. Because the steady state will always
correspond to a density with a non-zero birth rate, we proceed with Eq. (3.5) for reasons of
simplicity.

Since at low densities f(N) → 1, the interpretation of the parameter b remains the maximum
birth rate, implying that the fitness of individuals obeying Eq. (3.6) remains R0 = b/d (which
is a natural result because at a sufficiently low population size the density-dependence should
have no effect). The steady states of Eq. (3.6) are N = 0 and solving

b− d =
bN

k
yields N̄ = k

(
1− d

b

)
= k

(
1− 1

R0

)
. (3.7)

A negative feedback in the form of a linear density-dependent per capita birth rate therefore
also allows for a carrying capacity. When R0 � 1, this carrying capacity approaches the value
of k, and becomes fairly independent of the fitness (which differs from the result obtained with
density-dependent death).

Similarly, the source term in a dN/dt = s − dN model could suffer from the negative density-
dependence. An example would be the production of red blood cells in the bone marrow, which is
increased when interstitial cells in the kidney increase their production of erythropoietin (EPO)
when they suffer from too low oxygen levels. Although the effect of EPO is non linear (Schirm
et al., 2013) we could start with multiplying s with Eq. (3.5) to obtain

dN

dt
= s
(

1− N

k

)
− dN (3.8)
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Figure 3.3: Logistic growth. The heavy red lines in Panel (a) depicts the behavior of Eq. (3.10) starting
at a low and a high density, respectively. The light blue line starts at the same low density and shows the
corresponding exponential growth curve, because we have set K →∞. Panel (b) depicts the per capita
growth rate of Eq. (3.10). Panel (c) shows that one can easily extend Logistic growth with a non-linear
density-dependence, i.e., the heavy lines depict Eq. (3.11) for m = 0.5 (green) and m = 2 (blue). This
figure was made with the model logist.R.

where the production rate s (e.g., in cells day−1) decreases linearly with the red blood cell density
N . The interpretation of k remains the population size at which the production is zero. For red
blood cells this may sound unrealistic as their production by the bone marrow is probably not
completely stopping at high red blood cell, or low EPO, densities. The model may nevertheless
behave realistically around normal steady state densities. The equilibrium state obtained by
solving dN/dt = 0 is N̄ = sk/(dk + s) (which is a saturation function of the source s), and by
substituting N̄ into f(N) we observe that at steady state the total production equals

sf(N̄) = s
(

1− N̄

k

)
= s
(

1− s

dk + s

)
=

dks

dk + s
cells day−1, (3.9)

which is of the form ab
a+b , and hence is a saturation function of dk and of s. When dk →∞ the

production at steady state approaches s cells day−1, and when s → ∞ it approaches dk cells
day−1.

3.2 Logistic growth and our assumptions

Having a derived a number of models for population growth we should start comparing them
with existing models. The density-dependent models for replicating populations, Eq. (3.2) and
Eq. (3.6), are both of the form dN/dt = αN −βN2, where α and β are parameter combinations
of the original birth and death rates, b and d, and the density-dependence parameter k (see the
exercises). Both models are therefore mathematically identical to the classic “logistic equation”:

dN

dt
= rN(1−N/K) , with solution N(t) =

K

1 + e−rt(K/N(0)− 1)
, (3.10)

with a natural rate of increase of r = b−d, and a carrying capacity that is directly defined by the
parameter K (these equations are identical because α = r and β = r/K in the logistic growth
model). The behavior of the three models for a replicating population is therefore the identical:
starting from a small initial population the growth is first exponential, and will approaches
zero when the population size approaches the carrying capacity (see Fig. 3.3a). Starting from a
large initial population, i.e., from N(0) > K, the population size will decline until the carrying
capacity is approached. Logistic growth is often employed to describe population growth in
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Figure 3.4: Populations with density-dependence either on the production (i.e., obeying Eq. (3.8); red
lines), or on the death rate (i.e., obeying Eq. (3.4); blue lines). In Panel (b) we add noise sampled from
a normal distribution with mean zero and 2.5% standard deviation to the population size N(t) of both
models at random selected time points. This figure was made with the model source.R. Note that the
two panels are scaled somewhat differently.

many biological disciplines (ranging from ecology, epidemiology, virology, to cell biology), and by
deriving Eq. (3.10) ourselves we have learned that is is indeed an excellent choice for populations
having a linear density-dependence on their per capita birth and/or death rate. Eq. (3.10) is
more convenient than the models we derived ourselves because the carrying capacity is defined
by just one of its parameters. However, because Eq. (3.10) has no explicit death rate, we cannot
define a life span, and hence the R0 is not defined. Finally, one can extend Eq. (3.10) to allow
for a non-linear density-dependence (Richards, 1959),

dN

dt
= rN(1− (N/K)m) , with solution N(t) =

K

[1− (1− [K/N(0)]m)e−rmt]1/m
, (3.11)

see Ram et al. (2019) for a derivation of this solution. The meaning of r and K remain the
same and m can be used to define a concave or convex dependence of the per capita growth
rate on the population density (Fig. 3.3c). We provide this solution because it is known, and
because this would be a convenient function to fit to data from populations that are expanding
to a carrying capacity (Ram et al., 2019). The estimated value of m would reveal the shape of
the density dependence (i.e., linear, convex or concave). This model cannot reveal whether the
birth rates, the death rates, or both depend on the population density, however.

The two density-dependent models for populations that are maintained by a source, i.e.,
Eqs. (3.4) and (3.8), are mathematically not identical, and their steady states are defined by
quite different parameter expressions. Thus, the effect of changing a parameter like the source,
s, on the steady state of the population depends on the biological process that depends (most
strongly) on the population density. In Fig. 3.4 we depict the behavior of both models in the
presence and absence of noise. The two models are given the same source and death rates,
and the k value of the model with density-dependent death is set to such a value that both
models have the same steady state (see the R-script source.R). Thus, at low densities the two
populations have the same initial growth rate, and at high densities they approach the same
steady state (see Fig. 3.4a where the red line depicts the population with density-dependent
production, and the blue curve is the population with density-dependent death). We observe
that the population with density-dependent death approaches the steady state somewhat ear-
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lier than the population with density-dependent production. In the presence of noise, i.e., by
frequently adding a randomly drawn small value to N (with mean zero and 2.5% standard de-
viation), we observe that the (red) population with density-dependent production is somewhat
more sensitive to noise than the (blue) population with density-dependent death (Fig. 3.4b).
The difference between the two models is small, but this depends on the value of the density-
dependence parameter, k, i.e., when k � s/d the models will approach the same behavior, and
the smaller k the more different the behavior. Although the difference is small, we have to
conclude that the sensitivity of the steady state to changes in the external circumstances, e.g.,
noisy changes in parameter values and/or population densities, depends to the biological choices
we make when developing the model. Thus, whenever possible, we better employ our biological
knowledge when devising a model, and if it remains unknown which biological process depends
most on the density, it is best to develop several models to test the sensitivity of the results on
these assumptions (Ganusov, 2016). Because, the same is true for the assumption on the linear
shape of f(N), we expand our analysis to the shape of f(N) in the next section.

3.3 Non-linear density-dependence

Above we have considered per capita birth and death rates that were linear functions of the
population density. Although this is generally taken to be sufficient, as one typically models
replicating populations with logistic growth, it would in most cases be more realistic to let
production, birth and death rates only be density-dependent when the resources become limiting,
i.e., at the high population densities (see the blue concave curve in Fig. 3.3c). Populations that
grow spatially by extending their boundaries would be an exception, because they are already
faced with high competitor densities at low population numbers (and even then their density
dependence is not expected to be linear; see the exercises). Thus, we need general functions that
allow us to define non-linear relationships, and it would be convenient to have functions that
are non-dimensional. Above we already used the simple decreasing non-dimensional function
f(x) = 1 − (x/k)n, which is linear when n = 1, concave when n > 1, and convex when n < 1
(see Fig. 3.3c), and where x = k is the population density at which f(x) = 0. Because f(x) < 0
when x > k one should formally use

f(x) = max(0, 1− [x/k]n) , (3.12)

which indeed provides a simple tunable function to generally describe decreasing effects.

Having a decreasing function, 0 ≤ f(x) ≤ 1, one can also define an non-dimensional increasing
function, g(x) = 1− f(x) = [x/k]n to have a linear (n = 1), convex (n > 1), or concave (n < 1)
function that equals one when x = k. To define increasing functions with a plateau, one could
define f(x) = min(1, [x/k]n), but since this has a discontinuity at x = k, it is more convenient
to use a Hill function, or an exponential function, i.e.,

f(x) =
xn

hn + xn
or f(x) = 1− e− ln[2]x/h , (3.13)

to define a saturated (n = 1) or sigmoid (n > 1) saturation function; see Page 162. Both
functions are generally used to formulate saturated and/or sigmoid density dependent effects.
The functions in Eq. (3.13) are zero when x = 0, increase with x, they are half-maximal,
f(x) = 0.5, when x = h, and they approach their maximum, f(x) = 1, when x → ∞. Having
increasing functions 0 ≤ f(x) < 1, one can again define decreasing non-dimensional functions
by defining g(x) = 1− f(x), e.g.,

g(x) =
1

1 + (x/h)n
and g(x) = e− ln[2]x/h , (3.14)
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Figure 3.5: Density dependent birth rates based upon examples taken from Eq. (3.16). The declining
red curves in Panels (a)–(c) correspond to per capita birth rate, bf(N), where the density dependence
is defined by one of the three functions in Eq. (3.16). The horizontal black lines depict the density
independent per capita death rate of Eq. (3.15). The intersects therefore correspond to steady states.

which no longer need the somewhat cumbersome max() function of Eq. (3.12); see Page 162.

Because all functions in Eqs. (3.12–3.14) are dimensionless, and remain bounded between zero
and one, i.e., 0 ≤ f(x) < 1, one can easily multiply any parameter in a model (corresponding
to some biological process) with f(x), to define non-linear density dependent effects of any
population onto any biological process. For down-regulatory effects, i.e., decreasing functions,
one can use either the simple Eq. (3.12), or the Hill function or exponential function of Eq.
(3.14). A minor technical difference is that the h parameters of Eq. (3.14) “naturally” define
the value of x where g(x) = 0.5, whereas the k parameter in Eq. (3.12) most “naturally” defines
the value of x where f(x) = 0. For positive effects approaching a maximum one typically uses
one of the functions in Eq. (3.13), and for effects without a maximum one could resort to the
simple f(x) = (x/h)n. We will illustrate this with a few examples below.

Non-linear negative density-dependent birth

For a replicating population with density dependent growth we can now generalize Eq. (3.5)
into

dN

dt
= (bf(N)− d)N , (3.15)

and use one of the several candidates from Eq. (3.12) or Eq. (3.14) to choose a decreasing density
dependent function, f(N). For instance, the linear density dependent birth rate depicted in Fig.
3.2a would speak in favor of using the linear f(N) = 1 − N/k from Eq. (3.12). For non-linear
examples we here sample from Eq. (3.14), e.g.,

f(N) =
1

1 +N/k
, f(N) =

1

1 + [N/k]2
and f(N) = e− ln[2]N/k , (3.16a,b,c)

and depict their shape and the steady state they would give in Fig. 3.5. Because in a well-mixed
population, the birth rate probably remains close to its maximal value as long as the population
size is sufficiently small, the sigmoid function of Eq. (3.16b), and the concave f(N) = 1−(N/k)2

of Eq. (3.12) seem most realistic for most non-spatial models.

Each of the three models in Fig. 3.5 has a single non-trivial steady state (see Table 3.1), and
this steady state is always stable (see Fig. 3.5). The latter can be seen graphically because at
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Function f(0) f(k) f(∞) R0 Carrying capacity Eq.

f(N) = max(0, 1−N/k) 1 0 0 b/d N̄ = k(1− 1/R0) (3.5)

f(N) = max(0, 1− [N/k]m) 1 0 0 b/d N̄ = k m
√

1− 1/R0 (3.12)

f(N) = 1/(1 +N/k) 1 0.5 0 b/d N̄ = k(R0 − 1) (3.14)
f(N) = 1/(1 + [N/k]2) 1 0.5 0 b/d N̄ = k

√
R0 − 1 (3.14)

f(N) = e− ln[2]N/k 1 0.5 0 b/d N̄ = (k/ ln[2]) ln[R0] (3.14)

Table 3.1: Properties of several non-linear functions defining a density dependent birth rate in the model
dN/dt = (bf(N)− d)N .

(a)

N

d
+
δf

(N
)

0
0

N̄

d

b

d+ δ

+

−

(b)

N

d
[1

+
(N
/k

)m
]

0 N̄
d

b

+

−

Figure 3.6: Non-linear density-dependent death rates. Panel (a) uses the Hill function f(N) =
Nm/(hm + Nm) and depicts the per capita death rate defined by Eq. (3.17). Panel (b) illustrates
the per capita death rate defined by Eq. (3.18) for m = 5. The horizontal black lines denote an arbitrary
density-independent birth rate, such that the intersections correspond to a steady state level. This figure
was made with the model death.R.

the steady state, where dN/dt = 0, increasing the population size to a value slightly above its
steady state value brings the population density into a region where dN/dt < 0 (as indicated by
the − signs in Fig. 3.5), whereas decreasing the population to a value slightly below the steady
state value increases dN/dt (see the + signs).

Since all these functions are bounded between zero and one, i.e., 0 ≤ f(N) < 1, the fitness in
these models is always R0 = b/d. Although the different functions may reflect quite a different
biology, the models that result from incorporating them have a very similar behavior. For
instance, starting with a small population the population size plotted in time will always look
like a sigmoid function. In other words, finding a population with a sigmoid population growth
tells us very little about the shape of its underlying density dependent regulation. Table 3.1
shows for some of these models how their carrying capacity depends on the fitness R0.
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Figure 3.7: Positive density-dependence on the reproduction leeds to an Allee effect. Panel (a) shows
that a population based up Eq. (3.19a) has a critical density (depicted by the horizontal line) above
which it increases until the carrying capacity is approached, and below which it declines. The heavy
red line in Panel (b) depicts the per capita birth rate as a function of the population density, and the
horizontal black line depicts the per capita death rate. Densities at which these line intersect are steady
state (because the birth rate balances the death rate). The steady state at a low density is the unstable
critical density and the one at a high density is the stable carrying capacity. This figure was made with
the model allee.R.

Non-linear density-dependent death

One could use an increasing Hill-function to define a per capita death rate that increases with
the population density, i.e., write

dN

dt
= [b− d− δf(N)]N , (3.17)

where δ is an additional death rate that is due to competition, and comes on top of the normal
death rate experienced at low densities (when f(N)→ 0). A steep sigmoid Hill-function would
allow one to define a population density, h, at which the competition starts to severely increase
the death rate, until the maximum per capita death rate, d+ δ is approached. Since it remains
unclear whether such a maximum death rate is desirable, one could also use a power function
to define a per capita death rate that keeps on increasing with the population density, e.g.,

dN

dt
= (b− d[1 + (N/k)m])N (3.18)

which has a linear increase in the death rate when m = 1, and a faster than linear increase when
m > 1. The interpretation of k remains the same as in Eq. (3.2), i.e., when N = k the death
rate has doubled. Having a fitness R0 = b/d the steady state is N̄ = k m

√
R0 − 1. Fig. 3.1a shows

that this steady state is stable for m = 1. Confirm for yourself that this is true for all values of
m by sketching the same picture for m = 1/2 and m = 2 (see Fig. 3.6b and the exercises).

3.4 Positive density dependence

Now that we learned to use saturation functions we are ready to start modeling positive feed-
backs. Replicating populations not only face competition at high densities, they may also suffer
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from a lack of conspecifics at low densities. Examples would be sexual reproduction where
individuals need to encounter partners or gametes (Berec et al., 2007), growing tumors that
by inducing angiogenesis increase their own growth rate, cooperating predators like wolves or
spoonbills, and microorganism that improve their own environment (Kramer et al., 2009).

Modeling population growth with sexual reproduction basically means that we have to extend
our current model with density dependent birth and/or death with an additional function de-
scribing the probability at which individuals are expected to encounter mates. A mechanistic
approach would be to define a function, g(N), for the probability that there is at least one mate
in an individual’s neighborhood, and multiply the birth rate with that probability. This can be
defined as a Poisson process, where g(N) = 1 − e−λN is one minus the probability that there
are no males in the neighborhood of a particular female. Knowing that such an exponential
function closely resembles the increasing Hill-function g(N) = N/(h + N) (see Fig. 15.4), we
can also use a somewhat more phenomenological model, and define h as the population density
where the probability of finding a mate is one half. Having either of these two functions defining
the mating we extend Eq. (3.15) and/or Eq. (3.18) with g(N) to obtain

dN

dt
= (bf(N)g(N)− d)N or

dN

dt
= (bg(N)− d[1 + (N/k)m])N , (3.19a,b)

where f(N) is one of the declining functions defined by Eqs. (3.12) to (3.14).

We study the effect of a positive density-dependence by numerically solving Eq. (3.19a) with
f(N) = 1/(1 + N) and g(N) = N/(h + N), starting with either a low, or a somewhat higher,
initial population density (Fig. 3.7a). The small population declines and goes extinct, whereas
the somewhat larger population expands and approaches carrying capacity. The horizontal black
lines depict the critical density that the population needs to expand. Populations that would
accidentally drop below this density are expected to go extinct. The per capita birth rate,

β(N) = b
1

1 +N

N

h+N
, (3.20)

is depicted by the red line in Fig. 3.7b. At low densities, i.e., when N → 0, this approaches the
increasing line β(N) ' (b/h)N because the birth rate is maximal and it is difficult to find mates
(i.e., f(N) ' 1 and g(N) is small). At high densities the red line decreases, i.e., β(N) → 0
when N →∞, because of competition (i.e., f(N) is small and g(N) ' 1). The horizontal black
line depicts a density-independent death rate, and we see that this lines intersects the birth-rate
curve at two population densities. The lower density is the unstable steady state above which the
population can grow (see Eq. (3.19a)), and the higher density is the carrying capacity. Because
the net per capita population growth is negative at low densities this is called a “strong” Allee
effect, which implies that a population of zero individuals is a stable steady state. Eq. (3.19a)
therefore has three steady states, of which N = 0 and N = K (where K is the carrying capacity)
are stable. Having alternative steady states is due to the fact that this model has a positive
feedback (May, 1977).

3.5 Summary

The growth of populations typically involves feedbacks that are called density dependence (or
homeostasis). In replicating populations, negative density-dependence allows for a carrying
capacity, i.e., a stable steady state population size. A negative density-dependence can be im-
plemented as a feedback on the birth rate, and/or the death rate. The most convenient approach
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to implement feedback functions in mathematical models is to define non-dimensional functions
describing a particular biological feedback, and to multiply the corresponding parameter of the
model with that function. The most general model describing the growth of a replicating pop-
ulation is the Logistic growth equation. Density-dependence can have a linear, a concave or
convex shape, and can be positive or negative. A Hill-function is convenient tool for defining
increasing or decreasing non-linear saturation functions. Positive feedbacks allow for multiple
steady states.

3.6 Exercises

Question 3.1. Carrying capacity
What do you expect for the individual well-being in a human population that is approaching its
carrying capacity:
a. Do you expect the individual birth rate to be small or large?
b. Do you expect the individual death rate to be small or large?
c. In which population would you prefer to live: a small expanding population, or in one that

is approaching carrying capacity?
d. Optimists like Julian Simon advised the American government by saying that “every human

being represents hands to work, and not just another mouth to feed” (Cohen, 1995). We
can investigate this proposal by arguing that the carrying capacity K in Eq. (3.10) increases
with the population size. Test a simple example, e.g., K = k

√
N , and see how this influences

the result. Do you still expect a carrying capacity where the individual well-being is at its
minimum?

Question 3.2. Homeostasis
B cells are lymphocytes that can produce antibodies. They circulate via blood and lymph.
Novel (naive) B are produced in the bone marrow by pre-B cells that divide, mature, and
egress. Agenes et al. (1997) at the Pasteur Institute were breeding mice with different numbers
of pre-B cells in the bone marrow to study how the number of circulating naive B cells (e.g.,
those in the spleen) depends on this source from the marrow. They found the following:
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A simple model for the naive B cell population is dB/dt = m−dB where m is the bone marrow
production, and 1/d is the average life span of naive B cells. We have learned above that the rate
of naive B cell production, m, is proportional to the number of pre-B cells in the bone marrow,
e.g., m = αP , where P is the number of pre-B cells that was being changed in the mice. The
investigators allowed the mice to mature and we can therefore assume that their observations
correspond to the steady state, B̄, of our simple model. Thus, in terms of this model, the data
graph should correspond to m ∝ P on the horizontal axis, and B̄ on the vertical axis.
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a. Is the simple model compatible with the data?
b. If not, how would you extend the model?
c. Do the data require homeostasis, i.e., density dependent regulation?
d. Is dB/dt = m− dB accounting for homeostasis?

Question 3.3. Overfishing herring
With this question we aim to increase our insights into setting sustainable limits of harvesting
populations. As an example we consider the quota defined to achieve sustainable fisheries of
herring in the North Sea. For simplicity assume that the dynamics of the herring population in
the North Sea can be described by a simple logistic growth model, i.e., dN/dt = rN(1−N/K).
Although this is clearly a gross oversimplification we will learn something insightful from this
exercise.
a. Sketch the population growth dN/dt = f(N) as a function of the population size N . What

is the maximum of the function f(N)?
b. What is the long-term optimal population size for the fishermen, and what would then be

the maximum harvest (i.e., the maximum number of fish captured per unit of time)?
c. Add this maximum harvest explicitly to the logistic growth equation to model a situation

where the fishermen have adopted this policy for a long time. Sketch the new growth equation
as a function of N for the new situation. Do you expect this to be sustainable? What would
be a more durable quota for fishing herring?

d. Study the effect of noise on the sustainability of harvesting the population with a fixed quota.
For example, consider a carrying capacity that fluctuates due to weather conditions changing
on a weekly time scale (you may use the file herring.R for this).

e. It is well known that harvesting a fraction of the population works much better than defining
a fixed total quota (or a total catch limit). Defining a quota on the yearly investment on
catching fish, i.e., on the fraction f that fishermen can maximally harvest, would change the
model into dH/dt = rH(1−H/K)−fH. What is economically speaking the optimal value of
f? Is that lower than the fixed quota Q = rk/4? Hint: compute the new steady state, H̄, and
then the expected harvest, fH̄, and finally compute its maximum by taking the derivative
∂f .

f. Is this indeed more sustainable? What is now the effect of a noisy carrying capacity?

Question 3.4. Biofilm
Bacteria often reside in self-organized environments known as biofilms. The bacterial cells
become embedded in a matrix of self-produced extracellular polymeric substances, which act like
a biological “glue” enabling the microbes to colonize a wide range of surfaces. Once integrated
into biofilms, bacterial cells can better withstand environmental challenges. Production of a
protective biofilm by the bacteria therefore classifies as positive density dependence, and one
way to to implement this into an equation for bacterial growth would be to write a hill function,
F (B), for the positive effect of the biofilm on the birth rate, e.g.,

dB

dt
= [bF (B)− d(1 + eB)]B , where F (B) =

B

h+B

and where we also allow for a carrying capacity by having negative density dependence in the
death rate. When B = h the effect of the biofilm on the birth rate is half-maximal.
a. Sketch the per capita birth rate and the per capita death rate in one graph.
b. Sketch the population birth rate and death rate in one graph. Hint: realize that these are

of the form y = ax2

b+x and y = ax+ bx2, respectively, and that the former approaches y = a
bx

2

when x→ 0, and y = ax when x is large, and that the latter approaches y = ax when x→ 0,
and y = bx2 when x is large. If you need further assistance in drawing these functions use
the biofilm.R model on the website.

c. How many steady states do you expect for these bacteria, and which of them are stable? How
would you call this?
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d. Can you write a similar model where the biofilm reduces the death rate?

Question 3.5. Stem cells (requires nullclines)
Consider a population of stem cells that are dividing and dying at at fixed rate. The stem cells
are located on a surface (or substrate) at the border of a tissue, and this substrate provides the
stem cells a signal that inhibits their differentiation. Thus, as long as the cells remain in contact
with the substrate they remain stem cells, whereas cells that detach differentiate and mature
into the cell type defining the tissue. Let there be room on the substrate for about K cells, i.e.,
let there be K “binding sites”. When a stem cell divides, one of the daughter cells will remain
attached to the surface, while the other daughter will only stay attached when the site next to
it is empty. Thus, describing the number of stem cells on the surface with the variable S, the
probability that this neighboring site is empty is approximately 1− S/K.
a. Write a model for this population of stem cells. Do we need density dependent birth or death

rates to have a stable carrying capacity?
b. What is the carrying capacity, and why is it smaller than the number of sites K?
c. What would be the corresponding equation for the differentiated cells?
d. Sketch the production rate of differentiated cells as a function of the number of stem cells.
e. Sketch the nullclines.

Question 3.6. Regression to the mean (computer)
To establish whether or not populations are regulated by density dependent effects it is typically
best to measure per capita birth and death rates at different population densities, and plot these
as a function of the population size (e.g., Fig. 3.2). Alternatively, one can take a long time series
of sequential population densities, Nt, and study how the per capita rate of change between
subsequent time points, i.e., (Nt+∆ − Nt)/Nt, depends on the previous population density,
Nt. Although the second method comes with a well-known problem (Shenk et al., 1998), it is
nevertheless still being used to detect density-dependence in time-series data (Freckleton et al.,
2006). The problem is illustrated by the following R-script (called regMean.R on the website):

n <- 100; data <- rnorm(n,1,0.1); hist(data)

N <- data[1:(n-1)]; r <- (data[2:n]-N)/N

plot(N,r,type="p")

lm(r~N,as.data.frame(cbind(N,r)))

Artificial data is generated by drawing n = 100 times from a normal distribution with µ = 1
and σ = 0.1. The per capita rate of increase, r, is computed by subtracting two subsequent
data points, and dividing by the former. The relationship is plotted and quantified by linear
regression (by a call to lm()).
a. What do you expect for the relationship between r and Nt in this random data set?
b. What do you find, and how can this be?
c. Can a time-series provide solid evidence for density dependent effects? The Freckleton et al.

(2006) paper provides an excellent discussion on this topic.

Question 3.7. Fitting Logistic growth to the Gause data from 1934
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Figure 1 from Gause (1934).

In his classic experiments Gause (1934) was growing two
species of Paramacium either in isolation, or in combi-
nation. The solid lines in the figure on the left suggest
that the growth curve of P. aurelia and P. caudatum in
isolation can very reasonably be described by a logis-
tic growth equation, and in Gause’s own handwriting
one can read the parameter values he estimated for the
logistic function (i.e., r = 0.794 per day with K = 64
for P. caudatum and r = 1.129 per day with K = 105
for P. aurelia). We here fit this data ourselves to gain
some experience in fitting models to data, and to study
if all parameters can indeed be identified from this data.
First, read Section 15.7 in the Appendix for some back-
ground on parameter fitting.

a. The data of the individual experiments (circles) is available in the files aurelia1.txt and
caudatum1.txt in the directory tbb.bio.uu.nl/rdb/bm/models/data. The file gause1.R allow
you to read these files and fit the general logistic equation, dN/dt = rN(1 − N/K), to the
data (and perform an F-test). The script rounds Gause’s estimates into an initial guess, i.e.,
sets p <- c(r=1,K=100), and subsequently fits the model to both data sets using N(0), r
and K as free parameters (note that we have to set column names to N because the model
returns a column called N, whereas the corresponding columns in the data are called A or C).
Do you obtain a good fit and do your estimates agree with Gause’s estimates?

b. Why do we ultimately refrain from estimating the initial condition (i.e., why do we go from
6 to 4 free parameters)?

c. Do the growth rates, r, and the carrying capacities, K, differ between both species? What
are the confidence ranges on the parameters?

d. Fitting the data with a shared growth rate (i.e., with a 3-parameter model) obviously de-
creases the quality of the fit somewhat (i.e., increases the SSR). Use an F-test to study
whether or not the 4-parameter model is significantly better than the 3-parameter model.

e. What would be your conclusion on the parameters of both species?
f. If you enjoyed this question and are sufficiently familiar with Lotka-Volterra competition

models, you could proceed with also fitting the competition experiments (see the similar
question in Chapter 9).

Extra questions

Question 3.8. Habitat destruction
Levins (1969) and Levins & Culver (1971) proposed a “metapopulation” model in which one
just counts the presence or absence of a single species in a large area with many small patches
of suitable habitats (think of butterflies that are either present or absent in distinct suitable
habitats). Instead of modeling the population size, the model describes the fraction, 0 ≤ P ≤ 1,
of patches occupied by this species. Empty patches can become occupied by colonization (at
rate c) from occupied patches. As the species may locally go extinct in any individual patch (at
rate e), only a fraction of the patches will actually be occupied (i.e., P < 1). Since the number
of migrants arriving in a patch should be proportional to the number of occupied patches, P , in
the environment, and because arrival only leads to a novel colonization if migrants land on an
empty patch (which occurs with a probability 1−P ), they write for their pristine (undisturbed)
environment

dP

dt
= cP (1− P )− eP . (3.21)

https://tbb.bio.uu.nl/rdb/bm/models/data
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a. What is the non-trivial steady state of this model, and do you recognize this from the other
models in this chapter?

b. What fraction of the patches is “empty” at the steady state (i.e., in what fraction of the
patches is the species absent)?

Now suppose that a random fraction of the habitats is destroyed and that only a fraction α < 1
is still suitable (i.e., a fraction ∆ = 1− α was destroyed). This changes the model into

dP

dt
= cP (α− P )− eP . (3.22)

c. What is the non-trivial steady state in an environment where a fraction α < 1 of the patches
is left over?

d. At what fraction of α is a species expected to go extinct?
e. Now consider a rare species occupying only 1% of the patches in the pristine environment, i.e.,

suppose P̄ = 0.01 (with 99% empty patches), and suppose that a random fraction, ∆ = 1−α,
of the habitats is destroyed. At what fraction of habitats α is this particular species expected
to go extinct? Give a biological interpretation in terms of the fraction of habitats, ∆, that
can be destroyed before the species is expected to go extinct. Do you think this is an artificial
or a potentially realistic result?

Question 3.9. Red blood cells (partly Grind)
Red blood cell (RBC) production in the bone marrow is increased when erythrocyte numbers in
the periphery are low. Mechanistically, this works via the hormone erythropoietin (EPO) that
is produced by renal epithelial cells when the blood provides insufficient oxygen to them. In a
normal steady state little EPO is produced. This process has been modeled extensively (Belair
et al., 1995; Schirm et al., 2013), and typically this involves steep sigmoid curves because the
production of EPO is sharply up-regulated at low RBC counts. EPO is not the only regulator,
i.e., in the complete absence of EPO there is still some production of RBC. On average the
human body produces 3× 109 new erythrocytes per kg of body weight per day, and RBC have
an expected life span of about 120 days. Hence at steady state there would be B̄ = 120×3×109 =
3.6× 1011 RBC.
Since little EPO is produced under normal conditions we assume that in the absence of EPO the
production, s0, is about one third of the normal production, i.e., s0 = 109 RBC kg−1 d−1, and
assume that this can be increased up to 10-fold at maximum EPO concentrations. Because the
bone marrow of the long bones becomes fatty in the elderly, the total amount of bone marrow
that is producing erythrocytes decreases with age, which means the maximum production rate
declines. Nevertheless, the number of peripheral red blood cells remains fairly constant when
we age. Let us try to combine all of this in a mathematical model, to study whether or not that
model yields the homeostasis suggested by the observation that the RBC count hardly decreases
in the elderly.
a. Define a steep sigmoid function, E = f(B), for the concentration of EPO as a function the

RBC density in the blood.
b. Define a function defining the rate of RBC production as a function of the EPO concentration
E. How would the rate of RBC production depend on the RBC count? You may need R to
plot this.

c. Write a mathematical model describing the dynamics of the number of RBC in the blood,
and determine all of its parameters such that you can run in it Grind.

d. What is the expected steady state RBC density in people with a kidney disease that disables
the production of EPO? Run the model in Grind to compute the steady state in the presence
of EPO (see the model epo.R).

e. Does this model explain the observation that erythrocyte numbers are fairly independent of
the age of an individual?

Question 3.10. Generalized logistic growth
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We have seen in this chapter that the famous logistic growth model of Eq. (3.10) is obtained
when the per capita birth and/or death rate depend linearly on the population size. In Eq.
(3.11) we have generalized the logistic growth model by raising the density-dependent term to
the mth power.
a. Verify that Eq. (3.10) is indeed obtained when both the per capita birth and the death rate

depend linearly on the population size.
b. Consider a population obeying Eq. (3.11), and assume that only the birth rate is density

dependent (i.e., the death rate is a constant). What would the per capita birth rate function
look like? Would this be realistic for m = 0.5 and m = 2, and for any value of m?

c. Consider the same population, and now assume that only the death rate is density dependent.
What would the per capita death rate function look like? Would this be realistic for m = 0.5
and m = 2, and for any value of m?

Question 3.11. Life stages (requires nullclines)
Consider an insect population consisting of larvae (L) and adults (A). Adults give birth to
larvae (in an asexual manner), and these larvae later mature into adults. Adults have a density
independent mortality, i.e., a given expected life span. Larvae compete with adults and have a
mortality that is dependent on the density of adults (use a simple term for this).
a. Make a model consisting of two ODEs for the growth of such a population.
b. Sketch nullclines and determine the stability of all steady states.
c. Assume that the dynamics of the larvae is much faster than that of adults, i.e., make a “quasi

steady state” assumption for the larvae. Hint: A QSSA for the larvae means that one solves
L from dL/dt = 0. The quasi steady state expression for L is subsequently substituted into
dA/dt, which is correct whenever L changes much more rapidly than A.

d. Write the new ODE for the adults. Does this equation look familiar to you?
e. What model is obtained when we make the quasi steady state assumption for the adults?
f. Which of the two assumptions do you think is most realistic?

Question 3.12. Seedlings over-shadowed by adult plants (requires nullclines)
Make the seedling question in Chapter 14 and analyze your model, or the one provided in the
answers of Chapter 14, by sketching nullclines for all qualitatively different situations.
a. Sketch the nullclines, the vector field, and determine the stability of the steady state.
b. Will there always be a non-trivial steady state? Give a mathematical and an intuitive answer.
c. Will that state always be stable?
d. Does this model allow for homeostasis?

Question 3.13. Tumor growth
Consider a spatial model for a small melanoma growing as a flat disk. Assume that the tumor
cells are dividing only at the tumor boundary because of a lack of blood supply inside, and that
cell death occurs uniformly throughout the tumor mass. A first approximation would be that
the total biomass is proportional to the area of this circle, i.e., A = cπr2, where r is its radius
and c is a constant scaling from area to biomass. Since reproduction takes place at the border,
realize that the circumference of the circle is given by 2πr. Thus, if N is the total number of
cells in the tumor, the number of cells at the surface is proportional to

√
N .

a. Write a growth model for the total number of cells in the tumor.
b. What are the steady states?
c. Sketch the per capita growth as a function of the tumor mass. Does this look okay?

Question 3.14. The Fisher equation (Grind)
To spatially model a population that is growing logistically on a one-dimensional spatial domain
one can just add a diffusion term, and write a partial differential equation (PDE) like,

∂N

∂t
= rN

(
1− N

K

)
+D

∂2N

∂x2
,
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where the parameter D is a diffusion constant. This is called a reaction-diffusion equation. N
is actually a function of time and space, which should formally be written as N(x, t). This
equation was introduced by the famous Ronald Fisher in 1937 (to describe the spatial spread
of an advantageous allele). To study such a PDE numerically one needs to discretize it into
something like

dNi

dt
= rNi

(
1− Ni

K

)
+D(Ni−1 +Ni+1 − 2Ni) , for i = 1, 2, . . . , n

where i defines a location of a (small) compartment in space, and D now describes the movement
of individuals between neighboring compartments. Note that D should be sufficiently small, i.e.,
one needs to define many small compartments to accurately describe the PDE.
a. This model is available in the website as the file fisher.R. Study how such a vector of equa-

tions can be defined in R, and realize that we have wrapped the boundaries, i.e., individuals
move from N1 to Nn and vice versa.

b. What is the behavior of the model?
c. What do you expect will happen if the model is extended with an Allee effect?



Chapter 4

Stability and return time

In the previous chapter we have seen several numerical examples of populations approaching a
steady state. Such a stable steady state is an attractor of the system, and in most examples
this corresponded to the carrying capacity of the population. We have also argued that for
replicating populations the trivial steady state, N = 0, is unstable whenever the maximal per
capita birth rate exceeds the minimal per capita death rate, i.e., whenever R0 > 1, because the
population will expand following a positive perturbation. Technically, we need the solution of
the ODE to see which attractor is approached when t→∞, but in this chapter we will determine
the stability of a steady state by simplifying the differential equation around a steady state. By
doing so we will be able to define the “return time” of a stable steady state as the typical time
it would take the population to return to the steady state after a small disturbance. Steady
states with a long return time are sensitive to perturbations and are said to have a low resilience.
Populations having several stable steady states, e.g., those with an Allee effect (see Eq. (3.19)),
will have an unstable steady state defining the boundary between the basins of attraction of the
alternative attractors.

4.1 Stability defined by the local slope of the growth function

In the previous chapter we emphasized that is typically most convenient to sketch biologically
defined per capita functions for birth and death rates, and subsequently multiply these with the
population size to obtain a function defining the net growth, dN/dt = f(N), of the population.
Having defined such a growth function one can plot it as a function of the population size,
i.e., plot f(N) as a function of N (see Fig. 4.1). The values of N at which f(N) = 0 then
define the steady states because dN/dt = 0. The growth function the classic logistic model,
f(N) = rN(1−N/K), is a parabola that is zero when N = 0 or N = K, and has its maximum
at N = K/2 (see the blue line in Fig. 4.1a). To check the stability of the non-trivial steady
state, N̄ = K, one can study what happens when the steady state population size is somewhat
increased. Increasing N from its non-trivial steady value N̄ results in a negative value of f(N),
implying that the population will decrease after it was increased by a perturbation. Similarly,
a decrease of the population size will result in an increase, because f(N) > 0 when N . K.
This suggests that the steady state is stable because f(N) provides a negative feedback on small
perturbations around the steady state.

We can generalize this approach by plotting several of the growth functions introduced in the
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previous chapter. For example, for the generalized logistic growth model, f(N) = rN(1 −
(N/K)m), the steady states remain to be localized at N̄ = 0 and N̄ = K, and the only qualitative
changes is that the maximum is shifted to the right for m = 2 and to the left for m = 1/2 (see
Fig. 4.1a). The carrying capacity N̄ = K therefore remains a stable steady state. For the
non-replicating population with a density dependent production, i.e., f(N) = s(1−N/k)− dN
from Eq. (3.8), we observe that f(N) is a straight line starting at f(0) = s, and intersecting the
horizontal axis as N̄ = K = sk

s+dk (see the red line in Fig. 4.1b). The growth function of Eq.
(3.4), i.e., f(N) = s − d(1 + N/k)N is depicted as a blue line in Fig. 4.1b, and is a parabola
having its maximum at N = −k/2 and intersecting the horizontal axis at

N̄ = K =
−dk +

√
dk(dk + 4s)

2d
.

By the same approach we infer that the steady state of the two non-replicating populations is
also stable because of a negative feedback that decreases population growth when the population
were to increase.

Importantly, note that we only need the local slope ∂Nf(N) in the point N = N̄ to infer the
stability of the steady state (where we use the “partial”, ∂, notation to explicitly define what
derivative we take, e.g., ∂x x

2 = 2x, ∂y xy = x, and ∂tN(t) = dN(t)/dt). Thus, we see that a
steady state of an equation, dN/dt = f(N), is stable whenever f ′(N̄) < 0 (where we use the
shorthand f ′ to denote its derivative, ∂Nf , and f ′(N̄) for the derivative in the steady state).
Similarly, one can see that a steady state is unstable when f ′(N̄) > 0 because that corresponds
to a positive feedback where an increase in the population from its steady state value leads to a
further increase of the population. An example of an unstable steady state is the origin of Fig.
4.1a, where f(N) has a positive slope in the trivial steady state N̄ = 0.

4.2 Linearization

The fact that one can read the stability of a steady state by the local slope, or derivative, of the
growth function is not a lucky coincidence. Mathematically one can linearize any continuous
function f(x) around any particular value, e.g., x̄, by its local derivative ∂x f(x̄) in that point:

f(x) ' f(x̄) + ∂x f(x̄) (x− x̄) = f(x̄) + f ′h , (4.1)

where h = x − x̄ is a small distance in the x-direction, and f ′ = ∂x f(x) is the derivative of
f(x) with respect to x at the value x = x̄ (see Fig. 15.3 in the Appendix, and the accompanying
Ebook (Panfilov et al., 2025)). For example, one can linearize the function f(x) = 2x2 by
its derivative f ′(x) = 4x, and approximate the value of f(x) at x = 3.1 by writing, f(3.1) '
f(3) + 4×3×0.1 = 2×9 + 1.2 = 19.2, and see that this is close to the true value f(3.1) = 19.22.
To apply this to our stability analysis one rewrites f(N) into f(N̄ + h) where N̄ is the steady
state population size and h is considered to be a small disturbance of the population density
from the steady state, i.e., h = N − N̄ . Following Eq. (4.1) one rewrites dN/dt into

dN

dt
= f(N) ' f(N̄) + ∂Nf(N̄) (N − N̄) = 0 + λh , (4.2)

because f(N̄) = 0, and where we have defined λ = ∂Nf(N̄) as the local derivative of f(N) at
N = N̄ , and h = N − N̄ as the distance to the steady state. Because the sum of two derivatives
is the derivative of the sum, and dN̄/dt = 0, we can apply the following trick

dN

dt
=

dN

dt
− dN̄

dt
=

d(N − N̄)

dt
=

dh

dt
, (4.3)
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Figure 4.1: The stability of a steady state is determined by the local derivative (slope) of the growth
function at the steady state. We plot the population growth rate, dN/dt = f(N), as a function of the
population size N . Panel (a) depicts the generalized logistic growth model, f(N) = rN [1− (N/K)m] for
m = 0.5 (green), m = 1 (blue), and m = 2 (red). The blue line is the characteristic logistic parabola.
Panel (b) shows the population growth of Eq. (3.8), modeling density dependent production, i.e., f(N) =
s(1−N/k)−dN as a red line, and the density dependent death of Eq. (3.4), i.e., f(N) = s−d(1+N/k)N
as a blue line. The k parameters of the latter two models have been scaled such that both models
have the same steady state K. The carrying capacities depicted in Panel (a) are all stable because
∂Nf(N) = λ = −mr < 0 when N̄ = K. Indeed, increasing the population size in the carrying capacities
results in f(N) < 0, which is a negative feedback. In Panel (a) the trivial steady states are unstable
because ∂Nf(N) = λ = r > 0 when N̄ = 0. At the steady state N̄ = K in Panel (b), λ = −d− s/k < 0
for the straight red line corresponding to Eq. (3.8), and λ = −d(1 + 2K/k) < 0 for the blue parabola
corresponding to Eq. (3.4). N = 0 is not a steady state in Panel (b). Note that the dimension of the
slopes, λ, are time−1 in each case. This figure was made with the model logist.R.

to obtain

dh

dt
= λh with solution h(t) = h(0)eλt , (4.4)

for the behavior of the distance, h, to the steady state. Thus, whenever the local tangent λ at
the equilibrium point is positive, small disturbances, h, grow. Whenever λ < 0 they decline,
and the equilibrium point is stable.

This readily confirms the intuitive approach explained in Fig. 4.1 where we used the slope,
λ = f ′(N̄), to determine whether or not a steady state is stable. For example, for the logistic
equation, f(N) = rN(1 − N/K), one obtains λ = r − 2rN/K. At the carrying capacity, i.e.,
at N = K, the local tangent is λ = −r, and at N = 0 we obtain λ = r (see Fig. 4.1a),
confirming that N = K is a stable steady state, and that N = 0 is an unstable steady state.
Similarly, for the non-replicating populations in Fig. 4.1b, we obtain that at the carrying capacity
where f(K) = 0, λ = −d − s/k < 0 for the straight red line corresponding to Eq. (3.8), and
λ = −d(1 + 2K/k) < 0 for the blue parabola corresponding to Eq. (3.4). Since both slopes are
negative, local perturbations of size h(0), die out at a rate defined by Eq. (4.4).
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Figure 4.2: The return time to a steady state depends on the parameters and the density-dependent
functions. Panels (a) and (b) depict a classic r-selected and K-selected population where the natural rate
of increase of the r-selected species (in red) is 10-fold larger than that of the K-selected species (in blue).
In Panel (a) we add noise sampled from a normal distribution with mean zero and 5% standard deviation
to the population size N(t) of both models at randomly selected time points, and observe that the red
r-selected species varies considerably less and remains closer to the carrying capacity. In Panel (b) we
draw random values for the carrying capacity from a normal distribution with 5% standard deviation at
randomly selected time points, and observe that the red r-selected species varies considerably more, as
it more rapidly approaches the new carrying capacities. Panel (c) depicts the generalized logistic growth
model of Eq. (3.11) for m = 0.5 (green), m = 1 (blue), and m = 2 (red), where we add noise sampled
from a normal distribution with mean zero and 5% standard deviation to the population size N(t) of
at randomly selected time points, and observe that the (red) species with the steepest slope λ at the
carrying capacity has the shortest return time. This figure was made with the models logist3.R.

4.3 Return time

Note that the slopes in Fig. 4.1 do have a different steepness, i.e., that the λs differ. Since λ in
Eq. (4.4) define the rate at which perturbations die out, the stability of a steady state can be
expressed as a “Return time”

TR = − 1

λ
, (4.5)

i.e., the more negative λ the faster perturbations die out. Note that the dimension of TR is
correct: because λ is a rate with dimension “time−1”, TR indeed has the dimension “time”. For
example, consider the return time of the logistic growth equation around its carrying capacity.
Above we derived that at N̄ = K the tangent λ = −r. This means for return time of the logistic
growth equation that TR = 1/r, i.e., the larger r the shorter the return time. Thus, populations
that grow fast are more resistant to perturbations, which sounds intuitive.

The paradigm of r-selected and K-selected species in ecology is built upon this TR = 1/r (see
Fig. 4.2a for an example). An r-selected species with a 10-fold higher rate of increase than a
K-selected species varies much less when we put additive white noise on the population size
(Fig. 4.2a). However, if we introduce fluctuations in the environment corresponding to better
and worse periods with a higher or smaller maximum population size by making the carrying
capacity, K, a noisy parameter, we see that the r-selected species varies most (see Fig. 4.2b).
Due to its faster growth rate the r-selected species traces these fluctuations, whereas a slower
growing species lags behind and “averages” more over these periods.

Thus, the natural rate of increase, r, in the logistic equation plays an important role in the
resilience of the carrying capacity to perturbations. The three growth functions of the generalized
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Figure 4.3: The stability of a steady state is determined by the local derivative (slope) of the growth
function at the steady state. We plot the population growth rate, dN/dt = f(N), as a function of
the population size N . Panel (a) depicts the growth rate of a population with an Allee effect, i.e.,
f(N) = (bf(N)g(N)− d)N , see Eq. (3.19a). Panel (b) depicts an arbitrary growth function to illustrate
that each unstable steady state defines the boundary of the basic of attraction of a stable steady state.

logistic equation in Fig. 4.1a, reveal that the shape of the density dependence also plays a role.
The derivative of f(N) = rN(1− (N/K)m) with respect to N is f ′(N) = r− (m+ 1)r(N/K)m,
which at the carrying capacity becomes f ′(K) = λ = −mr. A population with a concave, m > 1,
density-dependence therefore has a shorter return time than a population with a linear (m = 1),
or convex (m < 1) density-dependence (see Fig. 4.2c). Thus, carrying capacities are more stable
when competition starts at relative high population densities, i.e., when m > 1. Similarly, the
two non-replicating populations, with the same source, s, and expected life span, 1/d, and the
same carrying capacity, K, also have slightly different return times (see Fig. 3.4b). The growth
curves in Fig. 4.1b reveal that the model with density-dependent death has a steeper slope, λ,
at the steady state than the model with density-dependent production. The time series in Fig.
3.4b confirm this results in the expected difference in the return time.

We will return to the subject of return time later when we consider models composed of several
ODEs. The slope λ will then be replaced by the largest eigenvalue, λmax, but Eq. (4.5) will have
the same form, i.e., TR = −1

λmax
.

4.4 Basins of attraction

In the previous chapter we saw that positive density-dependence can give rise to an Allee-
effect, meaning that a population needs to be sufficiently large before it can grow. The growth
function of that model is depicted in Fig. 4.3a, which confirms that this population has three
steady states where f(N̄) = 0. The local derivative, λ, has a positive slope at the critical
population size, demonstrating that this is an unstable steady state. Since starting values
below this unstable state all approach the stable point N = 0, and trajectories starting above
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it all approach the carrying capacity, the unstable point separates the “basins of attraction”
of the two stable steady states. This concept of a basin of attraction is further illustrated
by the example function in Fig. 4.3b. Note that the return time has no bearing on a basin
of attraction: return times are only defined in the neighborhood of a steady state where the
linearization remains a good approximation. The concepts of “robustness” and “resilience” do
involve the size of a basin of attraction. Steady states with a small basin of attraction have a
low robustness because perturbations may push the population into approaching an alternative
attractor. Thus, resilience can have two fairly unrelated interpretations: (1) the return time
to an attractor after a small perturbation, and (2) the size of the basin of attraction, i.e., the
robustness to larger perturbations.

4.5 Summary

Plotting the population growth function dN/dt = f(N) as a function of the population size, N ,
reveals the steady states, and from the slope in the steady state one can determine the stability
of the steady state. A steady state is stable when the local derivative, ∂Nf(N̄) = λ, of the
growth function is negative, and it is unstable whenever λ > 0. When the slope is computed by
taking the derivative, i.e., by linearization, one obtains a parameter expression that can be used
to define the return time, TR = −1/λ, quantifying how rapidly the population re-approaches
the steady state following a small disturbance. Basins of attraction have borders defined by
unstable steady states, or repellors, and steady states with a small basin of attractions are not
resilient because sufficiently large disturbances that breach their basin boundary let the system
approach an alternative attractor.

4.6 Exercises

Question 4.1. Density dependent death
Consider a replicating population where most of the death is due to competition with other
individuals, i.e., let f(N) = cN in a model where dN/dt = (b− f(N))N .
a. Sketch the per capita death rate as a function of N .
b. Sketch the per capita net growth rate as a function of N
c. Compute the steady states.
d. Why is the R0 not defined?
e. What is the return time in the non-trivial steady state?

Question 4.2. Return time
a. Compute the return time around the carrying capacities of the “logistic growth” models

with an explicit density-dependent birth or death rate, i.e., dN/dt = bN [1−N/k]− dN and
dN/dt = bN − dN [1 + N/k]. Which parameter do you expect to be the dominant factor in
the return time after a small perturbation of the population at its carrying capacity.

b. Compute the return time around the carrying capacities of the non-replicating population
dN/dt = s− dN .

c. Why are these return times independent of k and s?
d. Would adding negative density dependence to the model of the non-replication population,

e.g., dN/dt = s(1−N/k)− dN , shorten the return time?

Question 4.3. Whales
Make the whales question in Chapter 14 to develop a simple model for a population of whales
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in the oceans. The main feature of this model is that females face difficulties find a male at
low population densities, which is expected to give rise to an Allee effect. Use either your own
model, or the model that is provided in the answers of Chapter 14, to confirm that this gives
an Allee effect. To keep the (graphical) analysis simple, separately consider density-dependent
birth and density-dependent death.
a. Write an appropriate ODE for each of these two cases
b. Sketch both the total and the per capita birth and death rates as a function of the population

size (you probably want to use the file whales.R).
c. Sketch the net growth of the whale population as a function of the population size, and

indicate the basins of attraction of the steady states.
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Chapter 5

Killing and consumption

In Chapter 3 we have written models for density-dependent population growth by allowing the
birth rate to decline as a function of the population density, and/or the death rate to increase
with the population density. Such models tend to be simplifications because density-dependent
effects typically operate indirectly via other populations, and not by direct contacts between
the individuals. For example, we have written a model for density-dependent production of red
blood cells with a production term that decreases as a function of the density of red blood cells.
In reality this depends on the production of EPO produced by cells in the kidney, which in turn
depends on their oxygenation, which finally depends on the red blood cell density. Another
example is the density-dependent growth of a population of bacteria, which typically operates
via the depletion of resources, or via the production of toxins, at high bacterial densities. An
example where direct competition would be a true mechanism is the slowing down of cell-division
by “contact inhibition” when cells become surrounded by other cells in cell cultures or tissues.

To explicitly allow for the factors mediating the density-dependence we have to extend our mod-
els with variables representing these factors. Classic examples are bacteria or algae consuming
nutrients required for their growth and maintenance. Because at high population densities the
resource availability decreases by this consumption, one naturally obtains a density-dependence
that will ultimately limit the total population size. A first example would be a population of
cells growing in a closed environment, requiring a certain nutrient for successful cell division. If
this nutrient becomes freely available upon cell death, one could write a conservation equation
for the resource, RT = R + cN , where RT is the fixed total density of resource in the closed
environment, cN is the total amount of resource contained in the N cells of the population,
and R is the amount of resources that is freely available. Writing the rate of cell-division as a
saturation function of the available resource density, with a maximum division or birth rate, b,
one would obtain something like,

dN

dt
=

bRN

h+R
− δN =

b(RT − cN)N

h+RT − cN
− δN = bN

(
1− h

h+RT − cN

)
− δN , (5.1)

where h the resource density at which the cells divide at half their maximal rate, and δ is the
death rate of the cells. Thus, we again an ODE where the population birth is limited directly
by the population density, but note that none of the models in Chapter 3 resembles Eq. (5.1);
see the exercises.

To generally extend our model with a dynamic resource that is limiting population growth, we
need to add an ODE for the resource, with a production and a loss term, we need to define a
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functional form for the consumption rate, and we need to define how the birth and/or death
rate of the population depends on the amount of resources consumed. We will treat each of
these terms separately, and, whenever needed, sketch functions to define the form of interaction
terms.

5.1 Bacteria in chemostats

First consider bacteria growing in a well-mixed chemostat with a fixed influx of fluid containing
nutrients, and a constant outflow of fluid containing nutrients and bacteria.1 In the absence of
bacteria one would write dR/dt = s − wR, where R (for resource) is the concentration of the
nutrient in the chemostat, s is the rate of influx (e.g., in moles per hour), and w is the rate of
efflux (then also per hour), and 1/w is the average residence time in the chemostat. Some time
after initializing the chemostat, the nutrient concentration approaches the steady state R̄ = s/w.

When the maximum nutrient levels remain sufficiently low, e.g., if the source s is small, one
can safely assume that the rate at which bacteria take up nutrients remains proportional to R,
and hence a sketch of the per capita consumption rate as a function of R, is expected to be a
straight line through the origin with some slope, say a. Writing N for the density of bacteria,
and a for the rate of uptake of nutrients per bacterium per hour, one would write

dR

dt
= s− wR− aRN . (5.2)

If the division rate of the bacteria is limited by nutrients, and if this were to remain proportional
to their per capita uptake, aR, at these low nutrient levels, one would write

dN

dt
= caRN − (w + d)N = caRN − δN , (5.3)

where caR is the per capita birth rate, w remains the rate of wash-out from the chemostat, d is
the death rate of the bacteria (per hour), and δ = w + d. Seeding a chemostat at steady state,

R̄ = s
w , with some bacteria will lead to bacterial growth whenever their R0 = caR̄

δ = cas
δw > 1.

The properties of this 2-dimensional model can be analyzed by sketching nullclines and com-
puting the steady state(s). Starting with the latter we observe that in the presence of bacteria,
the steady state resource density is solved by setting dN/dt = 0 in Eq. (5.3). Cancelling the
trivial N = 0 solution that we already considered above, this leads to R̄ = δ

ca . This calculation
also reveals that the dN/dt = 0 nullcline consists of two straight lines in the phase plane, one
corresponding to the line N = 0, and the other to the line R = δ

ca . To proceed with the steady
state we next solve N from dR/dt = 0 in Eq. (5.2),

N =
s

aR
− w

a
which, after substituting R =

δ

ca
, gives N̄ =

sc

δ
− w

a
. (5.4)

The former expression gives the dR/dt = 0 nullcline, and the latter the “carrying capacity” of
the bacteria in a chemostat with source s and loss rate δ = w+ d. The model therefore has two
steady states: the trivial (R̄, N̄) = ( sw , 0) and the non-trivial (R̄, N̄) = ( δca ,

sc
δ −

w
a ).

To study the stability of these steady state we perform phase plane analysis. Since the dR/dt = 0
nullcline is expressed as a function N = f(R) = s

aR−
w
a , and the dN/dt = 0 nullclines are straight

1Note that this also applies to bacteria living in a gut microbiome, because they also depend on a external
influx of nutrients, and are being washed out with the excrement; see Chapter 10. The gut is not well mixed,
however.
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Figure 5.1: Bacterial growth in a chemostat. In Panels (a) and (b) the curved red lines depict the
dR/dt = 0 nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect in a stable
steady state (as indicated by the solid symbol) located at (R,N) = (R̄, N̄). The black line in Panel (b)
is a trajectory corresponding to the introduction of a few bacteria into a chemostat at the trivial steady
state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the bacterial growth
curve looks like a sigmoid logistic growth process. This figure was made with the model chemo.R.

lines at fixed R = R̄ or N = 0 values, we define the vertical axis of the phase plane by the bacteria
and the horizontal axis by the resource (see Fig. 5.1a) The dR/dt = 0 nullcline, N = s

aR−
w
a , has

a vertical asymptote when R = 0, a horizontal asymptote N = −w
a when R→∞, and intersects

the horizontal axis at the trivial resource density, R = s/w (see Fig. 5.1a). For the vector field
one could start close to the origin, (R,N) ' (0, 0), where dR/dt > 0 because s > wR, and where
dN/dt < 0 because caR < δ (see the arrows in the bottom-left corner). Flipping the horizontal
arrows at the dR/dt = 0 nullcline, and the vertical arrows at the dN/dt = 0 nullcline, the vector
field can be completed for every qualitatively different region in the phase space. One may
double-check that dR/dt < 0 and dN/dt > 0 in the upper-right corner, where s < dR − aRN
and caR > δ. Finally, note that the location of the bacterial nullcline, R = R∗ = δ

ca , corresponds
to the critical resource required for bacterial growth (Tilman, 1980, 1982), and that the nullclines
will only intersect when s

w > R∗.

In Fig. 5.1a the steady state ( sw , 0) without bacteria is unstable because the vertical vectors
are pointing away from it (actually, it is a saddle-point because the horizontal vectors are
pointing towards it). Indeed, introducing bacteria into this state is expected to lead to bacterial
growth (because s

w > R∗). To determine the stability of the non-trivial steady state we have
to linearize the system to compute the Jacobi matrix. Following the accompanying Ebook
(Panfilov et al., 2025), we write the two ODEs in Eq. (5.2) and (5.3) as two normal functions,
f(R,N) = s− wR− aRN and g(R,N) = caRN − δN , determine their partial derivatives, and
subsequently substitute the steady state values:

J =

(
∂Rf ∂Nf
∂Rg ∂Ng

)
|(R̄,N̄)

=

(
−w − aN̄ −aR̄
caN̄ caR̄− δ

)
=

(
−w − aN̄ −δ/c
caN̄ 0

)
=

(
−α −β
+γ 0

)
,

(5.5)
where α, β and γ are arbitrary positive values. Since the trace of this Jacobi matrix, tr = −α < 0,
and its determinant, det = 0 − −βγ = βγ > 0, both eigenvalues will be negative (i.e., have a
negative real part). We therefore conclude that the non-trivial steady state is stable. Note
that we can also read of the signs of this Jacobian from the vector field. The local effect of
R on dR/dt = f(R,N) is given by the negative arrow on the right side of the steady state,
the negative effect of N on dR/dt = f(R,N) is given by the negative arrow above the steady
state, the positive effect of R on dN/dt = g(R,N) is given by the positive arrow on the right
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Figure 5.2: Bacteria with a Monod saturated growth function. In Panels (a) and (b) the curved red
lines depict the dR/dt = 0 nullcline, and the straight blue lines the dN/dt = 0 nullcline. They intersect
in a stable steady state (as indicated by the solid symbol) located at (R,N) = (R̄, N̄). The black line
in Panel (b) is a trajectory corresponding to the introduction of a few bacteria into a chemostat at the
trivial steady state (R = s/w). Panel (c) depicts this trajectory as a time plot, and illustrates that the
bacterial growth curve looks like a sigmoid logistic growth process. This figure was made with the model
chemoMonod.R.

side of the steady state, and the null effect of N on dN/dt = g(R,N) is revealed by the fact
that g(R,N) = 0 above the steady state (see the section on the graphical Jacobian in the
accompanying Ebook (Panfilov et al., 2025)). A population that is maintained by a resource
that is maintained by a source, and with a linear functional response (leading to mass-action
consumption and birth terms), is therefore expected to have a stable steady state (the carrying
capacity) whenever its R0 > 1.

Saturated consumption

Actually it has been known for a long time (Monod, 1949) that the division rate of bacteria
approaches a maximum at high nutrient densities, and that this is limited by the rate at which a
bacterium can consume nutrients. Thus, the division rate of bacteria is typically proportional to
their consumption rate. The saturation at high nutrient densities is modeled with a Hill function,
f(R) = R

h+R , which in this literature has been coined as the Monod saturation function. Allowing
for saturation and assuming that the rate at which bacteria divide is proportional to the rate
at which they take up nutrients, one would write

dR

dt
= s− wR− aRN

h+R
and

dN

dt
=
caRN

h+R
− (w + d)N =

caRN

h+R
− δN . (5.6)

At the expense of one new parameter, h, representing the resource density at which the per capita
consumption rate is half maximal, we now have a model that is also realistic at high resource
densities. The fitness R0 of the bacteria can here be defined in two ways. First, one could invoke
the maximum resource density, R = s/w, to compute a maximum division rate cas/w

h+s/w = cas
wh+s .

With an expected residence time of 1/δ this would correspond to an R0 = cas
δ(wh+s) . Second, one

could go for a much simpler definition of R0 by making use of the fact that the division rate
approaches a maximum, ca, at infinite resource densities, which provides an R0 = ca

δ . The latter
R0 is elegantly simple and will be used to clean up the expressions for the steady states.

Analyzing the behavior of the model by computing steady states and nullclines, we first observe
that setting dN/dt = 0, and cancelling the trivial N = 0 solution, again provides the steady
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Figure 5.3: The Lotka-Volterra model. In Panels (a) and (b) the slanted red lines depict the dR/dt = 0
nullcline, and the vertical blue lines the dN/dt = 0 nullcline. They intersect in a stable steady state
(as indicated by the solid symbol) located at (R,N) = (R̄, N̄). The predator nullcline is located at the
critical prey density R∗ = d

ca = K
R0

. The black line in Panel (b) is a trajectory, again corresponding to
the introduction of a few consumers into the carrying capacity of the resource. Panel (c) depicts this
trajectory as a time plot, and illustrates that the consumer growth curve looks like a sigmoid logistic
growth process. This figure was made with the model lotkaBM.R.

state of the resource, R̄ = hδ
ca−δ = h

R0−1 , where R0 = ca
δ . The dN/dt = 0 nullclines therefore

remain to be two straight lines, one at N = 0 and the other at R = R∗ = R̄ (see Fig. 5.2). To
find the steady state of the bacteria we need to substitute the R in the dR/dt = 0 equation with
R̄ = hδ

ca−δ . Starting with the consumption term, one obtains

aR̄N

h+ R̄
=

aN

h/R̄+ 1
=

aN

h ca−δhδ + 1
=

aδN

ca− δ + δ
=
δ

c
N , (5.7)

and hence for the full model

s− whδ

ca− δ
− δ

c
N = 0 resulting in N̄ =

cs

δ
− chw

ca− δ
=
c

δ

(
s− hw

R0 − 1

)
. (5.8)

The dR/dt = 0 nullcline can be found as follows

s− wR =
aRN

h+R
↔ N =

(h+R)(s− wR)

aR
=
h+R

a

( s
R
− w

)
, (5.9)

which is zero when R = −h or R = s/w. Because N ' hs
aR when R → 0, this nullcline has

a vertical asymptote when R → 0. Because h + R → R when R � h, and s/R − w → −w
when R � s, the nullcline approaches a slant asymptote with slope −w

aR when R → ∞ (see
Fig. 5.2).2 We observe that adding Monod saturation to the model hardly changes the phase
plane. Since the local vector field around the non-trivial steady state yields the same graphical
Jacobian as the last matrix in Eq. (5.5) we confirm that non-trivial steady state is stable. Note,
that this is quite different from the situation where saturated consumption is added to a model
with a replicating resource (see Chapter 7).

2The slant asymptote can be checked by observing that when R� h, the nullcline is solved from s−wR = aN ,
revealing the slant asymptote N = s−wR

a
. We also provide a tutorial tbb.bio.uu.nl/rdb/bm/clips/sketch on finding

slant asymptotes.

https://tbb.bio.uu.nl/rdb/bm/clips/sketch
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5.2 Replicating resources

Next consider a population consuming a replicating resource (that itself would approach a steady
state in the absence of consumption). This could be zooplankers grazing algae, or killer cells
that divide after removing tumor cells. In Chapter 3 we have learned that logistic growth is a
reasonable general model for a replicating resource with linear density dependent birth and/or
death rates. Thus, starting by adopting logistic growth for the resource, and with the same
mass-action consumption as above, one would write

dR

dt
= rR(1−R/K)− aRN ,

dN

dt
= caRN − δN . (5.10)

This is the famous Lotka-Volterra model that was proposed independently by Lotka (1913) and
Volterra (1926) as an ecological predator-prey model. Note that the ODE for the consumers
is identical to Eq. (5.3). We will see in Chapter 6 that epidemiological models for an infection
spreading in a population of susceptible hosts can also be described with Eq. (5.10) (when R
are susceptible and N infected hosts, a is an infection rate, and c = 1). Interpreting R has the
size of a tumor (or an infection), caR as a per capita cell division rate, and N as the number of
immune effector cells, the same model has also been used for modeling an immune response to
a replicating threat (Nowak & May, 2000).

Because the Lotka-Volterra model is used so widely in theoretical biology we will analyze it in
detail. Starting with the steady states we observe that in the absence of consumers the resource
will either be zero, or approach the steady state R̄ = K. In the presence of consumers one solves
R̄ = δ

ca by setting dN/dt = 0, and substituting this into

r(1−R/K)− aN = 0 yields N̄ =
r

a

(
1− δ

caK

)
(5.11)

for the non-trivial steady state of the consumers. The dN/dt = 0 nullcline consists of the now
familiar straight lines N = 0 and R = δ

ca , and the dR/dt = 0 isocline is defined by R = 0 and
N = r

a(1− R
K ). Depicted in a phase space with N on the vertical axis and R on the horizontal

axis, the nullcline of the resource is a declining straight line, intersecting the vertical axis at
N = r/a and the horizontal axis at R = K (see Fig. 5.3a). The location of the non-trivial
consumer nullcline again defines the critical resource density, R∗, required for net growth of the
consumers, and the non-trivial steady state only exists when R∗ < K (see Fig. 5.3a).

The model has maximally three steady states,

(R̄, N̄) = (0, 0) , (K, 0) and
( δ
ca
,
r

a

[
1− δ

caK

])
. (5.12)

The vector field in Fig. 5.3a reveals that the first two are unstable (saddle points). Defining
f(R,N) = dR/dt and g(R,N) = dN/dt, computing the four partial derivatives, the Jacobian
of the non-trivial steady state is defined as

J =

(
∂Rf ∂Nf
∂Rg ∂Ng

)
|(R̄,N̄)

=

(
r − 2r

K R̄− aN̄ −aR̄
caN̄ caR̄− δ

)
=

(
− rδ
caK −δ/c
caN̄ 0

)
=

(
−α −β
+γ 0

)
,

(5.13)
where α, β and γ are arbitrary positive values. Since the trace of this Jacobi matrix, tr = −α < 0,
and its determinant, det = 0 − −βγ = βγ > 0, both eigenvalues will be negative (i.e., have a
negative real part), and the non-trivial steady state is stable. Note that the trajectory in Fig.
5.3b is spiraling inwards, meaning that for the parameters that were used to make this figure the
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Figure 5.4: The “generalized” Lotka-Volterra model. In Panels (a) we set m > 1 and in Panel (b) m < 1.
The curved red lines depict the dR/dt = 0 nullcline, and the straight blue lines the dN/dt = 0 nullcline.
Black lines are trajectories starting close to R = K. This figure was made with the model lotkaBM.R.

steady state is a stable spiral point (and that the eigenvalues are a complex pair with a negative
real part).

The R0 of the resource is not defined because the logistic growth term collapsed birth and death
into a net growth rate. Since dN/dt has separate birth and death terms, one can calculate an
R0 for the predator. Because the per capita birth rate of the consumers, caR, is proportional to
the prey density, we have to substitute the maximum prey density R = K into the birth rate,
caR (because the R0 is calculated for the best possible circumstances; see Chapter 6). Doing so
one arrives at R0 = caK

δ , and for this fitness R0 = 1 can indeed be used as an invasion criterion
because the predator can only expand when caK > δ. The expression of the fitness, R0 = caK

δ ,

and the location of the consumer nullcline, R∗ = δ
ca , resemble each other. This can be used to

express R∗ in terms of the R0, i.e., R∗ = K/R0, which says that the degree by which a predator
exhausts its prey population is completely determined by its R0. A predator with an R0 = 10
is therefore expected to deplete the prey density to 10% of its carrying capacity.

Generalizing the Lotka-Volterra model

The Lotka-Volterra model assumed that the density-dependent terms of the resource are lin-
ear. What to expect for the consumption of replicating resources having a non-linear density-
dependence? An approach to test this is to use the generalized form of the Logistic-growth
equation (see Chapter 3), and write a “generalized” Lotka-Volterra model

dR

dt
= rR(1− (R/K)m)− aRN ,

dN

dt
= caRN − δN , (5.14)

which has identical dN/dt = 0 nullclines. The non-trivial dR/dt = 0 nullcline, N = r
a(1 −

(R/K)m), is concave when m > 1 and convex when m < 1 (see Fig. 5.4). Because this does
not affect the nature of the steady states in the phase plane, i.e., the local vector field in the
neighborhood of the steady states remains the same, we conclude that similar model behavior
is expected when resources have a non-linear density-dependence.

Generally the shape of the dR/dt = 0 nullcline for a resource having a mass-action consumption
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term reflects the per capita growth rate of the resource. Consider the more general form

dR

dt
= [f(R)− aN ]R , (5.15)

where f(R) is an arbitrary function defining the per capita growth rate of R, and observe that
the non-trivial nullcline can be written as N = f(R)/a. Thus, whenever the per capita growth
rate of R is a monotonically declining function of R, we expect a declining “Lotka-Volterra like”
nullcline of the resource in the phase space, provided we can cancel R from the consumption
term (here the mass-action, aNR, term). We therefore expect more complicated nullclines for
saturated consumption terms, e.g., aNR

h+R , from which we cannot cancel R. This is explored in
Chapter 7.

When should one expect the vertical dN/dt = 0 nullcline that we obtained throughout in this
chapter? The Lotka-Volterra model assumes that the birth rate of the consumers increases
linearly with the per capita consumption, aR. This need not be true as a consumer’s birth rate
may be a saturation function of its consumption; at a certain level of consumption the birth
rate may slow down due to “diminishing returns”. Such a relationship, e.g., a per capita birth
rate of

g(aR) = β
aR

H + aR
= β

R

h+R
, (5.16)

where β is the maximum birth rate and h = H/a, would correspond to

dN

dt
=

[
βR

h+R
− δ
]
N , (5.17)

with an R0 = β/δ. Since, one can cancel the N = 0 solution after setting dN/dt = 0, we would
still obtain a vertical nullcline (at R∗ = h

R0−1). Rewriting Eq. (5.17) in a more general form like

dN

dt
= [βf(R)− δ]N , (5.18)

one indeed obtains a vertical predator nullcline for any function f(R). Summarizing, a vertical
predator nullcline is obtained whenever one can cancel the consumer, N , from the consumer’s
dN/dt = 0 equation.

The nullcline will no longer be vertical when the consumer, N , remains present in the term
between the square brackets of Eq. (5.18). This will be the case when the functional response is
predator dependent, i.e., when one replaces f(R) by f(R,N), or when the death rate is density
dependent, e.g., when δ is replaced by δ(1 + εNm). Whenever this leads to a negative density-
dependence, the predator nullcline will be slanted to the right, which changes the effect of the
consumer on itself from zero to negative (see Fig. 5.5e). The graphical Jacobian of the non-trivial
steady state of a Lotka-Volterra model with a negative density-dependence of the resource and
the consumer will therefore be

J =

(
− −
+ −

)
with tr < 0 and det > 0 . (5.19)

The steady state remains stable, and most of the conclusions drawn in this chapter seem robust
to allowing for direct competition among the consumers. Conversely, in the next section we will
see that allowing for positive density-dependence among the consumers, e.g., for cooperative
hunting, can destabilize the steady state (see Fig. 5.5d), but only when the resource has little
negative density-dependence (see Fig. 5.5f).
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Figure 5.5: The Lotka-Volterra model with horizontal and slanted nullclines. Red lines depict the
dR/dt = 0 nullclines, blue lines the dN/dt = 0 nullclines, and black lines trajectories. In Panels (a-c)
the non-trivial consumer nullcline is a vertical line at R = δ

ca (because εN = 0 in Eq. (5.23)), and in
Panels (d) and (e) the non-trivial resource nullcline is a horizontal line at N = r

a (because εR = 0).
Panel (a) depicts the classic Lotka-Volterra model with a resource nullcline that is slanted downwards
(due to their negative density-dependence, εR > 0, allowing for a carrying capacity). In Panel (b) the
resource nullcline is horizontal and the consumer nullcline vertical. In Panel (c) the resource nullcline is
slanted upwards (positive density-dependence, εR < 0). In Panel (d) the consumer nullcline is slanted
leftwards (positive density-dependence, εN < 0). In Panel (e) the consumer nullcline is slanted rightwards
(εN > 0). In Panel (f) illustrates that sufficient negative density-dependence of the resource, εR > 0,
can compensate for positive density-dependence of the consumer, εN < 0, and allow for a stable steady
state (if the trace is negative). The graphical Jacobian of the non-trivial steady state is provided in
the upper right corner, the determinant of these matrices is always positive and the sign of the trace is
indicated. The perpendicular nullclines in Panel (b) intersect in a steady state with neutral stability,
tr = 0 and det > 0, and the behavior of the model is cycles of neutral stability that are defined by the
initial condition (bullets). This Figure was with the model lotka0.R.

5.3 Horizontal and vertical nullclines

The Lotka-Volterra model is sometimes written in a structurally unstable form without a nega-
tive density dependence of the resource:

dR

dt
= rR− aRN ,

dN

dt
= caRN − δN , (5.20)

which has the normal vertical dN/dt = 0 nullcline at R = δ
ca and a horizontal dR/dt = 0

nullcline at N = r
a (see Fig. 5.5b). This model has limited biological relevance. The reason is

that any small change of the model will lead to a qualitatively different type of behavior. The
model is therefore said to be “structurally unstable”, and should not used it in biological research
(the model is used in teaching examples because it is so elegantly simple). The non-trivial steady
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state is given by the perpendicular intersection of the nullclines, i.e. (R̄, N̄) = ( δca ,
r
a), and the

Jacobian of this steady state is

J =

(
r − aN̄ −aR̄
caN̄ caR̄− δ

)
=

(
0 −δ/c
cr 0

)
. (5.21)

Because tr(J) = 0 the steady state has a “neutral” stability. The eigenvalues of this matrix are

λ± = ±
√
−δr = ± i

√
δr ; (5.22)

see Page 165. Because the eigenvalues have no real part the steady state is not structurally
stable: any small change of the system will slightly change the angle at which the nullclines
intersect, and make the equilibrium either stable or unstable. The behavior of this model are
cycles of neutral stability: any perturbation of the population densities leads to a new cycle (see
Fig. 5.5b).

Thus, one should be careful with perfectly horizontal or vertical nullclines because they result in
Jacobi matrices with a zero on the diagonal, and they are typically the result of ignoring (perhaps
minor) density-dependent effects. The non-trivial steady state will have the biologically ill-
defined neutral stability when the trace of the Jacobian is zero, i.e., when all diagonal elements
are zero. Since biological populations are typically expected to have at least some effect on
themselves, one should check the robustness of the results by slightly altering the slope of both
horizontal and vertical nullclines. Generally, one tests for structural stability by making small
changes to a model: the model is robust when small changes do not affect its results. Here
we study the effect of the slope of the non-trivial nullclines of Eq. (5.20), by adding a small
density-dependence to both ODEs,

dR

dt
= rN − aRN − εRR2 and

dN

dt
= caRN − δN − εNN2 . (5.23)

We have seen above that neutral stability is obtained in the absence of density-dependence,
i.e., when εR = εN = 0, leading to perpendicular nullclines (Fig. 5.5b). Any negative density-
dependence, ε > 0, leads to a stable steady states (Fig. 5.5a and e), whereas positive density-
dependence, ε < 0, tends to destabilize (Fig. 5.5c and d). This analysis shows that the non-trivial
steady state is stable whenever at least one of the two populations has a negative density-
dependence. When either the resource or the consumer has a negative density-dependence, and
the other population a positive density-dependence, the sign of the trace will depend on the
relative strength of the density-dependent effects.

Returning to the classic Lotka-Volterra model model with a carrying capacity of the resource,
i.e., with εR > 0, we observe in Fig. 5.5f that a small positive density-dependence of the consumer
will lead to the graphical Jacobian

J =

(
−α −β
γ δ

)
with tr = −α+ δ and det = −αδ + βγ . (5.24)

This steady steady state will be stable when δ → 0, i.e., whenever the positive density-
dependence of the consumer is sufficiently small (see Fig. 5.5f). We conclude that a vertical
consumer nullcline is robust in a Lotka-Volterra model with a carrying capacity of the resource
because slanting the consumer nullcline slightly leftwards or rightwards does not affect the sta-
bility of the steady state.
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Figure 5.6: Enrichment of the resource increases the steady state of the consumer only. The red
lines depict the dR/dt = 0 nullcline and blue lines the dN/dt = 0 nullcline. In Panel (a) we consider
the chemostat of Eq. (5.2) for two different influx rates, s1 and s2, of the resource. The trajectory
corresponds to starting in the steady state with the low influx, s1, and increasing the influx to the higher
s2. In Panel (b) we consider the Lotka-Volterra model of Eq. (5.10) for two different carrying capacities,
K1 and K2, of the resource. The trajectories corresponds to starting in the steady state with the low s1
or K1, after increasing the influx to s2 (Panel a), or the carrying capacity to K2 (Panel b). Enrichment
transiently increases both resource and consumer densities, but at the new steady state only the consumer
is increased. Panel (a) was made with model chemo.R and Panel (b) with lotkaBM.R.

Resource densities are determined consumers only

An unexpected consequence of vertical consumer nullclines located at R = δ
ca is that the equi-

librium density of the resource is determined by the parameters of the consumer, i.e., δ, c and
a only, and is independent of its own parameters, s, w, r and/or K (see Fig. 5.6). This implies
that the effect of increasing the inflow of resource (e.g., nutrients), or increasing the carrying
capacity of the resource, increases the steady state of the consumer, and not that of the resource.
In ecology this is known as the classic “Paradox of enrichment” (Rosenzweig, 1971), because
euthrophication (enrichment) of 2-dimensional aquatic ecosystems comprised of algae, R, that
are consumed by zooplankton, N , leads to an increase of the zooplankton densities, and not of
the densities of the algae. Similar effects have been observed in 2-dimensional bacterial food
chains (Kaunzinger & Morin, 1998). This unexpected property of these models is due to the
fact that the consumers, N , cancel from the dN/dt = 0 equation upon solving steady states.
It is the steady state of the resource, R̄, that is solved when setting dN/dt = 0. Which steady
state is solved from which equation not only depends on the form of the equations, but also on
the number of equations (see Chapter 8). As a consequence predictions for how populations are
expected to change upon changing one of the parameters may crucially depend on the design of
the model (De Boer, 2012), which is another form of non-robustness.

5.4 Summary

Consumer-resource models with a mass-action killing term tend to have a stable steady state
where the consumer determines the density of the resource. Since we do not know beforehand
which variable is solved from which equation, the general procedure for solving a steady state of
a model with several ODEs, is to start with the most simple equations, and use the steady state
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values that they provide for solving the more complex equations. Plotting the consumer on the
vertical axis and the resource on the horizontal axis, the consumer nullcline is typically a vertical
line located at the critical resource density, R∗, required for growth of the consumers, whereas
the resource nullcline is a declining line intersecting the horizontal axis in the carrying capacity
of the resource. Lotka-Volterra-like nullclines are obtained with replicating resources, when the
consumption obeys a mass-action term (the birth rate of the consumer may be a saturation
function of its consumption). The shape of the nullcline of the resource tends to reflect the per
capita growth of the resource. Saturated consumption terms have little effect on the phase plane
of a resource that is maintained by a source, but are expected to have a major effect when the
resource is maintained by replication.

5.5 Exercises

Question 5.1. Sketch the per capita birth rate
In Eq. (5.1) we considered a case of a population of cells in a closed environment containing a fixed
amount, RT , of nutrients. The cells consume nutrients as “building blocks” upon cell division,
and the rate of cell division was a saturation function, bR

h+R , of the free nutrient availability,
R = RT − cN , where c is the amount of nutrient contained in a single cell.
a. Sketch the per capita birth rate as a function of the population density N (hint: you may

need to use the file birth.R).
b. Which of the density dependent function from Chapter 3 would corresponds best with this

concave shape?

Question 5.2. Neutrophils
Let us return to the neutrophil project of Chapter 2 and complicate the model by giving the
bacteria a carrying capacity, K, and allowing neutrophils to arrive from the bone marrow:

dB

dt
= rB(1−B/K)− kNB and

dN

dt
= s− dN ,

where k is the mass-action killing rate, s the source of neutrophils from the bone marrow, and d is
the death rate of neutrophils. Note that in this model the neutrophil dynamics are independent
of the bacteria.
a. Sketch the nullclines for all qualitatively different situations, and determine the stability of

all steady states.
b. How would you define the parameter condition for immediate control in this model? (With

immediate control we mean that dB/dt < 0 upon invasion of a few bacteria.)
c. In Chapter 2 we argued that neutrophils should have a maximum killing rate, and we wrote

dB/dt = rB(1−B/K)− kNB
h+B , where neutrophils maximally kill k bacteria per unit of time.

Sketch the nullclines and determine the stability of all steady states of the model extended
with this saturated killing rate. (Note that one can also write the saturation term as k′NB

1+B/h

where k′ = k/h to not change the dimension of the killing constant when extending the
model, i.e., both k and k′ are mass action killing rates.) Again, sketch the nullclines for all
qualitatively different situations, and determine the stability of all steady states.

d. For each of these situations, how would you now define the condition for immediate control?
e. In reality neutrophils are rapidly released from a reservoir in the bone marrow during an

inflammatory immune response. The model neutrophils2.R adds an equation for the bone
marrow, and if you have time you may want to study that model.

Question 5.3. Lotka-Volterra models
We have claimed that the Lotka-Volterra model is very general for the situation where a self-
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replicating population is controlled by a population that exerts its control by a mass-action
term, and which is stimulated to replicate as a function of this control term.
a. Write an ODE model for a tumor that is controlled by natural killer cells that replicate when

they encounter and kill tumor cells.
b. Write an epidemiological model for a population of susceptible individuals that grow logis-

tically in the absence of the infectious agent, with new infections occurring when infected
individuals encounter susceptible individuals.

c. Can you think of natural improvements of these models?

Question 5.4. Scaling
Read Section 15.4 in the Appendix and use this to scale the Lotka-Volterra predator-prey model
by introducing non-dimensional population densities. Scale time by the natural rate of increase
of the prey.
a. Write a new model by scaling as many parameters as possible.
b. How many parameters did you lose?
c. What is the dimension of the remaining parameters?

Question 5.5. Desert
Consider the following model for a vegetation V in a desert. The growth of the vegetation is
limited in the amount of water W in the soil:

dW

dt
= a− bWV − cW and

dV

dt
= dWV − eV ,

where a is the rainfall dependent water uptake in the soil,
b is the extra water uptake and evaporation by the vegetation,
c is the normal evaporation,
d is the water dependent growth of the vegetation,
and e is the death rate of the vegetation.
For this exercise consider steady state situations.
a. How much water does the soil contain if there is no vegetation?
b. Suppose the rainfall increases two-fold because of a change in climate. How much water

would the soil contain if there is still no vegetation?
c. How much water would the soil contain if there is a vegetation?
d. What would be the corresponding steady state of the vegetation?
e. How much water would the soil contain if the rainfall increases two-fold in the presence of a

vegetation?
f. Draw the nullclines, and determine the stability of the steady states.
g. How would the increased rainfall change these nullclines?

Question 5.6. Kingfishers
Make the question on Kingfishers in Chapter 14 and analyze your own model, or the models
provided in the answers of Chapter 14, by phase plane analysis, i.e., sketch the nullclines, the
vector field, and determine the stability of all steady states.
a. Does this analysis suggest major improvements of the model?
b. What would have happened if we had forgotten the spontaneous emigration?
c. How does the phase plane change when we have a model where the immigration is a saturation

function of the fish?

Question 5.7. Biotic and abiotic resources
Make a natural model for the following two situations:
a. Consider an abiotic resource (like nitrate or phosphate) that flows in and out from a chemo-

stat, and that is used by a consumer when it forms new material to divide. The birth rate
of the consumer is a saturation function of the concentration of the resource, because at
high resource concentrations the birth rate becomes limited by something else (e.g., another
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resource). Because the resource is built into the cellular material of the consumers, the con-
sumption of resource is proportional to the birth rate of the consumers. Assume that the
consumers tend to flow out of the chemostat before they die.

b. Consider a biotic resource, like a prey species that is being eaten by a consumer. The resource
maintains itself by growth (i.e., replication) and has a carrying capacity in the absence of
consumers. The carrying capacity of the resource is so low that the consumption term can
safely be described by a mass-action term. The birth rate of the consumer is a saturation
function of its consumption, because at high consumption levels the birth rate is also limited
by other factors.

c. Which equation differs most between the two situations, the resource or the consumer?

Question 5.8. Evolution to self-extinction
Evolution can be detrimental because a normal process of adaptation can erode population
sizes, and thereby raise the population’s extinction risk (Rankin & Lopez-Sepulcre, 2005). Sev-
eral models have shown that adaptation may drive populations to dangerously small numbers,
making them vulnerable to stochasticity, either gradually (Matsuda & Abrams, 1994) or sud-
denly (Dercole et al., 2002; Ferriere & Legendre, 2013). We study a simple example of ‘Evolution
to self-extinction’ in the Lotka-Volterra model of Eq. (5.10) by asking what happens when the
consumer keeps on evolving higher attack rates, a. Above we derived that the non-trivial state
of the Lotka-Volterra model corresponds to

R̄ =
δ

ca
and N̄ =

r

a

(
1− δ

caK

)
,

which shows that the steady state of the resource is a declining function of the attack rate, a,
and that the steady state of the consumer is a non-monotonic function of a.
a. What is the minimal attack rate required for co-existence in Eq. (5.10)?
b. Use the function curve() in R to plot R̄ and N̄ as a function of the attack rate.
c. Will a new consumer with a higher attack rate always be able to invade into the non-trivial

steady state of the Lotka-Volterra model?
d. Is there an optimal attack rate? What do you expect to happen when consumers keep

evolving higher attack rates?
e. Why are we not observing that all resource-consumer systems (or host-parasite systems) go

extinct?
f. Is this different when the resource is maintained by a source, rather than by self-renewal?

Extra questions
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Question 5.9. Cryptic oscillations
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FIG. 3. Dynamics of E. coli and bacteriophage T4 pop-
ulations in representative chemostats supplied with media
containing different amounts of glucose. The population den-
sities (viruses/mL or bacteria/mL) have been log-transformed.
(A) 0.1 mg/L glucose, (B) 0.5 mg/L glucose. Key: solid line
5 total E. coli population, dotted line 5 T4 population, di-
amonds 5 T4-resistant E. coli; arrows indicate first detection
of T4-resistant E. coli.

FIG. 4. Effect of glucose input concentration on equilib-
rium densities and population instability of E. coli and bac-
teriophage T4 populations interacting in a chemostat. Equi-
librium population density is estimated as the grand mean of
the mean population densities in three replicate chemostats.
The equilibrium population densities (viruses/mL or bacteria/
mL) have been log-transformed in this figure. Instability is
estimated as the coefficient of variation of population den-
sities averaged across three replicate chemostats. Stars in-
dicate statistical significance: *0.01 , P , 0.05; **0.001 ,
P , 0.01; *** P , 0.001. (A) equilibrium density, (B) in-
stability. Key: striped bars 5 0.1 mg/L glucose treatment;
open bars 5 0.5 mg/L glucose treatment.

as a separate population and assumes that there is a
trade-off between T4 resistance and competitive abil-
ity. Such a trade-off has been previously reported (Len-
ski 1988a) and has been shown to result in coexistence
of bacteriophage-resistant and bacteriophage-sensitive
E. coli when bacteriophage is present (Chao et al.
1977). We measured the magnitude of this trade-off in
our system and it is similar to previously reported trade-
offs (see Appendix). We also developed a ratio-depen-
dent model of our system after invasion by fitting our
ratio-dependent model to previously published obser-
vations of E. coli and T4 after invasion by T4-resistant
mutants (see Appendix). This model combines the
T4-resistant and T4-sensitive E. coli into one hetero-
geneous population.
When the pre- and postinvasion versions of each

model are compared, several predictions emerge (com-
pare Fig. 2B and C for the prey-dependent model, Fig.
2E and F for the ratio-dependent model). The ratio-
dependent model predicts a 4% increase in the equi-

librium population density of total E. coli (T4-sensitive
and T4-resistant combined) following invasion, while
the prey-dependent model predicts a 22-fold increase.
The ratio-dependent model predicts no change in the
stability of the total E. coli population following in-
vasion; in contrast, the prey-dependent model predicts
that the population will increase in stability. Both mod-
els predict a decrease in the population density of T4
following invasion; however, the ratio-dependent mod-
el predicts a decrease of ;400-fold, while the prey-
dependent model predicts a decrease of ;4-fold. Nei-
ther model predicts that the stability of the T4 popu-
lation will change following invasion. However, the
ratio-dependent model predicts a stable equilibrium
both before and after invasion by T4-resistant mutants,
while the prey-dependent model predicts that the pop-
ulation will exhibit undamped oscillations both before
and after invasion. In addition, the prey-dependent
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Fig. 3b from Bohannan & Lenski (1997).

The now classic experiments of Bohannan & Lenski
(1997) demonstrated that when E. coli is cultured
with its bacteriophage T4, the system can initially
display predator-prey like oscillations, and later de-
velop so-called “cryptic” oscillations where the phage
densities continue to oscillate, but the E. coli den-
sities become stable. The solid line in the Figure
depicts the total population size of E. coli and the
dotted lines that of the T4 phage. They study this
in more detail in a later paper (Bohannan & Lenski,
1999), and this data is also discussed in Figure 4.6 of
the excellent book of Weitz (2015). Finally, Yoshida
et al. (2007) published a paper on cryptic oscillations
in algae-zooplankton communities.

a. Hypothesize why the E. coli becomes stable after about 200h of co-culture (i.e., at the arrow).
b. How would you explain these cryptic oscillations after 200h, where the phages oscillate and

the bacteria seem stable?
c. Can you explain the difference in the average density of the phages in the period before and

after the 200h point?
d. If you have time, make a mathematical model and study it numerically to test your ideas

and predictions.

Question 5.10. Phages and bacteria (Grind)
Levin et al. (2013) and Jiang et al. (2013) describe several experiments in which they culture
bacteria in vitro and infect them with phages to study the evolution of resistance. Some of their
data are available on the website, and we ask you to fit the data to two different versions of their
model. The first model is the system of delay differential equations (DDEs) that they present in
their paper (Levin et al., 2013), which consists of a resource, R, sensitive bacteria, B0, resistant
bacteria, B1, infected bacteria, M , and phages, P , and where have kept their notation of the
parameters (i.e., δ is the infection rate, and v is the maximum consumption rate, and e is the
amount of resources contained in a single bacterium),

dR(t)

dt
= − evR(t)

K +R(t)
(B0(t) + (1− s)B1(t)) ,

dB0(t)

dt
=

vR(t)

K +R(t)
B0(t)− δB0(t)P (t) ,

dB1(t)

dt
=

vR(t)

K +R(t)
(1− s)B1(t) ,

dM(t)

dt
= δB0(t)P (t)− δB0(t− λ)P (t− λ) ,

dP (t)

dt
= bδB0(t− λ)P (t− λ)− δP (t)[B0(t) +B1(t)] ,

where we explicitly indicate that variables either depend on time, t, or on the time delay, t− λ,
that is used to model the eclipse phase. Infected bacteria therefore burst after λ = 0.4h to give
rise to b phages, where b is the burst size. The δP (t)[B0(t) +B1(t)] term in the last equation is
the absorption of phages to bacteria, i.e., phages are absorbed by resistant bacteria, but cannot
infect them. This model is provided on the website as the file levin.R with a parameter setting
copied from Levin et al. (2013) (note that we have added the selection coefficient, s, to allow for a
fitness cost of the resistance mechanism). The two data sets in Figure 2 of the Levin et al. (2013)
paper are available on the website as the files LevinPG13Fig2B0.csv and LevinPG13Fig2.csv.



52 Killing and consumption

The first file contains the growth of (sensitive) bacteria in the absence of phages, and the second
one provides the total densities of the bacteria and the phages after infection.
a. Read the equations carefully and make sure that you understand the time delay.
b. Plot the data with the levin.R script, and make sure you understand them.
c. Fit the first data set to check their estimate for the consumption rate, v. Note that it makes

no sense to check the e and k parameters because we have no information on the resource
densities.

d. Use your improved estimate of the consumption rate to fit the model to the infection data.
Do you obtain a good fit, and what do you think of their parameter estimates?

e. Time delays are notoriously difficult to solve numerically, and the DDE solver of the deSolve
library is doing an excellent job here. We could nevertheless check whether or not the data
suggest that this fixed time delay of λ = 0.4h is truly required, by changing the last two
equations into ODEs:

dM(t)

dt
= δB0(t)P (t)−M(t)/λ and

dP (t)

dt
= bM(t)/λ− δP (t)[B0(t) +B1(t)] ,

where λ still defines the average length of the eclipse phase, but which is now exponentially
distributed. This model is included in the same levin.R file in the function odeModel, and
an example on how to fit the ODE model to the data is shown in the second half of the file.
Do the data require the fixed time delay of the DDE model? Is it wise to allow for a fitness
cost?

f. Are there any other parameters that you would have added to the model?

Question 5.11. Gillespie algoritm
Read Section 15.8 in the Appendix on simulating ODEs stochastically using discrete values of all
variables. The Gillespie algorithm is illustrated with an R-script simulating the Lotka-Volterra
predator-prey model of Eq. (15.32).
a. Why do we write a Lotka-Volterra model with explicit birth and death rates for the prey

(instead of logistic growth)?
b. Actually, interpreting Eq. (15.32) as a predator/prey-model is somewhat stretched because

we needed to assume that the killing of one prey creates exactly one new predator individual.
How would the R-script have to change if one were to interpret R as tumor cells, N as killer
cells, aRN as a killing event, and allow that killer cells can receive a signal to divide upon
binding a tumor cell?

c. How would the model have to change when one keeps track of the number of prey individuals
eaten by a predator, and only allow predators to give birth after consuming a particular
number of prey?

d. One can study exponential decay with this model by setting b = N = 0. Can you determine
the average half life of many Gillespie simulations and compare that to the expected value?

Question 5.12. Return time
This is a challenging exercise that will show that one can also determine the return time around
a steady state of a model composed of several ODEs, as it is defined by the largest eigenvalue,
i.e., TR = −1

λmax
. We recommend that you make this exercise by carefully reading the answer.

In the answer we compute the return time of the non-trivial steady state of the Lotka-Volterra
model and study how this depends on the mechanism of the density dependence of the prey.
For reasons of simplicity we consider the case where the non-trivial steady state is a stable
spiral point (and not a stable node), and first compute the return time of a general form of the
Lotka-Volterra model, e.g.,

dR

dt
= rR− γR2 − aRN and

dN

dt
= caRN − δN .

a. Compute the return time of this general form.
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b. What is the return time when we explicitly make the birth rate density dependent (e.g.,
replace rR − γR2 with bR[1 − R/k] − dR)? Is the birth or the death rate determining the
return time?

c. Address the same questions for a Lotka-Volterra model with a density dependent death rate
of the prey.

d. Interpret your results.
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Chapter 6

The basic reproductive ratio R0

In this book we frequently use the fitness, R0, of a population to simplify steady state values and
the expressions for nullclines, which typically facilitates their biological interpretation. Analyzing
competition in Chapter 9 we will see that the population with the largest R0, and not necessarily
the one with the largest carrying capacity, is typically expected to win the competitive exclusion.
In our consumer-resource models we observed that the depletion of resource species is (at least
partly) determined by the R0 of the consumer. We have defined R0 as a fitness, namely as
the maximum number of offspring that is produced over the expected lifespan of an individual,
in a situation without competition or predation, i.e., as the mean lifetime reproductive success
of a typical individual (Heffernan et al., 2005). The R0 plays a central role in epidemiology,
where it is defined as the expected number of individuals that is successfully infected by a single
infected individual during its entire infectious period, in a population that is entirely composed
of susceptible individuals (Anderson & May, 1991; Diekmann et al., 1990). Epidemics will grow
whenever R0 > 1. In order to provide a more general understanding of the basic reproductive
ratio, R0, we review some of the classic epidemiological approaches to define and calculate R0

in this chapter.

6.1 The SIR model

A basic model in epidemiology is the following “SIR” model, for Susceptible, Infected, and
Recovered individuals, e.g.,

dS

dt
= s− dS − βSI , dI

dt
= βSI − (δ + r)I , and

dR

dt
= rI − dR , (6.1)

where s defines the source of susceptibles, d is their death rate, β is an infection rate, δ the death
rate of infected individuals (with δ ≥ d), r is a recovery rate, and where recovered individuals
have the same death rate as susceptibles. The “virulence” of the pathogen can defined by the
additional death rate it inflicts on infected hosts, i.e., as δ − d. Let us define a duration of
infection with a time scale of days, i.e., let 1/(δ + r) be several days, and define βI and d as
rates per day. This SIR model has several variations. First, if the time scale at which susceptible
individuals are produced and die is much slower than that of the epidemic, one can simplify the
first ODE into dS/dt = −βSI to study the initial phase of an epidemic. Second, note that
in this version of the SIR model the subpopulation of recovered individuals does not feed back
onto the dynamics of the other two subpopulations, which means that even if r > 0, recovered
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individuals need not be considered when analyzing the establishment of an epidemic. Third,
note that one can set r = 0 to define an “SI” model of an endemic infection which no one
recovers from. Finally, one often writes Eq. (6.1) with a frequency dependent transmission rate,

dS

dt
= s− dS − βSI

N
,

dI

dt
=
βSI

N
− (δ + r)I , and

dR

dt
= rI − dR , (6.2)

where N = S + I +R to define that the infection rate is proportional to the fraction of infected
individuals. This infection term is obtained when susceptible individuals are expected to meet
some average number, say n, of other individuals every day, and a fraction I/N of them is
infectious. Thus, β here combines the average infectivity per infectious person with the number
of encounters n. This frequency dependent model is analyzed further in the exercises.

For understanding the derivation of the R0 we return to the SIR model with a mass action
infection term. The disease-free steady state of Eq. (6.1) is defined as S̄ = s/d and Ī = R̄ = 0,
and the endemic equilibrium is defined as

S̄ =
δ + r

β
, Ī =

s

δ + r
− d

β
, and R̄ =

r

d
Ī =

rs

d(δ + r)
− r

β
, (6.3)

which can only be present when Ī > 0, i.e.,

s

δ + r
>
d

β
or

s

d

β

δ + r
> 1 . (6.4)

The R0 of the infection in Eq. (6.1) is defined by the rate, βS, at which new cases are produced
per infected individual over its entire infectious period of 1/(δ + r) days, in a fully susceptible
population S̄ = s/d. R0 is therefore defined as

R0 = βS̄
1

δ + r
=
s

d

β

δ + r
. (6.5)

Since the epidemic will only spread if an infected individual is replaced by more than one
secondary case, we require R0 > 1, which indeed corresponds to the condition derived in Eq.
(6.4). Additionally, because the R0 is proportional to the number (or fraction) of susceptibles
in the disease free equilibrium, S̄, one can see that an epidemic will no longer be able to spread
if S̄ is reduced by a factor R0. This is what vaccination programs aim for, and because not all
susceptibles need to be vaccinated, this is called ‘herd immunity’.

Thus, the condition for the existence of the endemic steady state is the same as the condition
for the initial spread of the epidemic. This also means that we could have derived the same
condition from the Jacobian of the disease-free steady state (because an epidemic will not take
off when the uninfected steady state is stable). Since the recovered population does not affect
the behavior of the model, we only need to consider the first two equations of Eq. (6.1) in the
uninfected steady state (S̄ = s/d, Ī = 0, R̄ = 0), i.e.,

J =

(
−d− βĪ −βS̄
βĪ βS̄ − δ − r

)
=

(
−d −βS̄
0 βS̄ − δ − r

)
. (6.6)

Because this matrix is in a triangular form, the determinant is given by the multiplication of
its diagonal elements, and because the determinant defines the product of the two eigenvalues
(see Eq. (15.30)), the eigenvalues are λ1 = βS̄ − δ− r and λ2 = −d. 1 The parameter condition
R0 > 1 indeed corresponds to the transcritical bifurcation point, λ1 = 0, where the infecteds
start to grow, and the endemic steady state becomes positive.

1Note that the Jacobian of the full model would have been

J =

−d− βĪ −βS̄ 0
βĪ βS̄ − δ − r 0
0 r −d

 =

−d −βS̄ 0
0 βS̄ − δ − r 0
0 r −d

 ,
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Expansion rate

Note that R0 is dimensionless, i.e., it is the expected number of secondary cases per infectious
period. Since R0 is not a rate, it cannot define how fast the epidemic is expanding. Indeed the
initial rate at which an epidemic is expected to grow is here defined by

dI

dt
= βS̄I − (δ + r)I =

(
βs

d
− δ − r

)
I = ρ0I , (6.7)

where the rate ρ0 is the initial per capita net growth rate of the infected individuals. Observe
that this growth rate, ρ0, corresponds to the largest eigenvalue of the Jacobi matrix in Eq. (6.6),
and that applying the “invasion criterion” ρ0 > 0, i.e., βs

d > δ + r or s
d

β
δ+r > 1, is again the

same as requiring R0 > 1. To study the relationship between ρ0 and R0 explicitly, we define
L = 1/(δ + r) as the length of the infectious period, and write

R0 = βS̄L and ρ0 = βS̄ − 1

L
such that βS̄ = ρ0 +

1

L
and R0 = ρ0L+ 1 . (6.8)

From the latter, one readily solves that

ρ0 =
R0 − 1

L
= (R0 − 1)(δ + r) . (6.9)

Depletion of susceptibles

Finally, defining the disease free steady state as a carrying capacity, K = s/d, one can see
that the ultimate degree of depletion of the susceptibles is fully determined by the R0, i.e., in
Eq. (6.3) we see that S̄ = K/R0. Summarizing, R0 is a valuable and meaningful concept in
epidemiology, there are several methods to compute an R0, where the one that calculates the
number of secondary cases produced during the infectious period of an infected individual seems
the most intuitive.

6.2 The SEIR model

The definition of the R0 becomes more complicated in systems where the infection involves
several stages. For instance, by adding a stage of exposed individuals, E, that are not yet
infectious, one obtains the SEIR model

dS

dt
= s− dS − βSI , dE

dt
= βSI − (γ + d)E ,

dI

dt
= γE − (δ + r)I ,

dR

dt
= rI − dR , (6.10)

where the exposed individuals become infectious at a rate γ (and have the same death rate as
the susceptibles). A general method for deriving the R0 for multi-stage models is the “next
generation method” devised by Diekmann et al. 1990, and involves the definition of a matrix
collecting the rates at which new infections appear in each compartment, and a matrix defining
the loss and gains in each compartment. This method is general but its explanation would be too
involved for the short summary in this chapter (if you are interested read any of the following:
Heffernan et al. (2005) or Diekmann et al. (2012; 1990)). Eq. (6.10) is simple enough to define

with determinant −d× (βS̄ − δ − r) ×−d = λ1 × λ2 × λ3. Hence the three eigenvalues are λ2 = βS̄ − δ − r and
λ1 = λ3 = −d, which indeed leads to identical results. Ignoring the recovered population is indeed allowed.
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the R0 by the more intuitive “survival” method. The initial rate at which an infected individual
produces novel infections in the exposed population remains βS̄, and this will occur over an

infectious period of 1/(δ + r) time steps, i.e., we keep the βS̄
δ+r term, but since not all exposed

individuals become infectious (i.e., only a fraction γ/(γ+d) are expected to survive and become
infectious), we need to multiply this initial term with the fraction of individuals surviving the
exposed period and obtain

R0 =
s

d

β

δ + r

γ

γ + d
. (6.11)

We study the steady state by first solving Ē = δ+r
γ I from dI/dt = 0. Substituting that into

dE/dt = 0 yields S̄ = γ+d
γ

δ+r
β , which when substituted in dS/dt = 0 gives

Ī =
s

βS̄
− d

β
=

γ

γ + d

s

δ + r
− d

β
, (6.12)

which can only be positive when

γ

γ + d

s

δ + r
>
d

β
or

s

d

β

δ + r

γ

γ + d
> 1 or R0 > 1 , (6.13)

confirming that the R0 derived by the survival method again corresponds to the parameter
threshold at which the epidemic steady state becomes positive. The initial growth rate, r0, of
an epidemic in the SEIR model now depends on two ODEs, dE/dt and dI/dt, and can still be
computed because these ODEs are linear around the disease-free steady state S̄ = s/d. Solving
these ODEs and applying the invasion criterion dI/dt > 0, or deriving the largest eigenvalue of
the Jacobian of the disease-free equilibrium, would therefore be alternative means to calculate
the R0 of this SEIR model. For instance, considering S = S̄ and R = 0 we could write the Jacobi
matrix of the 2-dimensional system composed of just the exposed and infectious individuals,

J =

(
∂EE

′ ∂IE
′

∂EI
′ ∂II

′

)
=

(
−(γ + d) βS̄

γ −(δ + r)

)
, (6.14)

with a trace that is always negative and a determinant (γ + d)(δ+ r)− γβS̄. The epidemic will
grow when this steady state is unstable, i.e., when

det J < 0 or
d

s

γ + d

γ

δ + r

β
− 1 < 0 ↔ 1

R0
< 1 ↔ R0 > 1 ,

where R0 is defined by Eq. (6.11). Summarizing, there are various ways to compute an R0 for
infections involving multiple stages, where the next generation method (Diekmann et al., 1990,
2012) is the most general (but is too involved to be explained here).

6.3 Fitness in consumer-resource models

In this book we have similarly defined the R0 of resource and consumer populations to facilitate
the biological interpretations of otherwise more complicated expressions. For instance re-consider
the Lotka-Volterra model with explicit birth and death rates for the resource,

dR

dt
= bR(1−R/k)− dR− aRN and

dN

dt
= caRN − δN , (6.15)

with a carrying capacity R̄ = K = k(1−d/b). Using the survival method, the R0 of the resource
is defined by the maximum number of offspring, b per day (note that the (1 − R/k) term can
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only decrease the birth rate), over its expected life span of 1/d days, i.e., R0R = b/d. One can
also easily see that the resource population can only invade when the maximum birth rate, b,
exceeds the death rate, d, i.e., when b/d > 1, and define the R0 this way (like above for the SIR
model). Given this R0 of the resource the carrying capacity can be written as K = k(1−1/R0R)
(see Chapter 3).

Similarly, the R0 of the consumer is its maximum birth rate, caR̄, times its expected life span,
1/δ, i.e., R0N = caK/δ. Likewise, see that the maximum consumer birth rate, caK, should
exceed its death rate, δ, implying that R0N = caK/δ > 1. Hence, one can again derive the R0

parameters of this model in several ways. The R0 of the consumer can be used to simplify the
expression for the non-trivial steady state of the resource, which is solved from dN/dt = 0, i.e.,
R̄ = δ

ca , and can now be expressed as R̄ = K/R0N . This reveals the biological insight that the
depletion of the resource population is proportional to the R0 of the consumer (like in the SIR
model), which even means that one can estimate the R0 from an observed level of depletion.

We have also considered models where the birth rate of the consumer is a saturation function
of its consumption, e.g.,

dR

dt
= bR(1−R/k)− dR− aRN and

dN

dt
=
βRN

h+R
− δN , (6.16)

with the same equation, R0, and carrying capacity of the resource. Now the R0 of the consumer
can either be defined as R0 = β/δ, because β is a maximum birth rate of the consumer at
infinite resource densities, or —more conventionally— as R0 = βK

δ(h+K) , which uses the consumer
birth rate at carrying capacity of the resource for the maximum consumer birth rate. Since
we aim for simplifying mathematical expressions, the simpler R0 = β/δ is typically the most
useful definition. When h � K the two definitions of R0 approach one another. If not, an
invasion criterion would correspond to the more complicated R0, because consumers can only
invade into a resource population at carrying capacity when βK

h+K > δ. The simpler form of the
consumer fitness, R0 = β/δ, instead allows us to simplify the expression for the steady state
of the resource, which is again solved from dN/dt = 0, i.e., R̄ = δh

β−δ = h
R0−1 , revealing that

the depletion of the prey still increases with the R0 of the predator, but that this is no longer
proportional to either of the R0s.

6.4 Summary

Epidemiological models typically take the form of SI, SIR, or SEIR models with an infection
term that is either a mass-action, βSI, term, or one that is based upon the fraction of infected
individuals in the populations, βSI/N . The R0 is an important concept that can be computed
in a variety of ways: (1) by the survival method one computes the per capita arrival of new
infected individuals over the infectious period, and multiplies this with survival fractions of all
intermediate stages, (2) by the condition for the existence of a non-trivial endemic state, (3) by
requiring that the largest eigenvalue of the uninfected steady state is positive, and (4) by the
next generation method that we have not explained in this chapter. The largest eigenvalue of
the uninfected steady state provides the initial expansion rate of the epidemic. In populations
with a mass-action infection term, R0 predicts the depletion of the susceptibles, i.e., S̄ = K/R0.
The parameter combination defining R0 often appears in steady state expressions, which enables
us to simplify these expressions into more intuitive forms.
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6.5 Exercises

Question 6.1. SARS
Consider the appearance of a deadly infectious disease, e.g., SARS, and write the following
model for the spread of the disease:

dI

dt
= βI − δI ,

where we assume that the availability of susceptibles is never limiting, and I is the number of
human individuals infected with SARS, β is the number of new cases each infected individual
causes per week, and 1/δ is the number of weeks an infected individual survives before he/she
dies of SARS. Since an infected individual here is expected to live for 1/δ weeks, and is expected
to cause β new cases per week, the R0 of this disease is β/δ.
a. It has been estimated that on average a SARS patient causes R0 = 3 new cases, during a

typical disease period of two weeks (Lipsitch et al., 2003). Most patients die at the end of
these two weeks. How long does it take with these parameters to reach the point where 3×109

individuals (i.e., half of the world population) are infected? Note that at this time point the
healthy uninfected pool is less than half of the world population because many people will
have died (i.e., your simple estimate is a worst case estimate).

b. Do you think this is a realistic estimate? How would you extend the model to make it more
realistic? Simulate your extended model to study how long it would take to reach the point
where half of the world population is infected? You can use the R-script sars.R.

Question 6.2. Evolution of virulence
The SI model can be described with two differential equations,

dS

dt
= s− dS − βSI and

dI

dt
= βSI − (d+ v)I ,

where v is the virulence of the infection (i.e., the additional death experienced by infected
individuals). The s parameter is the production of healthy individuals, d is their death rate,
and β is a “mass-action” infection parameter. Because virulent pathogens typically spread better
per encounter between two hosts, it is often assumed that the infection parameter, β, increases
with the virulence parameter, v. The most simple assumption would be that β = cv, where c is
a constant.
a. What is the R0 of this infection when we take β as an independent parameter?
b. What is the R0 of this infection when we assume that β = cv?
c. What do you expect for the evolution of virulence when several strains i = 1, 2, . . . , n that

differ in their virulence, vi, are circulating in the population, and all obey βi = cvi? Hint:
sketch R0 as a function of v. Which variant will dominate ultimately, and why? Thus, do
pathogens become milder or more dangerous?

d. Suppose now that the infection rate is a saturation function of the virulence, i.e., assume
that β = cv

h+v . What is now the R0 of the infection?
e. What do you expect now for the evolution of virulence: do pathogens become milder or more

dangerous when βi = cvi
h+vi

?

Question 6.3. Sexually transmitted disease (STD)
Consider an incurable sexually transmitted disease (like AIDS) in the Netherlands. There is a
constant source, a, of susceptibles, S, because youngsters become sexually active at a particular
age, and we loose susceptibles at a rate d when they die, enter a monogamous relationship, or
stop having sex. Susceptibles can become infected by having sex with infected individuals, I,
in the Netherlands, or with a small probability, ε, e.g. during holidays abroad. We therefore
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extend the SI model with an additional small infection parameter, ε, and write the following
model

dS

dt
= a− dS − βSI − εS and

dI

dt
= βSI + εS − δI .

Because STDs are expected to spread, i.e., have an R0 > 1, in populations that are sufficiently
promiscuous, we are interested in the effect of such an external source of infected individuals in
a subpopulation where the R0 < 1.
a. What is the R0 of the epidemic when we ignore the foreign infections?
b. Suppose this R0 < 1 in a particular subpopulation, do you expect the infection to disappear

completely from this subpopulation in the presence of these rare external infections? Explain
your answer shortly.

c. Sketch nullclines of the full model with foreign infections, and discriminate between the
situation that this R0 is larger or smaller than one. Sketch the vector field and determine
the stability of the steady states.

d. Interpret the two different cases, i.e., R0 > 1 and R0 < 1, in terms of the AIDS epidemic in
the Netherlands.

e. Can you derive this model from a more detailed model explicitly considering the people
abroad?

Question 6.4. COVID-19 herd immunity in the Brazilian Amazon
Manaus in Brazil is a large city (2.2 × 106 inhabitants in 2020) that was hit hard by a first
wave of the SARS CoV-2 pandemic, and also suffered badly from an even larger second wave
of infection (Buss et al., 2021; Sabino et al., 2021). We have downloaded detailed data on the
excess daily number of people dying from the disease over the period from 1 April 2020 to 1 April
2021, and provide that data on the website of the course in the file data/excessDeaths.csv.2

We ask you to study whether this data can be described with classic SIR models of the form,

dS

dt
= wR− βS I

N
,

dI

dt
= βS

I

N
− (d+ r)I and

dR

dt
= rI − wR ,

with susceptible individuals, S, infected individuals, I, and recovered individuals, R. Here
N = S + I + R is the total number of individuals, β the infection rate, r the recovery rate, d
the death rate due to COVID-19, and w the rate at which immunity wanes. Buss et al. (2021)
estimate that it takes about 10 days to recover, that about 0.2% of the infected people die, that
R0 = 2.5, and that the half life of the antibodies is about 106 days.
a. Translate these estimates of Buss et al. (2021) into the parameters of the model. Since

only a very small fraction of the infected people die, i.e., d � r, it is save to assume that
R0 ' β/r. Hint the death rate d has to be estimated from the fraction of people dying, i.e.,
from f = d

d+r = 0.002.
b. How would you define the daily number of excess deaths in this model?
c. Use the script manaus.R to read the data from the excessDeaths.csv file, check for yourself

that the model corresponds to the ODEs written above, check that the initial guesses for
the parameter values correspond to the estimates of Buss et al. (2021), and that the tweak

option adds a column with the excess deaths. Note that we have to guesstimate the number
of infected individuals on 1 April 2020 (e.g., as I(0) = 104).

d. Define all 4 parameters and I(0) as free parameters, and fit the data from the first peak, i.e.,
the first 200 days, to the model (this may take a while because it is 200 data points, and we
need to call the ‘Pseudo’ algorithm to carefully search the 5-dimensional parameter space).
Do your parameter estimates agree with those of Buss et al. (2021)? Do you think w is a
required and identifiable parameter? What is your estimated half life of the immunity?

2This data was compiled by Bruce Nelson from the Instituto Nacional de Pesquisas da Amazonia on
t.co/6g4HHEAuNY. We here provide only the first 365 days of the excess deaths to speed up the fitting.

https://t.co/6g4HHEAuNY
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e. Finding that R0 = 2.48 and that the loss rate from the infectious compartment, d+r ' 0.145
d−1, one can estimate the growth rate of the infection as ρ0 = (R0 − 1)(d + r) = 0.215 d−1.
Since we estimated that I(0) = 15750 on the first of April, can you now also estimate when
the epidemic started with the first infected individual?

f. Can the same model describe both peaks (i.e., all data)? If not, how would you extend the
model?

Extra questions

Question 6.5. SIR model
In Eq. (6.2) we define a frequency dependent SIR model where susceptible individuals meet an
expected number of other individuals per day, and where the infection rate is proportional to
the fraction of infected individuals.
a. What is the R0 of this epidemic, and what is its initial growth rate, ρ0?
b. What is the Jacobian of the uninfected steady state of this model (after leaving out the

uninfluential recovered population)? What is the largest eigenvalue of this Jacobi matrix,
and does it correspond to the ρ0 and the R0?

c. Sketch the 2-dimensional nullclines of a frequency dependent SI version of this model (by
setting R = 0).

d. Do these identify potential problems, and how would your repair them?

Question 6.6. Influenza virus infecting epithelial cells
Make the corresponding question in Chapter 14 and simplify your model into two ODEs by
assuming that the time scales of the virus and the interferon are much faster than those of the
epithelial cells. If you are interested in this system, use Grind to help you with sketching the
nullclines. Analyze this QSSA model by phase plane analysis, i.e., sketch the nullclines, the
vector field, and determine the stability of all steady states.



Chapter 7

Functional response

Most previous resource-consumer models were based upon a mass-action consumption term. Our
analysis on Page 43 suggested that qualitatively different resource nullclines are expected when
these consumption terms become saturated. In biology mass-action interaction terms are often
a simplification that is valid only at low population densities. Mass-action terms can become
very large when either of the involved populations becomes large, and, as a consequence, the per
capita rate of one of the other population may become unrealistically fast. For example, the rate
at which bacteria are infected by phages should not become extremely fast when the average
number of phages surrounding a single bacterium becomes extremely large. Productive infection
takes time because the phages have to attach, enter the cell, and interact with the intracellular
machinery of the bacteria, and this “handling” time is not accounted for if infection is modeled
with a mass-action infection term (unless every subprocess, such as the attachment and entry,
are implemented as subsequent steps in the model).

Saturation functions provide a semi-mechanistic short-cut for limiting the interaction rate at
high population densities, and in earlier chapters we have used Hill functions and exponential
functions to allow for maximum birth rates at high resource densities. A famous paper by Holling
in 1959 defined a number of such saturation functions. Holling employed his secretary, whom
was picking up artificial “resource” items from a table, as an artificial consumer. These functions
were coined “functional responses”, and Holling (1959) defined three non-linear responses:

f(R) = amin
(

1,
R

2h

)
, f(R) = a

R

h+R
and f(R) = a

R2

h2 +R2
, (7.1a,b,c)

which are called the Holling type-I, II, and III functions, respectively (see Fig. 7.1). All three
functions approach a maximum, a, corresponding to the maximum amount of resource a con-
sumer can catch and handle within a certain time unit (and when R = h they are half-maximal,
i.e., a/2). Holling’s motivation for this maximum was the “handling time”: even at an infinite
resource density the consumer cannot consume the resource infinitely fast because of the time
required to handle, eat, and digest the resource (e.g., his blind-folded secretary had to find an
item with her hands, pick it up, and store it). There is indeed a direct way to derive Eq. (7.1b).
Let R be the number of prey items on the table, and n = atR be the number of prey items
picked up by the secretary, with a her attack rate, and t for the amount of time available for
searching, and R the number of prey-items on the table. The free time available for searching,
t, is the total time of the experiment, T , minus the time spent on handling the items found, bn,



64 Functional response

(a)

R

f
(R

)

0
0

h 2h

a

(b)

R

f
(R

)
0

0

h

a

(c)

R

f
(R

)

0
0

h

a

Figure 7.1: The functional responses defined by Eq. (7.1). The Holling type I functional response (a), the
Monod (Holling type-II) functional response (b), and the sigmoid (Holling type-III) functional response
(c). This figure was made with the file functions.R.

where b is the handling time per item. Substituting, t = T − bn into n = atR gives

n = a(T − bn)R or n =
aTR

1 + abR
=

a′R

h+R
, (7.2)

where h = 1
ab and a′ = T/b. The parameter a′ is dimensionless, and defines the maximum

number of items collected when R → ∞. The saturation constant, h, also is a dimensionless
number of prey-items, and depends on both the attack rate and the handling time.

Eq. (7.1) shows that the Holling type-II and type III responses are conventional Hill functions.
Thus, we know that a is the maximum consumption rate, and that h is the resource density at
which the function consumption is half maximal. Synonyms of the type-II and III responses are
the “Monod saturation” (Monod, 1949; Holling, 1959), and the “sigmoid” functional response,
respectively. Both will be discussed at length in this chapter. The type-I response is linear until
the per capita consumption rate equals the maximum of a per time unit.

7.1 Monod functional response

We start by considering a Monod saturated per capita killing rate of a logistically replicating
resource, R, by a consumer, N ,

dR

dt
= rR(1−R/K)− aRN

h+R
= rR(1−R/K)− a′RN

1 +R/h
, (7.3)

where a is the maximum number of resource consumed (and/or killed) per consumer per unit
of time, h is the resource density at the consumption rate is half-maximal, and a′ = a/h is
a mass-action killing rate. The latter form of the equation reveals that when the saturation
constant, h, is large this model approaches the Lotka-Volterra model (here large would mean
h� K). The dR/dt = 0 isocline can be found by setting Eq. (7.3) to zero, and solving

R = 0 and N =
r

a
(1−R/K)(h+R) , (7.4)

where the latter is a parabola crossing N = 0 at R = K and R = −h, and having its maximum
value at R = (K − h)/2. In Fig. 7.2 this nullcline is depicted for positive population densities.
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Figure 7.2: Qualitatively different phase spaces of the Monod saturated model of Eq. (7.3) and (7.5).
The red parabola is the resource nullcline intersecting the horizontal axis at R = K, and the vertical
axis at N = rh/a. The blue vertical consumer nullcline is located at R∗ = h/(R0 − 1). Black lines are
trajectories starting just above the carrying capacity of the resource. In Panels (a-c) we set h� K such
that the maximum of the parabola, that is located at R = (K −h)/2, occurs approximately half-way the
carrying capacity. In Panel (a) R∗ > K, making the carrying capacity of the resource is the only attractor.
In Panel (b) R∗ > (K − h)/2, making the non-trivial steady state stable. In Panel (c) R∗ < (K − h)/2,
making the non-trivial steady state unstable, and giving rise to a stable limit cycle, corresponding to
periodic behavior. In Panel (d) h = K, which puts the top of the parabola at R = 0 and makes the
dR/dt = 0 nullcline monotonically declining. This figure was made with the model monodBM.R.

When h < K, the resource nullcline in the positive quadrant is a parabola with an unstable part
having vectors pointing away from it in the region where R < K−h

2 (see Fig. 7.2a–c). When
h ≥ K the resource nullcline in the positive quadrant is a monotonically declining function
resembling that of the (generalized) Lotka-Volterra model (see Fig. 7.2d). For the consumer it is
typically assumed that the per capita birth rate is proportional to its per capita consumption,

dN

dt
=
caRN

h+R
− δN , (7.5)

which is identical to the consumer equation in Eq. (5.6), and therefore has the same R0 = ca
δ and

nullcline at R = h
R0−1 . This nullcline again defines the resource density, R∗, that the consumers

require to expand, i.e., at the right-hand side of the nullcline the vector-field points upwards.

In ecology this Monod-saturated model is sometimes referred to as the Rosenzweig-McArthur
model. Depending on the parameter values, the model can have three steady states: two trivial
states (R̄, N̄) = (0, 0) and (K, 0), and a non-trivial co-existence state that is present when
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Figure 7.3: Bifurcation diagrams illustrating the effect of increasing the carrying capacity, K (starting
at a K0 > 0). Heavy red lines represent stable steady states, light blue lines unstable steady states, and
black points minima and maxima of a stable limit cycle. Panel (c) depicts the trajectory of Fig. 7.2c as
a time plot (R: red and N : blue) starting at R(0) = K and a small value of N . This figure was made
with the model monodBM.R.

R∗ < K. Fig. 7.2 depicts qualitatively different phase spaces of the model. In Fig. 7.2a the
consumer cannot maintain itself because R∗ > K, i.e., even the maximum resource density K
is insufficient. As a consequence, (R̄, N̄) = (K, 0) is a stable steady state (see the vector field
in Fig. 7.2a). Indeed systems containing too little nutrients are expected to have such a low
carrying capacity of the resource that it is unable to sustain a consumer population.

Fig. 7.2b depicts the situation where the consumer nullcline is located at the right-hand side of
the top of the parabolic resource nullcline, i.e., where (K − h)/2 < R∗. The local vector field is
identical to that of the Lotka-Volterra model:

J =

(
−α −β
γ 0

)
with tr = −α < 0 and det = βγ > 0 . (7.6)

Thus, the non-trivial steady state will be stable whenever the consumer nullcline intersects
the resource nullcline at the right-hand side of the maximum of the parabola. The trajectory
starting with few consumers in a resource population at carrying capacity reveals that for the
parameters that were used to make Fig. 7.2b, the steady state is a stable spiral point. In Fig.
7.2c the nullclines intersect at the left-hand side of the maximum of the parabola. Here the
resource nullcline is unstable, and from the local vector field one now reads from the graphical
Jacobian

J =

(
α −β
γ 0

)
that tr = α > 0 and det = βγ > 0 . (7.7)

The steady state is unstable because the local feedback of the resource on itself is positive:
increasing the resource increases its growth rate. The reason for this positive feedback is the
saturated functional response, as increasing the resource density will decrease the per capita
killing rate, a/(h + R), of the resource. The behavior of the model in this situation is a stable
limit cycle (see Fig. 7.2c and Fig. 7.3c). One can indeed check that in Fig. 7.2c none of the
trivial steady states, i.e., (R̄, N̄) = (0, 0) or (K, 0), is an attractor of the system. Therefore,
the consumer cannot go extinct, and the stable limit cycle has to be the global attractor of the
system. Fig. 7.2d just confirms that this model becomes similar to the Lotka-Volterra model
when h ≥ K.
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Paradox of enrichment

Models with the “humped” resource nullcline of Fig. 7.2 have been used for the famous Paradox
of enrichment (Rosenzweig, 1971). Rosenzweig studied euthrophication (enrichment) of lakes
with algae and zooplankton, and showed that increasing the carrying capacity of the algae failed
to increase the density of the algae. The enrichment with nutrients for the algae rather increased
the zooplankton density, lead to destabilization of the non-trivial steady state, and ultimately
to stable limit cycles with such a wide amplitude that so closely approach the axes of the phase
plane that species may go extinct (Rosenzweig, 1971). This ultimate loss of species richness
was coined the “paradox of enrichment”. Because the amplitudes of limit-cycles of algae and
zooplankton observed in the field tend to be much smaller than those in these models (Arditi
& Ginzburg, 1989; Ginzburg & Akçakaya, 1992; McCauley et al., 1999; Murdoch et al., 2002;
Scheffer & De Boer, 1995), it remains unclear whether or not the loss of species in aquatic
ecosystems was due to enrichment only (i.e., due to the paradox of enrichment). Nevertheless,
the bifurcation diagram in Fig. 7.3 reveals that increasing the carrying capacity, K, of this
model:
1. first increases the density of the algae as long as there is no zooplankton,
2. subsequently leaves the density of the algae at R∗ = h/(R0−1) and increases the zooplankton

density,
3. and finally destabilizes the system by a Hopf-bifurcation (see Chapter 12), leading to oscilla-

tions with larger and larger amplitudes.
Thus, enrichment of an oligotrophic system is expected to first increase the diversity of the
system, i.e., when R∗ ≥ K, but could ultimately decrease the diversity by too large amplitude
limit cycles (see Fig. 7.3b).

Limit cycle behavior

The Hopf bifurcation that is leading to this oscillatory (or periodic) behavior can be illustrated
by the phase plane of the Lotka-Volterra model with a horizontal resource and a vertical con-
sumer nullcline, giving rise to a steady state with neutral stability, which is surrounded by
infinitely many neutrally stable cycles (see Fig. 5.5b and the Jacobian of Eq. (5.21) having
purely imaginary eigenvalues). The Hopf bifurcation depicted in Fig. 7.3 indeed occurs when
the vertical consumer nullcline intersects the parabolic nullcline of the resource exactly at the
top of this parabola (i.e., when R∗ = K−h

2 ). For this particular parameter condition the slope
of the resource nullcline in the steady state is perfectly zero, which by the graphical Jacobian
method indeed implies that both diagonal elements of the Jacobi matrix are zero, i.e.,

J =

(
0 −β
γ 0

)
with tr = 0 , det = βγ > 0 and λ± = ± i

√
βγ . (7.8)

Hence the real part of the corresponding eigenvalues will be zero, meaning that when R∗ = K−h
2

the Monod-saturated predator-prey model undergoes a bifurcation where the non-trivial steady
changes stability.

When the non-trivial steady state is unstable the model displays oscillatory behavior and ap-
proaches a stable limit cycle (Fig. 7.2c and Fig. 7.3c). On the limit cycle the consumer and
resource densities oscillate in an “out of phase” manner because consumer densities increase
only after the resource has increased. Oscillatory behavior is frequently observed in biological
populations. A famous ecological example is the oscillatory behavior of lynx and hare popula-
tions in Canada, that were discovered in the records of the furs brought in by hunters in the last
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century. Surprisingly, the hare and lynx cycles are not always out of phase, and ecologists are
performing experiments to understand the precise mechanism underlying this famous oscillation
(Stenseth et al., 1999). Another ecological example of consumer resource oscillations are the
cycles of algae and zooplankton in the spring (McCauley et al., 1999; Fussmann et al., 2000;
Murdoch et al., 2002; Yoshida et al., 2003). Bacterial populations oscillate over several orders
of magnitude because of their interaction with phages (Bohannan & Lenski, 1997, 1999), and
due to their production of toxins (Cornejo et al., 2009). Periodic behavior is easily obtained
in mathematical models and is frequently observed in nature. Note that these oscillations are
autonomous: there is no periodic forcing from outside driving this. The periodic behavior arose
by the destabilization of the non-trivial steady state, i.e., at a Hopf bifurcation (see Fig. 7.3 and
Chapter 12).

Formal derivation of the Monod response by a QSSA

The Monod functional response can be derived in the same way as the conventional Michaelis-
Menten enzyme expression was obtained. To this end one splits the consumers, N , into a
subpopulation, C, that is actually handling the resource, and a free subpopulation, F , that is
“free” to catch the resource, R. By conservation one knows that N = F + C. To describe the
consumers catching and handling resource one could write

dC

dt
= aRF − hC or

dC

dt
= aR(N − C)− hC , (7.9)

where a is a rate at which the free consumers attack and catch resource, and 1/h is the time
they require to handle the resource. When the time scale of handling resource is much more
rapid than the time scale at which the resource and consumers reproduce, one can make a quasi
steady state assumption for the complex, dC/dt = 0, and obtain that

C =
aNR

h+ aR
=

NR

h′ +R
, (7.10)

where h′ = h/a is the resource density at which half of the consumers are expected to be
handling resource. To see how this ends up in the resource population one could add dC/dt =
aRF − hC = 0 to an ODE for the resource, e.g., dR/dt = rR(1−R/K)− aRF , giving

dR

dt
= rR(1−R/K)− hC = rR(1−R/K)− hNR

h′ +R
, (7.11)

which is a normal Holling type-II functional response. For the consumers one could argue that
the birth rate should be proportional to the number of consumers that are finished handling and
consuming resource, and write that

dN

dt
= chC − dN =

chNR

h′ +R
− dN , (7.12)

which together with Eq. (7.11) yields the Monod saturated consumer resource model.

One can also use this analysis to learn how to write ODEs for one consumer consuming several
different resources. Let ai be the attack rate of the consumer for resource i, and assume for
simplicity that all resource species require the same handling time, 1/h.1 By the ai parameter,

1This simplifying assumption is only for clarity and consistency with the above, we can also write dCi/dt =
aiRiF − hiCi = 0 or a′iRiF = Ci, where a′i = ai/hi and proceed as below.
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the consumer can have different preferences for the different resource species. The conservation
equation now becomes N = F +

∑
iCi, and for each complex one writes

dCi
dt

= aiRiF − hCi = 0 ↔ aiRi

(
N −

∑
j

Cj

)
= hCi . (7.13)

A trick to solve this, while having a sum term in the equation, is to sum the latter equation for
all complexes, yielding, ∑

i

aiRi

(
N −

∑
j

Cj

)
= h

∑
i

Ci , (7.14)

which can be rewritten into∑
i

aiRiN =
∑
i

aiRi
∑
j

Cj + h
∑
j

Cj =
∑
j

Cj

(∑
i

aiRi + h
)
. (7.15)

Solving for
∑
Ci gives∑

i

Ci =
N
∑

i aiRi
h+

∑
j ajRj

and, hence, Ci =
NaiRi

h+
∑

j ajRj
. (7.16)

For each resource, i, one can again add dCi/dt = aiRiF − hCi = 0 to

dRi
dt

= rRi(1−Ri/Ki)− aiRiF giving
dRi
dt

= rRi(1−Ri/Ki)−
hNaiRi

h+
∑

j ajRj
. (7.17)

For the consumers one would argue that their reproduction is proportional to all consumer
individuals finished with handling a complex, hCi, and write that

dN

dt
= c

∑
i

hCi − dN =
chN

∑
i aiRi

h+
∑

j ajRj
− dN . (7.18)

Although this all works out quite nicely, as we obtain high-dimensional Monod functions, this
does not imply that saturated functional responses are truly due to the handling time derived
here, or the one defined in Eq. (7.2). One could also argue that saturation is simply due to
satiation of the consumers at high resource densities.

Saturated birth rate

In Chapter 5 we studied the effect of a saturated birth rate of the consumer in the Lotka-
Volterra model, and demonstrated that the consumer nullcline remains to be a straight line at
the critical resource density, R∗. Since the consumption rate is now also a saturation function,
we double-check how a birth rate that saturates as a function of the consumption would affect
the equations now. Since the per capita consumption equals C = aR/(h + R), one obtains for
a saturated per capita birth rate of the consumer

g(C) = c
C

h+ C
or g(R) = c

aR
h+R

H + aR
h+R

=
caR

H(h+R) + aR
=

βR

h′ +R
, (7.19)

which remains of the same form as the birth rate in Eq. (7.5), with a new birth rate, β =
ca/(H + a), and saturation constant, h′ = hH/(H + a) < h. Note that h′ < h, i.e., that
the consumer birth rate is generally expected to saturate at lower resource densities than the
consumer consumption rate. We conclude that a saturated consumer birth rate makes hardly
any difference.
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Figure 7.4: Graphical construction of the resource nullcline of a model with a sigmoid function response.
Panel (a) depicts the positive and negative terms of Eq. (7.20a) separately in one graph. The positive
term, L(R), is a parabola intersecting the horizontal axis at R = 0 and R = K. The negative sigmoid
grazing term, G(R,N), is depicted for N = 0.05, 0.1, 0.15, · · · , 0.35 to N = 0.4. The location of the
intersects in Panel (a) provide the points in the (R,N) phase plane were dR/dt = 0 (see Panel (b)).
Interpolation between these points yields the nullcline sketched in Panel (b). Parameters: r = K = a = 1
and h = K/10. Figure made with the R-script sigmoid0.R.

7.2 Sigmoid functional response

For several types of prey one expects that they can hide efficiently in so-called “refugia” at
low prey densities, which would lead to low consumption rates at low resource densities. For
instance, prey species like zooplankton that are consumed by fish will hide in the vegetation when
they sense the presence of fish. A mechanistic way to describe this would be a “shifted” Monod
saturated functional response, i.e., f(R) = (R − k)/(h + R − k), where k is number of refugia,
or the resource density at which consumption starts (you will sketch the nullclines resulting
from this functional response with Grind in the exercises). Because this shifted Monod function
is discontinuous, the same process is typically modeled with a more phenomenological sigmoid
functional response, which indeed yields similar nullclines (see the same exercise). Another
example of such a shifted or sigmoid functional response would be large herbivores that hardly
spend time grazing when they know the vegetation cover is very poor. Sigmoid effects may
also appear in the effect of the consumer on the resource (which will not be considered here).
For example, tumor cells are quite resistant to the cytotoxic effect of killer cells in the immune
system, and may may require multiple contacts with such cytotoxic cells before they die. At
low killer cell densities this leads to cooperative effects among the killers, when tumor cells are
typically destructed by interacting with multiple killer cells (Gadhamsetty et al., 2017).

To model a sigmoid saturated functional response we replace the functional response, f(R), of
the previous model with a sigmoid Hill function, and obtain

dR

dt
= rR(1−R/K)− aR2N

h2 +R2
and

dN

dt
=

caR2N

h2 +R2
− δN . (7.20a,b)

The R0 of the consumer remains R0 = ca/δ, and the dN/dt = 0 nullcline remains a straight line
that is now located at R∗ = h/

√
R0 − 1 (see Fig. 7.5). Sketching the nullcline of the resource is
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more challenging. Setting dR/dt = 0 and canceling the R = 0 solution, one obtains

N =
r

a

h2 +R2

R

(
1− R

K

)
, (7.21)

which has a vertical asymptote at R = 0, and is zero when R = K. One can take the derivative
of this function with respect to R to find its minima and maxima. This reveals that the nullcline
has a minimum and a maximum whenever h < K/5, and that for low h the minimum is located
around R = h and the maximum around R = K/2 (see Section 15.5 in the Appendix).

Complicated nullclines can also be sketched by separately plotting the positive and negative
terms, and recording when these are equal, i.e., when they intersect (Noy-Meir, 1975). dR/dt has
a positive logistic growth term, L(R) = rR(1−R/K), and a negative sigmoid consumption term,

G(R,N) = aR2N
h2+R2 (G for grazing). Both functions can be sketched as a function of the resource

density R, the latter for various values of N , and the points where they intersect correspond
to points of the dR/dt = 0 nullcline (see Fig. 7.4a). The logistic function, L(R), is a parabola
intersecting the horizontal axis at R = 0 and R = K. The consumption term, G(R,N), is a
sigmoid function with a maximum increasing with the consumer density, N . Sketching G(R,N)
for various values of N we read in Fig. 7.4a at which R values G(R,N) = L(R), and copy these
R values with the corresponding value of N into a point of the nullcline into Fig. 7.4b (see the
bullets).

To know where in Fig. 7.4a the curves intersect it is crucial to know their slopes around the
origin, which is determined by their local derivative, i.e.,

∂R L(R) = r − 2rR/K , which for R = 0 equals r , (7.22)

showing that the local slope of the parabola in the origin is r, and

∂R G(R,N) =
2aRN

h2 +R2
− 2aR3N

(h2 +R2)2
, which for R = 0 yields 0 , (7.23)

confirming that the sigmoid curves leave the origin with slope zero. The sigmoid curves therefore
always start below the parabola, whatever the consumer density N . Because the maximum of
the parabola is rK/4, and that of the grazing term is aN , the G(R,N) functions will exceed the
top of the parabola at sufficiently high values of N (see Fig. 7.4a). When h � K this leads to
the dR/dt = 0 nullcline with a minimum and a maximum shown in Fig. 7.4b. When h > K/5
the nullcline declines monotonically (see Fig. 7.5d and Section 15.5 in the Appendix).

When R∗ < K, the model has three steady states: the trivial (0, 0) and (K, 0) saddle points, and
a non-trivial steady state that in Fig. 7.5a and b is very similar to the monod-saturated model.
When R∗ > K/2 the state is stable (Fig. 7.5a), and when the consumer nullcline is located in
between the minimum and the maximum the steady state is unstable, such that the one and
only attractor of the model is a stable limit cycle (Fig. 7.5b). There is a qualitatively new steady
when the vertical consumer nullcline is located on the left-hand side of this minimum, and the
graphical Jabobian of this new steady state is

J =

(
−α −β
γ 0

)
with trJ < 0 and detJ > 0 , (7.24)

which therefore is a stable point (Fig. 7.5c). As the non-trivial steady state will have neutral
stability when the consumer nullcline is located such that it intersects the minimum or the max-
imum of the resource nullcline, this model can undergo two Hopf bifurcations (see below in Fig.
7.6e). When the saturation constant, h > K/5, the consumer nullcline declines monotonically,
giving rise to a Lotka-Volterra-like phase plane, where the non-trivial steady state is always
stable (Fig. 7.5d).
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Figure 7.5: Qualitatively different phase spaces of the sigmoid saturated model of Eq. (7.20). The red
line is the resource nullcline intersecting the horizontal axis at R = K. The blue vertical consumer
nullcline is located at R∗ = h/

√
R0 − 1. Black lines are trajectories starting just above the carrying

capacity of the resource. In Panels (a-c) we set h < K/5 such that the resource nullcline has a minimum
and a maximum, which are expected to located around R = h and R = K/2, respectively (see Section
15.5). In Panel (a) we set R∗ > K/2, making the non-trivial steady state stable. In Panel (b) we place
R∗ in between the minimum and the maximum of the resource nullcline (by setting h < R∗ < K/2),
which makes the non-trivial steady state unstable, and gives rise to a stable limit cycle. In Panel (c) we
place R∗ below the minimum, R∗ < h, which makes the non-trivial steady state stable again. In Panel
(d) we set h > K/5, which makes the dR/dt = 0 nullcline monotonically declining. This figure was made
with the model sigmoid.R.

Bifurcation diagrams

Enrichment, i.e., increasing K, can also cause a Hopf bifurcation in this model, giving rise to
stable limit cycles that grow in amplitude with the distance to the Hopf bifurcation (Fig. 7.6a,
b and d). However, because the resource nullcline keeps its asymptote approaching the vertical
axis (Fig. 7.6c), the trajectory cannot approach this axis very closely, and resource and consumer
densities do not become as small as in the Monod-saturated model. Enrichment still increases
the consumer rather the resource when both are present (Fig. 7.6a–c). Fig. 7.6c confirms that
increasing K shifts the maximum of the resource nullcline up and to the right (because this
maximum is located at R ' K/2), and that the minimum hardly moves (because it is located at
R ' h). Hence a stable steady state with a consumer nullcline located at K/2 < R∗ < K readily
destabilizes when K is increased, but because the minimum is not moving along, such a state
is not expected to become stable again at very large values of K. For the algae-zooplankton
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Figure 7.6: Bifurcation diagrams and phase planes of the sigmoid-saturated model. In the bifurcation
diagrams heavy red lines represent stable steady states, light blue lines unstable steady states, and black
points minima and maxima of a stable limit cycle. Panels (a–d) illustrate the effect of increasing the
carrying capacity, K, as bifurcation diagram (a) and (b), a phase plane with nullclines for various values
of K (c), and a phase plane with nullclines and trajectory for the largest value of K (d). Panel (e) depicts
the effect of changing the death rate, δ, of the consumer, where the black points indicate the minima
and the maxima of the stable limit cycle that exists between the two Hopf bifurcations. Panel (f) is a
bifurcation diagram made by showing the steady state of the resource taking the number of consumers
as a “parameter”. This depicts the typical diagram with alternative steady states and hysteresis (see
Chapter 12). This figure was made with the model sigmoid.R.

systems the reduced amplitude of the limit cycles is interesting because the oscillations that are
observed in nature are much “milder” than those of the Monod-saturated model for realistic
parameter values (Arditi & Ginzburg, 1989; Ginzburg & Akçakaya, 1992; McCauley et al., 1999;
Murdoch et al., 2002; Scheffer & De Boer, 1995; Arditi & Ginzburg, 2012). Measurements of the
functional response of zooplankton grazing on algae strongly support a Holling type-II response,
however.

To illustrate the two Hopf bifurcations that this model may undergo we move the position of
the consumer nullcline located at R = R∗ by changing δ (see Fig. 7.6e). When δ is too large
the consumer cannot be maintained (because R∗ > K), and (R̄, N̄) = (K, 0) is the one and only
attractor (see Fig. 7.6e). Decreasing δ somewhat allows the consumer to invade, its steady state
value increases with decreasing δ, and for a very narrow range of δ the non-trivial steady state
is stable. The value of N̄ is maximal at the Hopf bifurcation (because the consumer nullcline is
located at the maximum of the resource nullcline). Here a stable limit cycle is born, the non-
trivial steady state becomes unstable, and N̄ declines when δ is further decreased. The second
Hopf bifurcation occurs when the consumer nullcline is located at the minimum of the resource
nullcline. The limit cycle dies, the steady state becomes stable again, and N̄ increases steeply
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upon decreasing δ further. First, note that the shape of N̄ in Fig. 7.6e) resembles the shape of
the dR/dt = 0 because we “travel” along that nullcline by changing δ. Second, the steady state
at high resource densities is only stable for a narrow range of consumer death rates, δ, because
the functional response looses it dependence of the resource at high resource densities, i.e.,
G(R) = R2

h2+R2 ' 1 when R � h, and, as a consequence the ODE of the consumers simplifies
to dN/dt ' (ca − δ)N , which does not depend on R. Generically, the consumer nullcline is
therefore expected to be located in regions where R ' h, and because we have to choose h� K
to have a non-monotonic resource nullcline, this will typically be below K/2, i.e., below the
maximum, like in Fig. 7.5c).

Finally, this model is famous because it allows for multiple steady states of the resource at
particular values of the consumer. For instance, treating the consumer density as a “parameter”,
which could represent the fixed rate at which the resource is being harvested, e.g., by a fixed
stock of herbivores grazing vegetation, or a fixed fleet of fishermen, we only need to rotate the
phase plane such that we plot the resource nullcline as a function of the consumer density, N
(see Fig. 7.6f). The nullcline provides R̄ as a function of N because dR/dt = 0 at this line. For
intermediate values of N there are three alternative steady states for R̄. The vector field taken
from Fig. 7.5 demonstrates that the upper and lower states are stable, and that the middle
one is unstable. At some high values of the consumers, N = N2, the upper two states merge
and disappear (this is a so-called saddle-node bifurcation), leaving the low R̄ state as the only
attractor (corresponding to an over-exploited resource). At a much lower value of the consumers,
N = N1, the lower two states merge and disappear (another saddle-node bifurcation), leaving
the upper R̄ state as the only attractor (corresponding to “healthy” harvested resource). If one
were to start harvesting this resource, starting at N = 0, the resource would suddenly collapse
at N = N2. After the collapse it is difficult to restore the resource to “healthy” levels, because
the harvesting rate has to be reduced to N = N1 < N2. This “memory” of the system is called
hysteresis, and in one of the exercises we will study how such catastrophes can be predicted
(Scheffer et al., 2009; Veraart et al., 2012; Scheffer et al., 2012).

7.3 2-dimensional functional response functions

The functional responses considered hitherto depend on the resource density only, and can hence
be written as 1-dimensional functions f(R). If there is direct competition between consumers
for catching resource one would have a situation where the per capita consumption efficiency
declines with the consumer density, i.e., a 2-dimensional functional response f(R,N) for which
∂N f() < 0. Predators that increase their feeding efficiency, e.g., by hunting in groups, also
require a “predator-dependent functional response”, but with the property that ∂N f() > 0.
Additionally, arguing that predator are only expected to find prey located within their territory,
Arditi and Ginzburg (1989; 1992) proposed a ratio-dependent functional response, f(R/N),
which is analyzed in the exercises.

In ecology Beddington (1975) and DeAngelis et al. (1975) independently proposed a 2-
dimensional functional response by adding a term by which the consumers increase the saturation
constant, e.g.,

f(R,N) =
aR

h+ eN +R
, (7.25)

which is intuitively appealing because increasing the consumer density just increases the resource
density at which the consumption rate becomes half maximal, and because for e = 0 this
simplifies into the Monod saturated functional response (Abrams, 1994). The parameter e
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Figure 7.7: The two qualitatively different resource nullclines of the Beddington consumer-resource
model. Panel (a) depicts Eq. (7.30) for various values of the intra-specific competition parameter: e = 0
(red), e = 0.5 (blue), e = 0.75 (green), e = 0.9 (orange), e = 0.95 (purple), and e = 1.1 (pink);
for r = a = 1 and h = K/10. The vertical lines depict asymptotes. Panel (b) and (c) depicts the
positive and negative terms of Eq. (7.27) separately in one graph. The two parabolas depict the logistic
function L(R) = rR(1 − R/K) as a function of R, and the saturation curves plot the grazing term
G(R,N) = aRN

h+eN+R as a function of R, for various values of N . The colored intersects depict points
where dR/dt = 0. The dashed lines depict the asymptote (a/e)R. In Panel (b) we have set a/e < r and
in c we consider r < a/e. The resource nullclines that can be constructed from the intersects in Panels
(b) and (c) are depicted in Fig. 7.8a and (b) and (c), respectively. This figure was made with the R-script
beddington0.R.
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Figure 7.8: Three qualitatively different phase spaces of the Beddington consumer-resource model. The
critical resource density for net consumer growth, R∗ = h

R0−1 , defines the intersect with the horizontal
axis. Panel (a) depicts a case where a/e < r. The steady state is a stable node. In Panel (b) and (c) we
set a/e > r. The steady state is stable when the consumer nullclines intersects at the right-hand side of
the maximum of the resource nullcline (Panel b). Otherwise it is unstable and the behavior is a stable
limit cycle (Panel c). Figure was made with the R-script beddington.R.

defines the strength of the competition between the consumers. Setting e < 0 would yield a
function where consumers help each other. For a large resource population Eq. (7.25) approaches

lim
R→∞

aR

h+ eN +R
↔ lim

R→∞

a

h/R+ eN/R+ 1
= a , (7.26)

showing that the interpretation of a remains the maximum amount of resource a consumer can
handle per unit of time.

Because Eq. (7.25) appears to be quite general, we will study the nullclines of consumer-resource



76 Functional response

models having this “Beddington” functional response,

dR

dt
= rR(1−R/K)− aRN

h+ eN +R
(7.27)

dN

dt
=

caRN

h+ eN +R
− dN , (7.28)

which remains to have an R0 = ca/d of the consumer. The consumer nullcline is obtained by
setting dN/dt = 0 and finding the solutions

N = 0 and N =
ca− d
de

R− h

e
=
R0 − 1

e
R− h

e
. (7.29)

The last expression defines a line with slope (R0 − 1)/e that intersects the horizontal axis at
R = h/(R0 − 1). The consumer nullcline is therefore a slanted line with the same minimal
resource density R∗ = h/(R0 − 1) as the Monod saturated model (see Fig. 7.8).

The resource nullcline is more difficult. One can solve N from Eq. (7.27),

N =
r(1−R/K)(h+R)

a− er(1−R/K)
, (7.30)

which is identical the parabola of Eq. (7.4) when e = 0. Thus, for sufficiently small values of e,
this resembles a parabola crossing the horizontal axis when R = −h and R = K (see the red
line in Fig. 7.7a). Considering R < K, the denominator reveals that there can be a vertical
asymptote at larger values of e, i.e., when er > a. Solving a− er(1−R/K) = 0 reveals that this
asymptote is located at R = K(1 − a

er ); see the vertical lines in Fig. 7.7a, and note that these
asymptotes are located at negative R values when a > er. Thus, depending on the parameters,
the resource nullcline can adopt two qualitatively different forms, a parabola or a hyperbola,
and this depends on the value of er/a.

These two shapes can also be revealed by a graphical construction method. The parabolas in Fig.
7.7b and c depict the positive term of Eq. (7.27), i.e., the logistic function L(R) = rR(1−R/K),
having slope r in the origin. Plotting the total grazing term G(R,N) = aRN

h+eN+R for various
values of N as a function of R defines a family of curves increasing with the consumer density N
(see Fig. 7.7b and c). The slope of these functions in the origin is found by taking the derivative
with respect to R:

∂R G(R,N) =
aN

h+ eN +R
− aRN

(h+ eN +R)2
which for R = 0 yields

aN

h+ eN
. (7.31)

The slope in the origin therefore increases with the consumer density until eN � h. Indeed, for
large numbers of consumers we observe that the grazing term approaches

lim
N→∞

aRN

h+ eN +R
↔ lim

N→∞

aR

h/N + e+R/N
=

a

e
R , (7.32)

showing that the grazing term, G(R,N), approaches a slanted asymptote with slope a/e, when
it is plotted as a function of R (see Fig. 7.7b and c).

This corresponds to the same two cases as defined above for different values of er/a. First,
if a/e � r the predation functions intersect the logistic parabola only once, and ones obtains
a resource nullcline with a vertical asymptote (see Fig. 7.7b and Fig. 7.8a). Because a/e is
relatively small, i.e., a low attack rate and high infraspecific competition, this first case is called
“limited predation” (Arditi & Ginzburg, 1989; Ginzburg & Akçakaya, 1992). Second, when
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Figure 7.9: Bifurcation diagrams of the Beddington consumer-resource model. In Panel (a) we study
the Paradox of enrichment by increasing the carrying capacity, K, of the resource starting with the stable
steady state of Fig. 7.8b (where a/e > r), and observe that enrichment results in a Hopf bifurcation,
where a stable limit cycle is born which ultimately has a very wide amplitude. Panel (b) illustrates that
increasing the consumer interference parameter, e, can take the unstable steady state of Fig. 7.8c through
a Hopf bifurcation, where the stable limit cycle dies. Panel (c) depicts the effect of changing δ. Figure
was made with the model beddington.R.

a/e � r there can be one intersection point at low consumer densities, two intersections at
intermediate numbers, and no intersection points at high consumer numbers (see Fig. 7.7c).
This yields a truncated “parabola” similar to that of the Monod-saturated model. Because the
consumer nullcline can intersect either to the left side of the maximum, or to its right side, one
obtains two qualitatively different phases spaces (see Fig. 7.8b & c). The non-trivial steady
states of Fig. 7.8a and b are stable because the graphical Jacobian

J =

(
− −
+ −

)
, (7.33)

has a negative trace and positive determinant. In Fig. 7.8c the consumer nullcline intersects the
resource nullcline in its unstable part, and the Jacobian,

J =

(
+ −
+ −

)
, (7.34)

can have a positive trace when the local positive feedback of the resource onto itself exceeds
the negative feedback of the consumer onto inself. The limit cycle that is approached by the
trajectory shown in Fig. 7.8c confirms that the trace can become positive, and shows that this
model can have very similar periodic behavior as the Monod and sigmoid-saturated models.

Bifurcations of the Beddington model

Note that the monotonically declining “Beddington saturated” resource nullcline in the phase
plane of Fig. 7.8a, that is obtained in the predation-limited case, a/e < r, is not very different
from the “Monod saturated” nullcline in Fig. 7.2d, and the “sigmoid saturated” resource nullcline
in Fig. 7.5d, which were both obtained by limiting the effect of the consumer by taking a high
saturation constant h (e.g., setting h ' K). In the first phase plane of the Beddington model,
Fig. 7.8a, the per capita killing rate of the consumer is “limited” because it either attacks slowly,
i.e., has a low a, or has strong interference, i.e., has a high e. The stable non-trivial steady state
of the Beddington model in this limited situation will not undergo a Hopf bifurcation when
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the carrying capacity, K, is increased simply because the a/e < r is independent of K, and
hence there is no Paradox of enrichment (Huisman & De Boer, 1997). In the opposite case,
a/e > r, with more vigorous consumption, the non-trivial steady state can be stable (Fig. 7.8b)
or unstable (Fig. 7.8c), and the bifurcation diagram in Fig. 7.9a reveals the classic “enrichment”
picture with Hopf bifurcation and a stable limit cycle growing in amplitude when K is increased.
The effect of consumer interference, e, is shown in Fig. 7.9b, where starting in the unstable
figuration of the Monod-saturated model, e = 0, we observe that the limit cycle shrinks and dies
when e is increased. Increasing e decreases the steepness of the consumer nullcline, making it
more likely to intersect in the stable part of the resource nullcline. Note that further increasing
e will ultimately violate the condition, a/e > r. Thus, at some value of e, the consumer nullcline
will change from its non-monotonic shape to a monotonically declining nullcline (like in Fig.
7.8a). Since this does not change the properties of the steady state, i.e., this is not a bifurcation,
this change is not reflected in the bifurcation diagram of Fig. 7.9b. Finally, we study the effect
of the consumer death rate, δ, in Fig. 7.9c, and observe the same Hopf bifurcation, and that we
now have a reasonable range of death rates where the non-trivial steady state is stable. Thus,
slanting the consumer nullcline to the right by intra-specific competition allows for a wider range
of parameters where the steady state is stable.

The total quasi steady state assumption

The 2-dimensional functional response of Eq. (7.25) can be derived by an extension of the
conventional Michaelis-Menten QSSA (Huisman & De Boer, 1997). Following the “total” QSSA
of Borghans et al.(1996), we now split both the resource, R, and the consumers, N , into a
subpopulation, C, when they form a complex, and a free subpopulation, RF and NF . Thus, we
now write conservation equations for both the consumer and the resource, N = NF + C and
R = RF + C. To describe the consumers catching and handling resource we again write

dC

dt
= aRFNF − hC or

dC

dt
= a(R− C)(N − C)− hC , (7.35)

where a is the attack rate with which the consumers catch free resource, and 1/h is the time
required to handle and kill the resource. By the QSSA dC/dt = 0 we have to solve C from the
quadratic equation

aC2 − C(aR+ aN + h) + aRN = C2 − C(R+N + h′) +RN = 0 , (7.36)

where h′ = h/a, which for small C can be simplified into

C =
RN

h′ +R+N
, (7.37)

which indeed has a similar form as the consumption term in the Beddington model of Eq. (7.27).

This function has been used to describe various types of transient interactions between cells upon
binding each other (De Boer & Perelson, 1995). One example is a paper successfully fitting Eq.
(7.25) to experimental data on the rate at which neutrophils kill bacteria (Malka et al., 2012).
Finally, one can define a “continuum” between the Lotka-Volterra model and the Beddington
model by writing

dR

dt
= rR(1−R/K)− aRN

1 +R/kR +N/kN
and

dN

dt
=

aRN

1 +R/kR +N/kN
− dN , (7.38)

which will have the mass-action interaction term of the Lotka-Volterra model when kR → ∞
and kN → ∞. In one of the numerical exercises we will show that allowing for sufficiently
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large values of kR and kN can dampen the oscillations of a model (see Page 151). Replacing a
mass-action interaction term by this “double saturation” function, conveniently limits the rate
of this interaction when one of the variables becomes large. When one of the variables is small
the interaction term simplifies into a conventional saturation function, and when both variables
are small, the interaction term simplifies into the original mass-action process, aRN .

7.4 Summary

There are several generic saturation functions to model that “consumers” (e.g., predators, killer
cells, or infectious hosts), cannot handle an infinite number of “resource” (e.g., prey, tumor cells,
or susceptible hosts) per unit of time. The most well-known Holling type-II and III saturation
functions correspond to the Hill functions explained in Chapter 15. Resource-consumer models
based upon a saturated functional response tend to have a peaked resource nullcline, with
stable and unstable parts (which was not possible in Lotka-Volterra like models). Because such
saturation effects allow for a positive feedback within the resource population, by decreasing
the per capita killing rate when resource densities increase, resource-consumer models with a
saturated functional response can have a Hopf bifurcation where a stable limit cycle is born.
Periodic behavior is therefore a very natural outcome in such models. In the steady states where
the consumer is present, resource densities tend to be determined (largely) by the parameters
of the consumer (which mimics results obtained with Lotka-Volterra like models). Because
saturation functions can be derived mechanistically by quasi steady state assumptions, we know
how to generalize them to high-dimensional situations with several resources and/or consumer
species. An extension of the conventional Michaelis-Menten QSSA suggests a 2-dimensional
functional response that depends on both resource and consumers. Models based upon this
“Beddington” functional response have a slanted consumer nullcline, and either a peaked or a
monotonically declining resource nullcline, and tend to have more dampened behavior.

7.5 Exercises

Question 7.1. Michaelis-Menten
The famous Michaelis-Menten term is the result of a QSSA in enzymatic reactions. Since we have
used similar QSSAs in the derivation of our functional responses, we here refresh our memory
on the classic Michaelis-Menten derivation. Consider a chemical reaction for the formation of
some product P from a substrate S, and let the enzyme E catalyzes the reaction, i.e.,

E + S
k1


k−1

C
k2→ E + P .

Because the enzyme is released when the complex dissociates, one writes a conservation equation,
E + C = E0.
a. Write the differential equations for the product P and the complex C. Use the conservation

equation!
b. Assume that the formation of the complex is much faster than that of the product, i.e., make

the QSSA dC/dt = 0.
c. Write the new model for the product. Simplify by defining new parameters.
d. Write an ODE for the substrate, and note that you can add dC/dt to simplify dS/dt because

dC/dt = 0.
e. Check that this resembles the derivation of Eqs. (7.11) and (7.12).
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Question 7.2. Parameters
A simple resource consumer model based on a saturated functional response is:

dR

dt
= a1R(1−R/K)− b1N

R

c1 +R

dN

dt
= −a2N + b2N

R

c2 +R

a. Give a biological interpretation and the dimension of all parameters.
b. Is it biologically reasonable to choose b1 < b2?
c. Give an interpretation for the following parameter choices c1 = c2, c1 > c2 and c1 < c2.

Question 7.3. Type I functional response
A consumer-resource model based upon Holling’s type I functional response can be written as

dR

dt
= rR(1−R/K)− aN min(R,L) with

dN

dt
= caN min(R,L)− dN ,

where L (for limit) is the maximum amount of resource the consumer can handle per day. To
sketch the nullclines of a model with a discontinuous function one basically makes two phase
planes, one in which R < L and one in R > L. After that the phase planes are merged, taking
the R < L picture at low R values, and the R > L diagram for large values of R. The intersection
point of the two pictures in the merged phase plane defines the value of L.
a. Analyze the model using phase plane analysis (i.e., sketch nullclines and vector field).
b. Determine the stability of the steady states.
c. Can the consumer nullcline be located at a resource density exceeding L?
d. Can the non-trivial steady state be unstable?

Question 7.4. Luckinbill
Fig. 7.10 depicts the data of Luckinbill (1973). The horizontal axis gives the time in either hours
(Panel A) or days (Panels B & C). The vertical axis is population density in numbers per ml.
The solid line depicts the resource Paramecium and the dotted line the consumer Didinium.
Panel A: Paramecium and Didinium in normal medium. Panel B: Paramecium and Didinium
in a medium with methyl-cellulose, which increases the viscosity of the medium. At day 17
Didinium dies out. Panel C: as Panel B after halving the concentration of food for the resource
Paramecium. In Panels B and C the fat line at the top gives the density of Paramecium in the
same medium in the absence of the consumer.
a. Write a simple consumer resource model to explain these data.
b. Identify the differences between the experiments with differences in parameter values of the

model.
c. Draw for each of the three situations the nullclines of the model, and a trajectory correspond-

ing to the data.
d. Does your model provide a good interpretation of the data?
e. What are the most important differences between the model and the data?

Question 7.5. Wolves
Wolves hunt in packs and help each other catch resource (this is also true for several other
consumer species, e.g., spoonbills).
a. Devise a model for this situation using a functional response with ∂N f(R,N) > 0.
b. Study the model by phase plane analysis (depending on the functional response you have

devised, you may require Grind).

Question 7.6. Saturation in consumers
Sometimes there is a maximum rate at which resource can be killed by the consumers. An
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Figure 7.10: The data from Luckinbill (1973). The horizontal axis gives the time in either hours or days,
and the vertical axis the population density in numbers per ml. The solid line is the resource Paramecium
and the dotted line the consumer Didinium. Panel A: Paramecium and Didinium in normal medium.
Panel B: Paramecium and Didinium in a medium with methyl-cellulose, which increases the viscosity of
the medium, which decreases the food intake of Didinium. Panel C: as Panel B but with half the amount
of food for Paramecium. In Panels B and C the fat line at the top represents the population density of
Paramecium in the absence of the consumer.

example is susceptible hosts that are infected by infected individuals (see Chapter 6). One
would then write something like

dR

dt
= rR(1−R/K)− aRf(N) ,

dN

dt
= caRf(N)− dN where f(N) =

N

h+N
, (7.39)

and where a is the maximum death rate of the resource R when there is an infinite consumer
population.
a. Analyze the model using phase plane analysis (i.e., sketch nullclines and vector field). Indi-

cate intersection points of the nullclines with the axes. Be careful: there are two different
possibilities.

b. Determine the stability of the steady states.

Question 7.7. Eutrophication
Consider an algae-zooplankton system based upon a sigmoid functional response (see Fig. 7.5).
Since a perfectly vertical zooplankton nullcline need not be realistic (Arditi & Ginzburg, 1989;
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Ginzburg & Akçakaya, 1992), we allow for some direct competition between zooplankton at high
densities, and evaluate the model by studying the effect of eutrophication.
a. Make a model of the system described above, and sketch the nullclines (by hand).
b. What parameter best defines the nutrient availability in such an ecosystem, and how would

you study the effect of eutrophication?
c. What are the possible effects of eutrophication, given either a strong or a weak intra-specific

competition for the zooplankton? Draw the qualitatively different nullcline situations.
d. What do you learn from this about the usage of models to predict environmental effects?

Extra questions

Question 7.8. Ratio-dependent predation (Grind)
Arditi & Ginzburg (1989) and Ginzburg & Akçakaya (1992) criticized the consumer-resource
models discussed in this chapter (see also their book (Arditi & Ginzburg, 2012) with an excellent
review of many relevant data sets). One criticism is that these models “predict” that feeding the
resource (i.e., increasing the carrying capacity) fails to increase the resource density at steady
state. Another criticism is that when these models are used to describe algae-zooplankton sys-
tems, the models tend to oscillate with a too wide amplitude (Arditi & Ginzburg, 1989; Ginzburg
& Akçakaya, 1992; McCauley et al., 1999; Murdoch et al., 2002; Scheffer & De Boer, 1995).
Finally, they argue that a consumer will never interact with all individuals in the resource pop-
ulation, as it will typically only find resources present in its own neighborhood (e.g., territory).
They proposed a modification of consumer-resource models by making the consumption depen-
dent of the amount of resource per consumer, R/N , and called this “ratio-dependent predation”.
When a consumer can only interact with the R̂ = R/N resources in its own environment, and
we use a conventional functional response, one would write

f(R̂) =
aR̂

h+ R̂
or f(R,N) =

aR/N

h+R/N
=

aR

hN +R
,

which then defines the ratio-dependent consumer resource model

dR

dt
= rR(1−R/K)− aRN

hN +R
dN

dt
=

caRN

hN +R
− dN .

To study the dimensions of the parameters one can test the functional response for a large
resource population:

lim
R→∞

aR

hN +R
= lim

R→∞

a

hN/R+ 1
= a ,

which demonstrates that the parameter a has the simple interpretation of the maximum amount
of resource consumed per consumer. One can therefore also define the fitness as R0 = ca/d.
This model is available on the website as the file ratio.R.
a. Study the nullclines and trajectories. Hint: like in the Beddington model, there are two

qualitatively different regimes.
b. Can one destabilize the non-trivial steady state by eutrophication?
c. What would be your major criticism on this model?

Question 7.9. Nullcline construction
The resource nullcline of the sigmoid and the Beddington consumer-resource model was sketched
using a graphical construction method based upon plotting the consumption curves and the
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population growth curve as a function of the resource density. To develop some experience now
use the same method to now sketch the mathematically fairly complicated resource nullcline
depicted in Fig. 5.2a, which was based on the rather simple ODE dR/dt = s−wR− aRN

h+R , where
R is the resource and N the consumer.

Question 7.10. Exponential function response (Grind)
Consumer-resource models with a saturated functional response are not always written with a
Hill function. An equally simple saturation function is an exponential function that is scaled to
be half-maximal at R = h, yielding a model like

dR

dt
= rR(1−R/K)− aN(1− e− ln[2]R/h) with

dN

dt
= caN(1− e− ln[2]R/h)− dN .

Indeed, solving 1/2 = e− ln[2]x/h yields x = h.
a. What is the meaning of the parameter a?
b. Check with Grind whether using an exponential functional response rather than a Monod

function has a large impact on the phase space of this model (use the file exp.R).
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Chapter 8

Modeling chains

The models considered hitherto were composed of maximally two ODEs, for a resource and its
consumer, respectively. Here we begin by considering higher dimensional models by adding an
ODE for the population controlling the “consumers”. This is the classic situation in ecological
food webs that typically contain several “trophic” layers, where the consumers eating the first
resource layer (e.g., algae, R) are the resource of another consumer (e.g., zooplankton, N), that
may in turn be predated by a “top-predator” (e.g., fish, M). It is typically not clear how many
tropic levels one should implement in such a model, e.g., we could also start with nutrients as
the first layer, and/or add predatory fish eating the former top-predator. Similar chain models
appear when modeling viral infections in a host, because the intermediate population of infected
cells, N , is responsible for removing susceptible target cells, R, by novel infections, and may
also invoke an immune response, M , removing the infected cells. It is well known that the
steady states of such chains strongly depend on the length of the chain (Arditi & Ginzburg,
1989; Abrams, 1994; Kaunzinger & Morin, 1998; De Boer, 2012), which is an worrisome result
because we often make quite arbitrary choices on the number of levels to include in our models.

For instance, the immune response, M , could trigger a response of regulatory T cells. Or a
lake with predatory fish controlling fish, that are controlling zooplankton, that are controlling
algae, that are consuming nutrients, may (sometimes) be visited by birds catching the predatory
fish. Unfortunately, adding another layer of control will radically change the properties of the
state state. In most models, food chains with an even or odd number of layers have very
different steady state properties (Arditi & Ginzburg, 1989; Abrams, 1994), and although this
may seem strange, there is experimental data from 2-dimensional and 3-dimensional bacterial
food chains confirming these “strange” predictions from the models (Kaunzinger & Morin, 1998).
In this chapter we will first confirm this worrisome result, and then show it is at least partly
a consequence of the mass action interaction terms of the models we typically write. Vitaly
Ganusov (2016) argues that when modeling some biological phenomenon one should always
develop multiple alternative models for the underlying processes to test whether or not results
depend on the choices are being made. In this chapter confirm this, and learn that one should
not only vary the underlying biological assumptions, but also the form of the mathematical
terms.
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8.1 A 3-dimensional Lotka-Volterra chain

Let us first consider models with mass-action interaction terms, i.e., Lotka-Volterra like models.
Extending the Lotka-Volterra model with an additional layer, M , is straightforward, e.g.,

dR

dt
= [r(1−R/K)− bN ]R ,

dN

dt
= [bR− d− cM ]N and

dM

dt
= [cN − e]M , (8.1a,b,c)

where M could be fish eating zooplankton, N , or an immune response of cells killing infected
cells, N . This simple model has several steady states, and we will study what happens when
the carrying capacity, K, of the resource, R (i.e., algae or target cells), is increased. In the
ecological interpretation the carrying capacity reflects the amount of nutrients available for the
algae in the ecosystem, and in the virological interpretation K is the number of target cells
present in uninfected individuals, e.g., the size of the liver when we are considering a hepatitis
virus. Assume for a moment that one can increase the size of the liver (e.g., by drinking too
much alcohol). In the absence of the second population, the third one cannot be maintained,
and when N = M = 0, one obtains the obvious R̄ = K from Eq. (8.1a), i.e., a resource at
carrying capacity. Thus, increasing K likewise increases R̄ (see Fig. 8.1a). We have seen in the
previous chapter that, in the absence of M , the consumer can only invade and be maintained
when its R0 > 1, which here means that bK/d > 1. Thus, at low values of the carrying capacity
there is not enough resource, R̄ = K, in the system to maintain the consumer (i.e., as long as
K < d/b). If, after increasing K, the consumer has successfully invaded, the new steady state
(still without M) is

R̄ =
d

b
and N̄ =

r

b

(
1− d

bK

)
=
r

b

(
1− 1

R0

)
. (8.2a,b)

Note that the previous state (R̄, N̄ , M̄) = (K, 0, 0) still exists, but has become unstable because
dN/dt > 0 in the neighborhood of that state (see Fig. 8.1a). The nature of the steady state of
the resource has changed radically because it is now completely determined, or “controlled”, by
the parameters of the second population, b and d.

Similarly, the third population, M , can only invade when its R′0 = cN̄/e > 1. Because N̄
increases as a function of K (see Eq. (8.2b)), and would approach a maximum N̄ = r/b when
K → ∞, the fitness of the third population can be defined as R′0 = cr

be . We see that the third
population can only invade and be maintained when the carrying capacity, K, is sufficiently
large, and cr > be, Considering the case when M is present we solve the steady state of the
resource and consumer,

N̄ =
e

c
, R̄ = K

(
1− be

cr

)
and M̄ =

bR̄− d
c

, (8.3)

where we re-observe the parameter condition R′0 = cr
be > 1. Since N̄ is solved from Eq. (8.1c), R̄

had to be solved from Eq. (8.1a), and the steady state M̄ had to be computed from Eq. (8.1b).
The steady state of the resource is now again determined by its own parameters r, b and K, in
combination with the two parameters of the third population, c and e.

If we were to add a fourth population, F , controlling the M population, e.g., predatory fish or
regulatory T cells, one would write

dM

dt
= [cN − e− fF ]M and

dF

dt
= (fM − g)F , (8.4a,b)
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Figure 8.1: Bifurcation diagrams of the Lotka-Volterra food-chain of Eq. (8.1) in Panels (a-c), and
of a similar food-chain based upon the Beddington functions of Eq. (8.7) in Panels (d-f). The second
population, N , can invade at the transcritical bifurcation point where K = KN , and the third population,
M , can invade at the transcritical bifurcation point where K = KM . The n = 1, 2 and 3 texts denote the
length of the chain, i.e., the dimension of the system. Note that no Hopf bifurcations are found in the
bifurcation diagrams of Panels (d-f) because they were made for a “predation limited” parameter setting
of Eq. (8.7). This figure was made with the model chain.R.

and one would have solve M̄ = g/f from Eq. (8.4b), R̄ = d+cM̄
b from Eq. (8.1b), N̄ from Eq.

(8.1a), and finally F̄ = cN̄−e
f from Eq. (8.4a). Summarizing, we observe that the biological pa-

rameters determining the steady state of each population in this chain of populations controlling
each other, depends on the length of the chain, n. When n = 1 the steady state resource density,
R̄ = K, when n = 2 or n = 4, R̄ is independent of K, and when n = 3, R̄ is proportional to K.
Which biological parameters determine the steady state of R therefore depends on the parity
of n: for even length chains R̄ is determined by the parameters of its controller, N , and for
odd length chains R̄ depends at least partly on its own parameters. Since it is typically unclear
how many (trophic) layers one should incorporate in a model, this is a rather disturbing result
pinpointing a lack of robustness of steady state expressions of these “chain of control” models
(De Boer, 2012). In the exercises you will derive very similar results for a chain in which the
resource is a non-replicating population, i.e., dR/dt = s− rR−dRN , and the other populations
remain the same.

8.2 Chains with saturating interacting terms

The results derived in the previous section have to do with the fact that most populations in
these models are replicators, which means that their ODEs can be written as dxi/dt = fi(x)xi,
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where x is a vector representing the n-dimensional state of the system. Solving the non-trivial
steady state therefore typically involves cancelling the xi = 0 solution from its own equation,
and subsequently solving fi(x) = 0. Since the fi(x) terms in Eq. (8.1) correspond to the terms
within the square brackets, i.e.,

fR(R,N) = r(1−R/K)− bN , fN (R,M) = bR− d− cM and fM (N) = cN − e , (8.5)

we observe that only fR depends on itself, i.e., on R. Because fN and fM are independent of
N and M , respectively, their steady states are necessarily solved from another equation. For
instance, for a 3-dimensional chain one solves N̄ from fM = 0, then R̄ from fR = 0, and finally
M̄ from fN = 0.

The fact that the steady state expression of xi is independent of xi is a consequence of the
simplicity of the interaction terms, which are all mass action terms here. For instance, if we
replace all mass action terms with conventional saturation terms, i.e.,

dR

dt
=

[
r
(

1− R

K

)
− bN

hR +R

]
R ,

dN

dt
=

[
bR

hR +R
− d− cM

hN +N

]
N ,

and
dM

dt
=

[
cN

hN +N
− e
]
M , (8.6a,b,c)

we observe that fN becomes dependent on N when M is present, but that fM remains inde-
pendent of M . All steady state expressions remain dependent on their own variable when we
choose for a Beddington functional response, e.g.,

dR

dt
=

[
r
(

1− R

K

)
− bN

hR +R+N

]
R ,

dN

dt
=

[
bR

hR +R+N
− d− cM

hN +N +M

]
N ,

and
dM

dt
=

[
cN

hN +N +M
− e
]
M (8.7a,b,c)

but unfortunately the steady state expressions of this model become so complicated that they
are no longer insightful. Thus, the disturbing results derived in the previous section depend
on the form of the interaction terms. One would therefore have to establish the functional
form of these interactions before one knows whether or not these results are an artifact of our
simplification, or a realistic feature of truly simple interaction terms.

Because solving the steady state of Eq. (8.7) is laborious, one can resort to studying the difference
between these models numerically by bifurcation analysis. Fig. 8.1a-c depicts the steady states
derived above for Eq. (8.1) that is based upon mass action interaction terms. The steady state
of R is independent of the carrying capacity, K, when the chain is 2-dimensional, and increases
with K when it is 1 or 3-dimensional. N and M can invade at transcritical bifurcations located
at K = KN and K = KM , respectively. The steady state of N first increases as a function of K,
but is independent of it when M is present (see Fig. 8.1a-c). For large values of the saturation
constants, hR and hN , bifurcation diagrams of Eq. (8.7) will look very similar to Fig. 8.1a-c
because the Beddington interaction terms approach a mass action term whenever hR � R+N
and hN � N + M . (One can write the functions in Eq. (8.7) as b′N

1+R/hR+N/hR
with b′ = b/hR

to see that one can make hR arbitrary large, and adjust b′ to arrive at the same mass action
term). The bifurcation diagrams in Fig. 8.1d-f reveal that all steady states increase with K,
whatever the dimension, n, of the chain for reasonably small values of the saturation constants,
i.e., hR ' hM < K.

We conclude that the classic observation that steady states of “control” chains depend on a
small subsets of the parameters only, and that this depends on the length of the chain (Arditi
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& Ginzburg, 1989; Abrams, 1994; Kaunzinger & Morin, 1998; De Boer, 2012), is a consequence
of the simple interaction terms of these chains. For more complicated interaction terms, like
the Beddington functional response, it will depend on the parameters how strongly the nature
of the steady state values changes when new populations are added to the chain. For instance,
in Fig. 8.1d the dependence of R̄ of K hardly changes when N invades, but that of N̄ strongly
depends on the presence of the third population, M . Finally, note that we have here chosen
the carrying capacity, K, as a bifurcation parameter, basically to repeat the famous Paradox of
enrichment result of Rosenzweig (1971), and that very similar results would have been obtained
if other bifurcation parameters were chosen (you can test this by modifying the chain.R code).

8.3 Other famous chain models

The chain models discussed above have a form where a subsequent population “controls” the
previous one, i.e., they have interaction terms between all populations of adjacent levels, like
in an ecosystem where the next trophic level feeds upon the previous one. Fortunately, not all
chains in biology are of this form, and hence need not suffer from the strong dependence on the
chain length. For instance, the famous 4-dimensional chain of susceptible, exposed, infected and
recovered (SEIR) model in epidemiology (see Chapter 6),

dS

dt
= s− dS − βSI , dE

dt
= βSI − (d+ γ)E ,

dI

dt
= γE − (δ + r)I and

dR

dt
= rI − dR ,

has only one interaction term between the levels, i.e., the βSI term. The “resource” is here
defined as susceptible hosts, S, that are infected at rate β by infected hosts, I, which first
become exposed un-infectious hosts, E, then infectious hosts, I, that suffer from an additional
death rate due to the virulence, δ ≥ d, and may recover into immune hosts, R. In the absence
of infections S̄ = s/d. For an epidemic at steady state, we work from right to left to see that

R̄ =
r

d
Ī , Ī =

γ

δ + r
Ē , S̄ =

(d+ γ)(δ + r)

γβ
, (8.8)

and hence that Ē = s
d+γ −

d(δ+r)
γβ has to be solved from the first equation. This reveals that R̄

and Ī are simply proportional to their previous level, and will always be present when Ē > 0.
The condition Ē > 0 defines the one and only transcritical bifurcation in this 4-dimensional
chain, corresponding to the parameter condition where the infection can get established (i.e.,
R0 = sγβ

d(d+γ)(δ+r) > 1; see Fig. 8.2b and Chapter 6).

Another common chain to consider is the expansion of a population by a cascade of cell divisions,

dN0

dt
= s− (p+ d)N0 ,

dNi

dt
= 2pNi−1 − (p+ d)Ni and

dNn

dt
= 2pNn−1 − dNn , (8.9)

where s cells per day are entering a division cascade of n divisions, and the index i denotes
the number of completed divisions. Here the cells stop after n cell-divisions, and this chain has
no interaction terms between its levels. The proliferation rate, p, and the death rate, d, are
independent of the number of divisions completed. These populations are not controlling each
other, and the steady state can be derived by working from left to right, i.e.,

N̄0 =
s

p+ d
, N̄i =

2p

p+ d
N̄i−1 and N̄n =

2p

d
N̄n−1 , (8.10)

revealing that each level remains proportional to the previous one. Since the steady state of each
sub-population, N̄i, is always positive there should always be a steady state. Furthermore, in
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Figure 8.2: The behavior of the SEIR model. Panel (a) depicts the establishment of an epidemic in
a population starting at the uninfected steady state. Panel (b) shows that the infection in Eq. (8.8)
can invade at the transcritical bifurcation point where R0 = 1. This figure was made with the R script
seir.R.

the exercises you will see that the Jacobi matrix, J , of this system has a lower triangular form,
i.e., all elements above the diagonal are zero. Since the eigenvalues of such matrices are solved
from the characteristic equation, which here corresponds to a simplified determinant thanks to
the fact that all off-diagonal elements are zero, i.e.,

(J00 − λ)(J11 − λ)(J22 − λ) . . . (Jnn − λ) = 0 , (8.11)

you will discover that this steady state is always stable, i.e., λmax < 0. Intuitively, this is a
natural result because in this chain each sub-population remains proportional to the previous
one (see Eq. (8.10)), and the first sub-population approaches a steady state reflecting a balance
between a source, s, and its loss rate, (p+ d). Eq. (8.10) can indeed be simplified into

N̄0 =
s

p+ d
, N̄i =

2ipis

(p+ d)i+1
and N̄n =

s

d

(
2p

p+ d

)n
, (8.12a,b,c)

for i = 1, 2, . . . , n−1. Thus, the only effect of adding a level to this chain is that N̄n becomes 2p
p+d -

fold larger. Note that if we were to remove the factor two from these equations, this cascade
would correspond to a chain of maturation steps, and that this would confirm that cells or
individuals in such a chain would approach a stable “age” distribution. Finally, to model the
source more explicitly, one could consider a population of quiescent cells, Q, that occasionally
are triggered to enter a cascade of cell divisions. Then one would replace the source parameter,
s, by the number of quiescent cells entering the cascade, e.g., s = aQ, where a is a (potentially
stochastic) activation rate, and add an ODE for the resting cells,

dQ

dt
= −aQ− dQQ+ d

∑
fiNi , for i = 1, 2, . . . n , (8.13)

which allows a fraction, 0 ≤ fi ≤ 1, of the cells that are lost from the cascade to revert to
quiescence. Do you think this model with quiescent cells will also approach a steady state? 1

1This is actually quite a challenging question since the steady state of the quiescent cells involves those of the
activated cells,

Q̄ =
d
∑
fiN̄i

a+ dQ
, N̄0 =

aQ̄

p+ d
and N̄i =

2p

p+ d
N̄i−1 .

But since this is a self-renewing population, of cells dividing and some eventually returning to the quiescent stage,
where they will be activated into another division cascade, the existence of a non-trivial steady state would require
negative density dependence. Otherwise the population either dies out, or explodes (just like an exponentially
growing population).
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8.4 Summary

Biological models can often be written as chains where each level controls the previous layer.
In chains of populations controlling one another the nature of the steady state can strongly
depend on the length of the chain, but this depends on the type of interaction function used
to model the control that the populations exert on one another. Other classic chains that do
not involve multiple levels of control, have steady states that depend much less on the length
of the chain, but increasing the chain length may increase the sensitivity of the steady state to
particular parameters, which becomes a “feature rather than a bug” in the Kinetic proofreading
model of the last exercise. We have only discussed linear chains in this chapter because networks
of populations controlling one another involve competition between populations, which is the
subject of the next chapter.

8.5 Exercises

Question 8.1. Food chain
Consider a variant of Eq. (8.1) where the resource is not replicating:

dR

dt
= s− rR− bNR ,

dN

dt
= [bR− d− cM ]N and

dM

dt
= [cN − e]M .

a. Find all steady states.
b. How does the steady state of the resource depend on the amount of resource flowing into the

system, i.e., on s? Does this depend on the length of the chain?

Question 8.2. Triangular Jacobian
Write the Jacobian of Eq. (8.9) to discover that the matrix has a triangular form (i.e., here all
elements above the diagonal are zero). Keep the matrix simple by not substituting the steady
state expressions for N̄i. Because the product of all off-diagonal elements are zero, the determi-
nant of a matrix in triangular form is given by the product of its diagonal elements. Because the
determinant is equal to the product of all eigenvalues, this implies that the eigenvalues are equal
to the diagonal elements. This confirms that solving the eigenvalues corresponds to solving Eq.
(8.11). Note that the trace of this matrix is the sum of its diagonal elements, and that the
determinant is the product of the diagonal elements.

Question 8.3. Accumulating mutations (Grind)
Tumors like acute myeloid leukemia (AML) typically appear relatively late in life, and a recent
paper by Abelson et al. (2018) demonstrates that the onset of AML is typically preceded by
the slow accumulation of somatic mutations in the hematopoietic progenitor cells undergoing
clonal expansion throughout life (to maintain the various types of cells circulating in the blood).
People not developing AML also accumulate mutations in their peripheral blood cells (albeit to
a somewhat lower extent), and the basic idea is that mutations accumulate with every division
these progenitor cells perform. Thus, leukemias are expected to arise after cells have completed
a large number of divisions. Since not all cells having completed many divisions will have
accumulated the mutations required for becoming leukemic, we will argue that these cells become
senescent and die, and write the following model,

dN0

dt
= s− (p+ d)N0 ,

dNi

dt
= 2pNi−1 − (p+ d)Ni , for i = 1, 2, . . . , n ,
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dS

dt
= (1− f)2pNn − dSS and

dL

dt
= f2pNn + rL(1− L/K) ,

where s is a source of progenitors from a stem cell compartment, p is a division rate, d is a death
rate, S are senescent cells appearing after cells have completed n divisions, and L are leukemic
cells that replicate autonomously at a rate r, and ultimately approach a potentially large and
life threatening carrying capacity, K. Setting f to a small value would mean that most cells
having completed n divisions do not become leukemic, and rather become senescent and die.
This model is provided as the file leukemia.R.
a. Do you think this is a reasonable model?
b. In the numerical model the division rate of the progenitor cells is set to p = 1/365 d−1,

to define a scenario where these cells on average divide once per year. Setting n = 50
(which would correspond to a Hayflick (1988) limit) and f to a small value, one would expect
leukemias to develop late and rarely. Do you agree with this expectation?

c. Carefully read the model defined in the leukemia.R document to understand the notation
by which the division cascade is implemented. Do you see leukemias develop late and rarely
when you run this model?

d. What goes wrong and how would you repair that?
e. Would using the Smith-Martin (1973) model explained in Chapter 13 provide a solution?

Question 8.4. Chaos (Grind)
A simple system of a resource species, R, eaten by a consumer, N , that is eaten by a top-
consumer, M , can have a chaotic attractor (Hogeweg & Hesper, 1978; Hastings & Powell, 1991);
see Chapter 12. Consider the following system with two Holling type-II functional responses

dR

dt
= R(1−R)− c1Nf(R) ,

dN

dt
= −aNN + c1Nf(R)− c2Mg(N) ,

dM

dt
= −aMM + c2Mg(N) ,

where

f(R) =
R

1 + b1R
and g(N) =

N

1 + b2N
.

Hastings & Powell (1991) studied this system for the parameters 2 ≤ b1 ≤ 6.2, c1 = 5, c2 = 0.1,
b2 = 2, aN = 0.4, en aM = 0.01. For biological reasons the time scale of the interaction between
N and M was made slower than that between R and N , i.e., aN � aM . This model is available
as the file chaos.R.
a. Sketch with pencil and paper the phase space of R and N . Do you expect oscillations for

their parameters in the absence of the top-consumer M?
b. Compute the expression of the dM/dt = 0 nullcline, and sketch that line in the phase space

of a. Do you expect M to invade?
c. Sketch the nullclines with Grind and see how they match those sketched with pencil and

paper.
d. Vary the parameter b1 to observe how the model behavior changes (see the file chaos.R).
e. Do this with and without noise on one of the parameters.

Extra questions
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Question 8.5. Detritus
In a closed ecosystem nutrients should cycle through the food chain and become available again
when resource, consumers, and top-consumers die and decompose. One could write a conserva-
tion equation, K = F + R + N + M , where the total amount of nutrients in the system, K, is
the sum of the free nutrients, F , and that contained in all organisms. Assume that the growth
of the R-population is proportional to the availability of free resources, and extend Eq. (8.1)
to study how in this system with recycling nutrients the steady states change when the total
amount of nutrients, K, is increased.

Question 8.6. Maintenance and reproduction
Make the corresponding question in Chapter 14 and simplify your model into two ODEs by
assuming that the time scales of the eggs is much faster than that of adult Daphnias. Analyze this
QSSA model by phase plane analysis, i.e., sketch the nullclines, the vector field, and determine
the stability of all steady states.

Question 8.7. Kinetic proofreading
Read Section 15.9 in the Appendix to learn about an interesting example for theoretical predic-
tions on how cells can use a chain of phosphorylation steps to discriminate between low and high
affinity ligands. This prediction was much later confirmed by data. Try to derive Eq. (15.35)
from Eq. (15.34). Hint write an ODE for the total amount of complexes and make a quasi steady
assumption.
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Chapter 9

Competition

Competition for resources like space, light, nutrients, food, growth factors, and/or susceptible
hosts is ubiquitous in biology, and will occur whenever several populations are dependent on
shared resources. An important concept in resource competition is the principle of “competitive
exclusion”, stating that populations that are maintained by consuming the same shared resource
have to exclude each other at steady state. A famous data set confirming this is the competition
between two species of Paramecium by Gause (1934). Competitive exclusion is actually the
basis of Darwin’s “Survival of the fittest” concept. We will show that the consumer depleting
the shared resource most, will typically be the one and only survivor (Tilman, 1980, 1982),
and that this need not be the species with the highest carrying capacity (or even the highest
fitness, R0). Because the resource is depleted to a minimal density this is sometimes called the
pessimization principle (Mylius & Diekmann, 1995).

We will first confirm the competitive exclusion principle with a few simple models, and then
turn to the more complicated situation of a “network” in which several consumers are sharing
several resources. Mathematical models for populations competing for resources can be derived
mechanistically from the resource consumer models developed in the previous chapters by making
a quasi steady state assumption (QSSA) for the resource densities. Removing the resource
changes the indirect interaction between the consumers into a direct one, which hence provides
a functional form for the resource competition process.

9.1 Competitive exclusion

To illustrate the concept in its most basic form, first consider a closed compartment with a fixed
amount of resource, R, that is taken up by n consumer populations Ni (for i = 1, 2, . . . , n), and
is released when the organisms die. For n = 2 this could reflect the two Paramecium species
in the medium of Gause (1934) competing for a nutrient. Since the total amount of nutrient
cannot change in this closed compartment, we write a conservation equation K = R+

∑n
i eiNi,

where K is the total amount of nutrient in the compartment, R represents the amount of free
nutrient, and the ei parameters specify the amount of nutrient contained in a single individual
of consumer Ni. A first model, based upon mass-action terms would be

R = K −
n∑
i

eiNi ,
dNi

dt
= Ni(biR− di) , for i = 1, 2, . . . , n , (9.1)
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where we would define R0i = biK/di for the fitness of each consumer. Since the steady state of
each dNi/dt = 0 requires that R̄ = di/bi = K/R0i , each consumer generically requires a unique
nutrient availability, and hence they cannot co-exist. This proves the principle of competitive
exclusion. (Note that the resource level at steady state does not depend to amount of resource,
ei, taken up by consumers). To study which consumer is expected to outcompete all others, let
us order the consumers by their R0i , with N1 being the fittest consumer, and Nn having the
lowest R0. If the first species is present at its steady state (its carrying capacity), the nutrient
density will be R̄ = d1/b1. Other species will not be able to invade into this state, because to
invade their per capita growth rate should be larger than zero, i.e.,

biR̄− di > 0 or bi
d1

b1
− di > 0 or

bi
di

d1

b1
> 1 or

bi
di
>
b1
d1

, (9.2)

which is not true because of our ordering, i.e., by R01 > R0i we know that b1
d1
> bi

di
. We conclude

that the species with the highest fitness, R01 = b1K/d1, outcompetes all others, and that this
species depletes the resource to the lowest level R̄ = d1/b1 = K/R01 (the latter was also obtained
in the earlier chapters). Finally, we compute the carrying capacity of the winning species from
the conservation equation R = K −

∑n
i eiNi, i.e., in the absence of the other species we obtain

R̄ =
d1

b1
= K − e1N1 ↔ N̄1 =

K − d1/b1
e1

=
K(1− 1/R01)

e1
, (9.3)

which for large R0 would approach the quite natural N̄1 = K/e1 (i.e., total amount of resource
divided by the content per individual). Because this carrying capacity depends on an additional
parameter, e1, which plays no role in the fitness or in steady state depletion of the resource, the
species with the highest carrying capacity need not be the best competitor.

Considering the two species of Paramecium in the medium of Gause (1934) one can obtain the
same result by examining the nullclines of Eq. (9.1) for n = 2. These form two parallel lines

N2 =
K − d1/b1

e2
− e1

e2
N1 =

K(1− 1/R01)

e2
− e1

e2
N1 and N2 =

K(1− 1/R02)

e2
− e1

e2
N1 , (9.4)

for the first and second population, respectively, which have the same slope − e1
e2
N1 when N2

is plotted on the vertical axis (see Fig. 9.1b). Since the species with the largest fitness, R0i ,
corresponds to the upper nullcline, we reconfirm that this species will outcompete the other
from any initial condition (see Fig. 9.1b). Again, because the carrying capacity, N̄i, is inversely
related to the nutrient content parameters, ei, and the fitness, R0i = biK/di, is independent
of the nutrient content parameter, the species winning the competition need not be the one
with the high carrying capacity, i.e., one can parametrize the system such that R01 > R02 while
K1 < K2, by choosing e1 > e2.

Importantly, the competitive exclusion result does not change when we make the birth rate a
saturation function of the free resource density, i.e.,

R = K −
n∑
i

eiNi ,
dNi

dt
= Ni

(
biR

hi +R
− di

)
, for i = 1, 2, . . . , n , (9.5)

where we could define R0i = bi/di for the fitness of each consumer. Solving the latter gives
the now familiar R̄ = hi

R0i
−1 . Because these fitness values are only defined at infinite resource

densities, one can now have a situation where the species with the largest fitness is outcompeted
by the other species. The result that the species depleting the resource most, will outcompete
the other ones remains valid, however. In this saturation model, the species with the lowest ratio
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Figure 9.1: Competitive exclusion in the model of Eq. (9.1). Panel a depicts a time plot starting at low
numbers, showing that both populations expand until the first species approaches densities at which it
starts outcompeting the second species. Panel b depicts a phase plane with trajectories approaching the
carrying capacity of the first species. This figure was made with the R-script comp.R.

of the saturation constant, hi, over the “critical fitness”, R0i−1, will deplete the resource to the
lowest level. Thus, let us now order the species by their steady state resource level, R̄i = hi

R0i
−1 ,

with N1 having the lowest level R̄1. Because the minimum amount of resource required for the
other species to invade is solved from

bjR̄1

hj + R̄1
> dj ↔

R0j R̄1

hj + R̄1
> 1 ↔ R0j R̄1 > hj + R̄1 ↔ R̄1(R0j − 1) > hj , (9.6)

we obtain that

R̄1 =
h1

R01 − 1
>

hj
R0j − 1

, (9.7)

which contradicts our ordering. Hence, we confirm that the species depleting the resource most,
outcompetes the others. Species with a low saturation constant and a high R0 are therefore at
an advantage. If one were to derive the nullclines for a 2-dimensional version of this system,
one would again find that these are two parallel lines with slope − e1

e2
N1 when N2 is plotted on

the vertical axis (not shown). Finally, the carrying capacity of the winning population, i.e., the
steady state of Eq. (9.5) with just one species, is solved from

R =
h1

R01 − 1
= K − e1N1 ↔ N̄1 =

K

e1
− h1

e1(R01 − 1)
, (9.8)

which for high R0 and small h1 would also approach K/e1.

9.2 Adding explicit resource dynamics

Since we learned in the previous chapter that the steady state of the resource is typically solved
from the consumer equations, the results demonstrating competitive exclusion from the critical
resource densities, are not expected to change when we “open” the system by replacing the
conservation equation in Eq. (9.5) by a dynamic resource with its own kinetics. We have written
resource equations with a source and loss term, or with a birth and death rate, and we have
used mass-action and saturated functional responses to describe the consumption (e.g., see the
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question on biotic and abiotic resources on page 49). Combining abiotic with biotic resources,
and restricting ourselves to saturated consumer birth rates we could therefore write

dR

dt
= s− dR−R

n∑
i=1

ciNi with
dNi

dt
= Ni

(
biciR

hi + ciR
− di

)
or (9.9)

dR

dt
= s− dR−R

n∑
i=1

ciNi

hi +R
with

dNi

dt
= Ni

(
biR

hi +R
− di

)
or (9.10)

dR

dt
= rR(1−R/K)−R

n∑
i=1

ciNi with
dNi

dt
= Ni

(
biciR

hi + ciR
− di

)
or (9.11)

dR

dt
= rR(1−R/K)−R

n∑
i=1

ciNi

hi +R
with

dNi

dt
= Ni

(
biR

hi +R
− di

)
, (9.12)

for i = 1, 2, . . . , n consumers, and where the first two and the latter two ODEs represent a non-
replicating (abiotic) and replicating (biotic) resource, respectively. Here ci is the consumption
rate of consumer i. In the two equations with mass-action consumption (Eqs. 9.9 and 9.11),
we let the birth rate be a saturation function of the amount of resources consumed (ciR). The
saturation constant, hi, in Eqs. (9.9) and (9.11) here also plays a role in the conversion from
resource to consumers (one could even simplify these terms by dividing the numerator and
denominator by ci, and defining a new saturation constant h′i = hi/ci).

For the two equations with a saturated consumption term, one could think of the situation
where the amount of resource consumed is proportional to the growth rate of the consumers,
i.e., ci = cbi, where c is the amount of resource (e.g., nutrient) contained in a single consumer,
as is typically done for bacterial growth (Monod, 1949). Alternatively, one could think of a
conventional Monod-saturated predator-prey model, and assume that bi = cci, where c is a
conversion constant required for converting resource into consumers.

Because the critical resource density for each consumer in Eqs. (9.9–9.12) is defined as either

R∗i =
hi/ci
R0i − 1

or R∗i =
hi

R0i − 1
, where R0i =

bi
di
, (9.13)

all consumers require different resource densities at steady state, and hence cannot co-exist in
equilibrium on a single resource, unless they have identical parameters hi, ci, bi and di (i.e.,
unless they occupy exactly the same niche). If we rank the species by their critical R∗i values, we
see that at steady state the first species with the lowest critical resource density will outcompete
all others because when

R = R∗1 one can see that
dN1

dt
= 0 and

dNi

dt
< 0 for i = 2, 3, . . . n , (9.14)

where n is the number of consumers. We conclude that competitive exclusion is a very general
theoretical result and does not seem to depend on the form of the resource or consumer equations.
This is quite paradoxical because in many systems one observes that many species competing
for resources do co-exist, e.g., there can be a high diversity of plankton species in an aquatic
ecosystem, of bacteria in a microbiome, of viruses in a quasi-species, and lymphocytes in the
immune system of a single host.

Note that if we had written mass-action birth rates in Eqs. (9.9) and (9.11), i.e., dNi/dt =
(biR − di)Ni, the critical resources densities would have been defined as R∗i = di

bi
= K

R0i
, which

again reveals that different consumers require different resource densities at steady state, and
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that the species with the highest fitness, R0i , depletes the resources most, and outcompetes
all other consumers. Finally, the steady state of the most competitive consumer, i.e., the one
with the lowest R∗i , need not be stable when the consumption is saturated (see Eqs. (9.10) and
(9.12)). If this is the case one expects a stable limit cycle of R and this most competitive Ni,
and the question becomes whether or not other consumers can invade at this limit cycle. In the
exercises we will demonstrate that this is possible, which emphasizes that competitive exclusion
is an equilibrium result only.

Removing the resource by a quasi steady state assumption (QSSA)

To study how resource competition would shape the interaction between the two competitors, one
can make a QSSA for the resource in Eqs. (9.9–9.12), and substitute that into the corresponding
consumer equations. This is feasible only for Eqs. (9.9) and (9.11) with mass-action consumption
terms. For the non-replication resource of Eq. (9.9) one obtains

R̂ =
s

d+
∑
ciNi

, (9.15)

revealing the intuitive result that a resource that turns over more rapidly (i.e., has a high d)
remains closer to its carrying capacity, s/d, than a recourse with a slow turnover (i.e., with a
low d). Substitution of R̂ into the corresponding consumer equation gives

dNi

dt
= Ni

( bis

s+ (hi/ci)(d+
∑
cjNj)

− di
)

= Ni

( βi
1 +

∑
Nj/kj

− di
)
, (9.16)

where βi and kj are complicated combinations of several parameters (i.e., βi = bicis/(cis+ hid)
and ki = cihi/(cis+ hid)). The simplified form in Eq. (9.16) reveals that this is an extension of
one of the density dependent birth models in Chapter 3, with an inverse Hill function f(N) =
1/(1 + N/k) describing the effect of the population density on the per capita birth rate. The
“carrying capacity”, Ki, of a consumer can be found by setting all other Nj = 0 (i.e., all j 6= i),
and solving dNi/dt = 0 from Eq. (9.16)

Ki =
s

hi

(
R0i − 1

)
− d

ci
=

s

ciR∗i
− d

ci
, (9.17)

where R∗i is still defined by Eq. (9.13). Thus, the most competitive species having the lowest
R∗i tends to have the highest carrying capacity (although this depends on hi and ci). For two
species, the nullclines of this QSS model would again be two parallel lines (not shown; try in
Grind).

For the replicating resource of Eq. (9.11) one obtains

R̂ = K

(
1− 1

r

∑
ciNi

)
, (9.18)

again confirming the intuition that a rapidly growing resource remains closer to its carrying
capacity at steady state consumption. Substituting this into the consumer equation gives the
quite complicated

dNi

dt
= Ni

( bi(r −
∑
cjNj)

(hi/ci)(r/K) + r −
∑
cjNj

− di
)
. (9.19)

This model is different from the models we have considered in Chapter 3, and also differs
from the classic Lotka-Volterra competition model that we will consider below (in Section 9.3).
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Figure 9.2: The four qualitatively different nullcline configurations of the Lotka-Volterra competition
model given in Eq. (9.21), The red line and the blue lines depict the dN1/dt = 0 and dN2/dt = 0 nullclines,
respectively, and the black lines are trajectories. N1 has a faster growth rate than N2, i.e., r1 = 2r2,
which affects the trajectories but not the nullclines. This figure was made with the file lotkaComp.R.

One may recognize the mass-action terms of the Lotka-Volterra in the numerator of the birth
term, implying that this may start to resemble the Lotka-Volterra competition model when
(hi/ci)(r/K) + r �

∑
ciNi. The “carrying capacity”, Ki, of a consumer can again be found by

setting all other Nj = 0 (for all j 6= i), and solving dNi/dt = 0 from Eq. (9.19), i.e.,

N̄i =
r

ci

(
1− R∗i

K

)
,

where R∗i is still defined by Eq. (9.13). For two species, the nullclines of this QSS model would
again be two parallel lines (not shown; try in Grind).

Summarizing, we find competition equations with interaction terms that are more complicated
than mass-action terms. Nevertheless, if we were to sketch the 2-dimensional nullclines of the
QSS models of Eq. (9.16) and Eq. (9.19) we would find that these are linear, and resemble those
of the Lotka-Volterra competition model.

9.3 The Lotka-Volterra competiton model

The n-dimensional Lotka-Volterra competition model is typically written as

dNi

dt
= riNi

(
1−

n∑
j=1

AijNj

)
, (9.20)
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where the interaction matrix, Aij , collects the competition coefficients between the species (note
that this model is very similar to Eq. (9.1)). The diagonal elements of this matrix define
the carrying capacities, i.e., Ki = 1/Aii, because in the absence of interspecific competition
Eq. (9.20) simplifies to logistic growth equation, dNi/dt = riNi(1 − AiiNi). Thus, the Lotka-
Volterra competition model basically extends the logistic growth model with additional mass-
action competition terms.1

One can simplify the Lotka-Volterra competition model by scaling the carrying capacity of each
species to one (by defining a non-dimensional population size ni = Ni/Ki). Thus, one can set
all Aii = 1, and recompute the other Aij values by dividing them by Kj (see Section 15.4). The
scaled version of the Lotka-Volterra competition model is very useful for depicting the famous
four qualitatively different phase planes of two competing species. We sketch the nullclines of
a 2-dimensional Lotka-Volterra competition model, by defining the horizontal axis by N1 and
the vertical axis by N2. Next solve N2 from dNi/dt = 0 in Eq. (9.20) for i = 1, 2, and set
A11 = A22 = 1, to obtain

N2 =
1

A12
− A11

A12
N1 =

1

A12
(1−N1) and N2 =

1

A22
− A21

A22
N1 = (1−A21N1) , (9.21)

for dN1/dt = 0 and dN2/dt = 0, respectively. The two simplified forms define the classic
Lotka-Volterra nullclines running from Ni = 1 on their own axis to 1/Aij on the opposite axis.

Choosing Aij values that are either smaller or larger than one, one obtains the four classic
diagrams shown in Fig. 9.2. When one of the Aij parameters is smaller than one and the other
is larger than one, the nullclines fail to intersect (see Fig. 9.2a and b), and the species with
the smallest Aij parameter outcompetes the other. When both Aij parameters are larger than
one, the interspecific competition exceeds the intraspecific competition for both species and the
nullclines intersect in an unstable equilibrium (Fig. 9.2c). This is called the “founder controlled”
situation because the species that initially has the highest abundance has the highest chance
to exclude the other, and ultimately approach its carrying capacity. The steady state is stable
(see Fig. 9.2d) when both Aij parameters are smaller than one, i.e., when the intraspecific
competition exceeds the interspecific competition for both species, which is the typical situation
for resource competition because the niche overlap between two species should be smaller than
the niche overlap among members of the same species.

Remember that the competition models we derived “mechanistically” above by a QSSA for
the resource dynamics were quite different because of their non-mass-action interaction terms
(O’Dwyer, 2018), but since these models in two dimensions also have straight nullclines, one
would expect the same four situations as depicted in Fig. 9.2 (albeit for different parameter
conditions). Moreover, we would have obtained the mass-action terms of the Lotka-Volterra
model if the consumer model of Eq. (9.11) had been written with mass-action terms, e.g.,
as dNi/dt = (biR − di)Ni, and we had substituted Eq. (9.18) or Eq. (9.1) for the resource.
Finally, since the growth rates, ri, can be cancelled when one considers the steady state of
Eq. (9.20), the Lotka-Volterra competition model is sometimes defined as dNi/dt = Ni(ri −∑n

j=1AijNj), which is similar to more mechanistic models with explicit birth and death rates,
e.g., dNi/dt = Ni(bi[1−

∑n
j=1AijNj ]−di). However, since a mass-action consumer model is not

easily extendable into competition for several resources, as one would obtain a summation of
several independent “birth rates”, e.g., dNi/dt = (

∑n
j=1 bijRj−di)Ni when there are n different

resources, we continue with saturated birth rates in the next sections.

1A Grind model with an arbitrary number of species, n, all having the same carrying capacity, Ki = 1, and
having random off-diagonal Aij elements is provided as the file matrix.R).
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9.4 Several consumers on two resources

The previous sections demonstrated that several consumers on one resource are expected to
exclude each other (at steady state). Two consumers living from two different resources should
be able to co-exist whenever they specialize to have sufficiently different requirements for both
resources, as this would again make the intraspecific competition larger than the interspecific
competition. The most extreme example would be that each specializes on using just one of
the two resources, implying that they do not compete and each approach a carrying capacity
defined by the availability of their unique resource, their consumption and R0. In the general 2-
dimensional phase space of Fig. 9.2, such a situation would correspond to perpendicular nullclines
intersecting in stable node (with a Jacobian having zero off-diagonal elements). Maintaining a
steady state with more than two consumers using two resources should not be possible because
the steady state expression of each consumer equation would have two unknown resource values,
and one would have to solve more than two consumer equations with each two unknowns.

Next, we will go beyond Lotka-Volterra and write more mechanistic models for the situation
where several consumers use several resources while allowing for an overlap in their diet. Study-
ing consumers using several resources more mechanistically, one first has to decide whether or
not these resources are “essential”, meaning that they cannot replace each other, or “substi-
tutable”, meaning that they can be added up into a total intake (Tilman, 1980, 1982). First
consider the situation of several consumers sharing several substitutable resources, by defining
a birth rate depending on the summed resource intake, and generalize Eq. (9.9) into

dNi

dt
=
(
βi

∑
j cijRj

hi +
∑

j cijRj
− δi

)
Ni ,

dRj
dt

= sj − djRj −
∑
i

cijNiRj , (9.22a,b)

where the consumption rates, cij , define the mass-action rates at which consumer i ingests
resource j. Importantly, βi is the birth rate that is approached when any of the resources
is available at a high density. The saturation constants, hi, define the density of consumed
resources at which the birth rate is half-maximal. Since at low consumption rates the sat-
uration functions approach

∑
j cijRj/hi, the saturation constants, hi, also play the role of a

throphic conversion factor from the resource to the consumer level. For simplicity we let each
resource contribute equally to the birth rate of each consumer (this can be repaired by mul-
tiplying the cij terms in Eq. (9.22a) with a nutritious weight αij ; see the online tutorial on
tbb.bio.uu.nl/rdb/bm/clips/tilman).

Since the per capita birth and death rates of the consumers in Eq. (9.22) only depend on the
resource densities one can draw several dNi/dt = 0 nullclines in a space defined by the resources.
For two resources such a picture is called a Tilman diagram (Tilman, 1980, 1982); see Fig. 9.3.
Above, when we considered a single resource, we defined R∗i as the critical resource density of
consumer i. Now, for two resources the critical resource densities are defined by the consumer
nullclines in the space spanned up by the resources, i.e., in Fig. 9.3 each consumer grows above
its nullcline (dNi/dt > 0). If, and only if, two nullclines intersect, there is a combination of
resource densities, (R1, R2), at which dNi/dt = dNj/dt = 0, suggesting that there could be a
steady state at which both species co-exist. To sketch the consumer nullclines in a 2-dimensional
Tilman diagram we solve dNi/dt = 0 in Eq. (9.22) for R2, to see that the nullclines all decline
linearly as a function of R1:

R2 =
hi

ci2(R0i − 1)
− ci1
ci2

R1 , (9.23)

where R0i = βi/δi. Since the resources contribute additively, one can use dNi/dt to define a

https://tbb.bio.uu.nl/rdb/bm/clips/tilman
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critical density,

R∗ij =
hi

cij(R0i − 1)
, (9.24)

for each resource j separately, and use this to simplify the nullcline of consumer i into R2 = R∗i2−
ci1
ci2

R1. Two of these simplified nullclines can only intersect when their slopes are unequal, i.e.,

when ci1
ci2
6= cj1

cj2
, and when their four intersects with the axes, i.e., R2 = R∗i2, R1 = R∗i1, R2 = R∗j2,

and R1 = R∗j1, also allow the nullclines to cross (see Fig. 9.3b). Note that when two species
perfectly specialize on one resource, i.e., c21 = c12 = 0, their Tilman diagram will have two
intersecting perpendicular lines located at R1 = R∗11 and R2 = R∗22.

When two consumers i and j have the same diet, ci1 = cj1 and ci2 = ci2, their nullclines will be
parallel lines, and the species will exclude each other (see Fig. 9.3a) where we plot the nullclines
of three consumers differing in their saturation constants only, i.e., h3 > h2 > h1). The fact
that these lines are not intersecting means that there is no combination of resource densities,
(R1, R2), at which even two of the consumers can co-exist at steady state. Thus, the species
with the lowest resource requirements, R∗ij , i.e., the one with the lowest nullcline in the Tilman
diagram of Fig. 9.3a will outcompete the others. Requiring low amounts of consumed resources,
i.e., having a low hi parameter, consuming a lot, i.e., having high cij parameters, and having a
high R0, all contribute to having low R∗ijs, and becoming the superior competitor (see Fig. 9.3a).
Since a 2-dimensional Tilman diagram can contain any number of consumer nullclines, it is not
limited to a maximum of three consumers, and can used to establish the superior competitor(s)
in a large set consumers.

When the consumers have different diets their nullclines in the Tilman diagram may intersect,
and in Fig. 9.3b we made a situation with three pairwise intersections by letting N1 specialize on
R1 (by setting c11 > c12), N2 specialize on R2 (by setting c22 > c21), and making N3 a generalist
(by setting c31 ' c32). Since the three nullclines do not intersect in one point, one can safely
conclude that there is no combination of resource densities where all three dNi/dt = 0, and
hence that these three consumers cannot co-exist on just two resources (confirming the general
competitive exclusion principle). Because the slopes of these nullclines depend on the ratio of
the consumption rates, ci1/ci2, their heights on the saturation constant, hi, and the fitness, R0i

of each consumer (see Eq. (9.23)), it is generically not expected to have an intersection point of
more than two nullclines (see the exercises for a non-generic counterexample (Posfai et al., 2017)).
However, depending on the parameters, any pair of consumer nullclines may intersect, and this
intersection point would correspond to a steady state provided that for these resource densities
there is also a steady state density of the two consumers such that dR1/dt = dR2/dt = 0.
Thus, an intersection between two consumer nullclines need not be a steady state of the full
system, i.e., of Eq. (9.22). Using newton() in Grind we have marked all steady states with two
consumers with bullets (stable) and circles (unstable) in Fig. 9.3b. This illustrates that only
two of the pairwise intersections correspond to a steady state. The intersection point in the
middle, where dN1/dt = dN2/dt = 0, is a stable steady state because it is located below the
dN3/dt = 0 nullcline, implying that N3 will decline at these resource densities (i.e., N3 cannot
invade). The left-most intersection point, where dN1/dt = dN3/dt = 0, is an unstable steady
state because it is located above the dN2/dt = 0 nullcline, implying that N2 would successfully
invade if introduced into this equilibrium of N1 and N3 with the two resources. For reasons that
are not readily obvious from the Tilman diagram in Fig. 9.3b, the right-most intersection point,
where dN2/dt = dN3/dt = 0, is not a steady state (see the online tutorial). Importantly, such
a Tilman diagram can be made for any set of consumers, and this analysis tells us (1) that the
consumers depleting the resources the most are expected to be the superior competitors, and (2)
at steady state no more than two consumers are expected to be maintained by two resources.
Again the consumer depleting resources to a minimal density tends to win the competition.
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Figure 9.3: Three consumers on two substitutable resources. The nullclines of the consumers are
defined by Eq. (9.22a) and because they then obey Eq. (9.23), they form straight lines with slope
ci1/ci2. In Panel (a) the consumers have the same diet which corresponds to parallel nullclines.
Thus, when the consumers have the same (or a too similar) diet the nullclines fail to intersect,
which implies that there is no combination of resource densities, (R1, R2), at which at least
two of the consumers can co-exist at steady state. Giving N1 an advantage over the other two
consumers by setting h1 < h2 < h3, the dN1/dt = 0 nullcline is located at the lowest resource
densities, and N1 will outcompete the other two consumers. In Panel b we let N1 specialize on
R1 by setting c11 > c12, N2 specialize on R2 by setting c22 > c21, and make N3 a generalist
by setting c31 ' c32. Thus, N1 has the steepest nullcline, N2 the flattest, and N3 has a slope
close to −1. Because we have given the consumers similar total consumption rates, ci1 + ci2,
and identical saturation constants, hi, the nullclines tend to intersect in pairs. Only the middle
intersection point where dN1/dt = dN2/dt = 0 can be a stable steady state because this is
below the dN3/dt = 0 nullcline, meaning that N3 cannot invade at these low resource densities.
The upper intersection point where dN1/dt = dN3/dt = 0 is a steady state, but because it
is above the dN2/dt = 0 nullcline it has to be unstable. The lower intersection point where
dN2/dt = dN3/dt = 0 is not a steady state, and solving the system in the absence of N1 would
lead to trajectories approaching N2 = K2. The bullet and the circle were obtained numerically
by solving the system for all pairwise combinations of consumers. This figure was made with
the model additive.R, where we have chosen a steady state of the resources in the absence of
the consumers, (R̄1, R̄2) = (s1/d1, s2/d2), that is located above the three nullclines and falling
outside of the Tilman diagram.

Because one cannot easily tell from a Tilman diagram whether or not an intersection point
corresponds to a steady state, these diagrams are most informative for establishing which in-
tersections are absent, which truly indicates the absence of a steady state (see Fig. 9.3), and
to establish which pairwise intersection point is located at the lowest resource densities, which
predicts which pair of consumers forms the superior set of competitors. It is tempting to use an
invasion criterion to establish whether or not a steady state is stable, i.e., to conclude that the
steady state located at the lowest combination of resource densities should be stable because the
other consumers necessarily decline at these resource densities. However, in a Tilman diagram
this could be invalid because the lowest intersection point (1) also needs to be a 4-dimensional
steady state where dR1/dt = dR2/dt = dN1/dt = dN2/dt = 0, and (2) even if it is a steady
state, it could still be unstable (see the online tutorial).
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9.5 Essential Resources
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Figure 9.4: Consumer nullclines for a situation with two essential resources for a stable steady
state (Panels (a) and (c)) and for an unstable steady state (Panels (b) and (d)). The panels at
the top depict the nullclines of Eqs. (9.26) and (9.27) as function of the resource densities (these
are Tilman diagrams). The dashed lines are the asymptotes of the nullclines. The circle in the
upper corners depicts the (unstable) steady state of the resources in the absence of consumers.
The other bullets and circles reflects a stability of steady state with consumers. The panels at
the bottom provide the nullclines of Eqs. (9.26) and (9.27) after making a QSSA for the two
resources defined by Eq. (9.25). This figure was made with the model essential.R.

To mechanistically model “essential” resources one could change Eq. (9.22) into

dNi

dt
=
(
βi
∏
j

cijRj
hij + cijRj

− δi
)
Ni ,

dRj
dt

= sj − djRj −
∑
i

cijNiRj , (9.25a,b)

where by the multiplication of saturation functions we require that all resources should be
consumed in sufficient amounts. Note again that this can be simplified by dividing the numerator
and denominator in each saturation function by cij , and define h′ij = hij/cij . An alternative is
to define a birth rate that is completely determined by resource that is limiting most, which is
called “Liebig’s law of the minimum”, and use a minimum function instead of a product (see
the exercises). Since the nullclines of Eq. (9.25a) only depend on the resource densities, one can
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again plot many dNi/dt = 0 in a single Tilman diagram spanned up by two resources. For two
consumers on two resources Eq. (9.25a) translates into

dN1

dt
=

(
β1

c11R1

h11 + c11R1

c12R2

h12 + c12R2
− δ1

)
N1 , (9.26)

dN2

dt
=

(
β2

c21R1

h21 + c21R1

c22R2

h22 + c22R2
− δ2

)
N2 , (9.27)

and Fig. 9.4(a) and (b) depicts two Tilman diagrams for this model. The consumer nullclines
in a phase spanned up by the two resources are hyperbolic functions with asymptotes defining
the minimal resource densities these consumers require. These asymptotes can be found by
setting dNi/dt = 0 for R1 → ∞ or R2 → ∞, i.e., R1 = R∗i1 and R2 = R∗i2 for i = 1, 2, . . . , n,
respectively, where the R∗ijs are still defined by Eq. (9.24). Whether or not the nullclines will
intersect therefore depends on the R∗s, and the species with the lowest requirements, hij , the
highest consumption rates, cij , and highest R0 will have the lowest nullcline, and be the winner
whenever the nullclines fail to intersect (see Fig. 9.4a and b).

In all panels of Fig. 9.4 we have again set c11 > c12, c22 > c21 and c31 ' c32, i.e., consumer one
specializes on resource one, consumer two on resource two, and consumer three is a generalist,
and in Fig. 9.4(c) and (d) we have used non-replicating resources defined by Eq. (9.25b). In
the stable situation of Fig. 9.4a and c we accordingly set h11 > h12, h22 > h21 and h31 = h32,
to let each species require most of the resource it eats most (which would be “optimal” in an
evolutionary sense (see the chapter by Tilman in (McLean & May, 2007))). We have made
the unstable situation of Fig. 9.4(b) and (d) by setting h11 = h12 = h21 = h22 < h31 = h32,
which means that on R2 the first consumer competes more strongly with the second consumer
than with itself because the second consumer eats more of resource two than the first consumer,
whereas they both require the same amount. This leads to an unstable steady state between
them, and a situation where only one of the consumers survives. The initial condition will
determine who persists, and hence this is called a “founder controlled” situation.2

9.6 Summary

The competitive exclusion principle stating that at steady n resources can maximally maintain
n different consumers is a very general theoretical result that nevertheless seems to be contra-
dicted by various biological systems maintaining a diverse community of consumers on a very
limited variety of resources. Mechanistic models for resource competition require a distinction
between essential and substitutable resources. One can study systems with many consumers
using two (or three) resources in Tilman diagrams, and this reveals that the species deplet-
ing the resources most, tend to be the superior competitors (because they can survive on the
lowest resource densities). The lowest resource density, R∗, required by a consumer to expand
is therefore the most informative measure defining the most superior competitors, and species
will only co-exist at equilibrium when their niches are sufficiently different. Replicating and
non-replicating resources yield similar results for the outcome of the competition. The clas-
sic Lotka-Volterra competition equations turn out to be bold simplifications generalizing over
any number of essential and substitutable resources, and are not readily obtained from QSS
assumptions in more mechanistic consumer-resource models. The Lotka-Volterra competition

2The online tutorial on tbb.bio.uu.nl/rdb/bm/clips/tilman explains Tilman’s quite complicated procedure to
address the stability of steady states for simpler models based upon mass-action interaction terms (and Section
15.10 in the Appendix applies this approach to the two more complicated models discussed here).

https://tbb.bio.uu.nl/rdb/bm/clips/tilman
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equations nevertheless allow one to summarize the four qualitatively different phase diagrams
that one may expect for two competing populations.

9.7 Exercises

Question 9.1. Migration
Extend the scaled Lotka-Volterra competition model of Eq. (9.20) with a small constant immi-
gration of individuals.
a. Write the new differential equations for a 2-dimensional system.
b. Analyze the model using nullclines. Hint: first sketch the well-known qualitatively different

phase spaces without this migration term, and then reason how the nullclines change if you
add a small immigration parameter.

c. Determine the stability of all the steady states.
d. Discuss competitive exclusion in this model.

Question 9.2. Equilibrium co-existence
Throughout this chapter we have concluded that two competitors cannot be maintained to-
gether in steady state when they are competing for a single resource. To study a potential
counterexample we here borrow the metapopulation model proposed by Tilman et al. (1994), in
which they define competition by ordering their species by competitive strength, i.e., the first
species can overgrow patches occupied by all other species, the second all but the first one, and
so on. One could think of an area where trees can overgrow land occupied by grass, or a petri
dish seeded with bacterial species that can overgrow each other according to some ranking. For
simplicity we consider two species, and a total amount of resource, T , where T could be total
available area (that one could scale to one). For the two species one would write

dN1

dt
= b1N1(T −N1)− d1N1 and

dN2

dt
= b2N2(T −N1 −N2)− d2N2 − b1N1N2 , (9.28a,b)

with birth rates bi and death rates di. Assuming that grass cannot grow under trees, and
that trees can seed themselves into areas occupied by grass, one could model the competition
between grass and trees with Eq. (9.28) by defining N1 and N2 as the densities of trees and
grass, respectively.
a. Explain why the grass density is absent from Eq. (9.28a), and why the birth rate of the trees

appears in Eq. (9.28b).
b. Sketch the nullclines of this system.
c. Can the two species co-exist in steady state? If so, what is the condition for co-existence in

terms of the parameters?
d. Is this a counterexample for the so general result on competitive exclusion derived in this

chapter? If so, how can this be?

Question 9.3. Non-equilibrium co-existence (Grind)
We have seen in this chapter that two species competing for the same resource cannot co-
exist in a steady state. A fine example of non-equilibrium co-existence of two consumers using
the same resource was devised by Yodzis (1989). By making a smart choice of the functional
response functions, one can make a system where one consumer grows faster than the other at
low prey densities, while the other does better at high prey densities. If the prey population
oscillates between densities where the two consumers differ in performance, they need not exclude
each other. Note that the two consumer nullclines remain parallel planes in the phase space,
precluding the existence of a 3-dimensional steady state, and hence this remains in agreement
with the equilibrium analyses in this chapter. To find parameters corresponding to this behavior
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one should design an oscillatory predator prey system like we did in Chapter 7, and use invasion
criteria allowing each of the predators to invade at the average prey density in the attractor set
by the other predators. An example of a model allowing for the non-equilibrium co-existence is

dR

dt
= rR(1−R/K)− a1RN1

h+R
− a2RN2 ,

dN1

dt
=

a1RN1

h+R
− d1N1 ,

dN2

dt
= a2RN2 − d2N2 , (9.29)

where the first consumer has a saturated Holling type-II response, and the second one has a
linear functional response.
a. Sketch the nullclines of R with N1 and R with N2 by hand.
b. Use pencil and paper to find parameters giving functional responses that intersect each other.
c. Use the latter in Grind to find parameter values for which the consumers co-exist. Check the

invasion of each of the predators in the attractor of the other.
d. Can one obtain the same result when both predators have a saturated functional response?

Question 9.4. Larvae and adults
a. Write a simple model for an insect population with an early larval stage, and a late adult

stage. Assume that larvae only compete among themselves, and make sure that the insect
population as a whole has a carrying capacity.

b. Let there be two “predators”, one feeding on the larvae and the other on the adults, e.g., a
wasp laying eggs in the larvae and birds eating the adults. Since these predators are foraging
on the same species they seem to occupy the same niche. Can these two predators nevertheless
co-exist?

Question 9.5. Gradients with sharp borders
In vegetations one sometimes observes sharp borderlines between the areas covered by different
species in situations where one does not expect an underlying sharp transition in the environ-
mental conditions. An example is the sharp zonation in different vegetations along a smooth
environmental gradient, like a salt gradient or an altitude gradient. Consider a plant species
competing for a stylized resource like space, R, and having an additional death rate, dS , influ-
enced by some environmental condition, e.g., the concentration of salt,

dN1

dt
= N1(b1R− d1 − dS) ,

where R = 1 −N1 is the scaled availability of free space, and dS reflects the death rate due to
the salt. Suppose we study vegetation plots taken along a salt gradient, and that the vegetation
is in steady state.
a. What is the carrying capacity, and how does it depend on the concentration salt?
b. Sketch the carrying capacity along the gradient, i.e., as a function of dS .
c. Next we add a second species that is tolerant to salt, and due to a trade-off has a somewhat

lower fitness, i.e., now define R = 1 −N1 −N2 and dN2/dt = N2(b2R − d2), where b2/d2 <
b1/d1. Sketch the nullclines for a situation with such a low concentration of salt that dS = 0,
and provide a biological interpretation. What happens to these nullclines along the salt
gradient?

d. Now sketch the steady state of both N1 and N2 along the gradient, and interpret your result.

Question 9.6. Density dependent birth rate
In this chapter we used mass-action consumption terms, but made the birth rate of the consumer
a saturation function of the amount of resources consumed. Since this seems realistic we will
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investigate what kind of density dependence this yields for the consumers. To keep things simple
start with a scaled resource equation for a replicating resource,

dR

dt
= R(1−R)− aRN and

dN

dt
=

[
b

aR

h+ aR
− d
]
N ,

where N is the consumer with a maximum birth rate b. We proceed as normal: make a QSS
assumption for the resource and substitute this into the consumer equations.
a. What is the R0 of the consumer?
b. Perform the QSSA and write the complete ODE for a single consumer. Combine parameters

to have it in its simplest form.
c. What is now the R0 of the consumer?
d. Sketch the per capita birth rate of the consumer as a function of the consumer density.
e. Which of the growth models of Chapter 3 describes this best?
f. We considered a replicating resource in this question. If you have time you can also sketch the

per capita birth rate of the consumer for a non-replicating resource, e.g., dR/dt = 1−R−aRN ,
where source and death have been scaled.

Extra questions

Question 9.7. Fitting Lotka-Volterra competition to the Gause data from 1934

Figure 1 from Gause (1934).

The classic experiments of Gause (1934) demonstrated
that two species cannot coexist on a single resource. In
his experiments he was growing several species Para-
macium either in isolation, or in combination. Gause
showed that the growth curve of P. aurelia and P. cau-
datum on their own (circles) can reasonably be de-
scribed by a logistic growth equation (solid lines), and
the competition data (squares) were well described with
a Lotka-Volterra competition model (dashed lines). In
Chapter 3 we have fitted the logistic growth of both
species in Chapter 3, let us now fit the two competition
experiments with Eq. (9.20).

a. The data is available in the directory tbb.bio.uu.nl/rdb/bm/models/data, in the files
aurelia1.txt and caudatum1.txt for the solitary experiments, and in the files
aurelia2.txt and caudatum2.txt for the combined experiment. The file gause2.R allows
you to read these files and fit the data. We follow Gause’s notation and rewrite Eq. (9.20)
into dA/dt = rAA(1 − (A + αC)/kA) and dC/dt = rC(1 − (C + βA)/kC) for the model()

in this file. Check for yourself that this is the same as Gause’s handwritten model. Next,
copy/paste the estimated growth rates and carrying capacities from the exercise in Chapter
3 into the parameter vector:
pA <- c(rA=1.11, kA=104.73)

pC <- c(rC=0.916, kC=60.277)

p <- c(pA,pC,alpha=0,beta=0)
and confirm by setting α = β = 0 that these indeed describe the solidarity data well
s <- c(A=A0[1], C=C0[2])

run(18,legend=FALSE)

https://tbb.bio.uu.nl/rdb/bm/models/data
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Figure 9.5: Two Tilman diagrams from the online tutorial on tbb.bio.uu.nl/rdb/
bm/clips/tilman/script.pdf are based upon Eq. (9.30) with α11 = α12 = α21 = α22 = 1 in
Panel (a), and α11 = α22 < α12 = α21 in Panel (b). In both panels N1 consumes most of R1

and N2 most of R2 . The intersection point in Panel (a) corresponds to a stable steady state,
whereas the one in Panel (b) is a saddle point.

timePlot(aurelia1,draw=points,add=TRUE,legend=FALSE)

timePlot(caudatum1,draw=points,add=TRUE,colMap=2,legend=FALSE)

b. Next estimate the two inter-specific competition parameters α and β. Which species suffers
most from its competitor? Would you have expected that?

c. Sketch the nullclines for the estimated parameters.
d. Since P. aurelia’s competition parameter is larger than one, P. aurelia’s appears to suffer

more from its competitor than from its conspecifics. Can this be explained by resource
competition? Is α truly larger than one?

e. Fitting the data in two separate steps need not yield the best possible combination of param-
eter estimates. Therefore, we also fit all parameters (except the initial conditions) to the four
data sets simultaneously. Note that we need to fix the initial condition in each experiment
to model the two solitary experiments. Do you find similar results?

f. Finally, one can bootstrap the data to obtain confidence intervals on the parameter estimates
(this may take a while!). Are the two competition parameters α and β sufficiently different
to indeed conclude that α > β?

g. What is your summary of these results?

Question 9.8. Tilman’s competition model (Grind)
In this chapter we have used Tilman diagrams to study the competition for substitutable and
essential resources using saturation functions of the total consumption. David Tilman in his
original papers used a large variety of models (Tilman, 1980, 1982), and we here ask you to first
study the most simple model in which the consumption is a mass-action term (like in the Lotka-
Volterra model), and the birth rate of the consumers is just proportional to their consumption
of the two resources,

dN1

dt
= [α11c11R1 + α12c12R2 − δ1]N1 ,

dN2

dt
= [α21c21R1 + α22c22R2 − δ2]N2 . (9.30)

The online tutorial on tbb.bio.uu.nl/rdb/bm/clips/tilman/script.pdf analyses this model in

https://tbb.bio.uu.nl/rdb/ bm/clips/tilman/script.pdf
https://tbb.bio.uu.nl/rdb/ bm/clips/tilman/script.pdf
https://tbb.bio.uu.nl/rdb/bm/clips/tilman/script.pdf
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depth, by considering cases where N1 consumes most of R1 and N2 most of R2 (which being an
arbitrary choice keeps the model generic). These Tilman diagrams in Fig. 9.5 are explained in the
tutorial and are sketched for resources that equally nutritious, i.e., α11 = α12 = α21 = α22 = 1,
and for a situation where the resource that each species eats most is the least nutritious, i.e.,
α11 = α22 < α12 = α21.
a. Define the critical resource densities, R∗, in terms of the parameters in Eq. (9.30).
b. Define the qualitative difference between the two panels in Fig. 9.5 in terms of the R∗ pa-

rameters.
A simple model for two consumers using two essential resources can be made from Eq. (9.30)
by using minimum functions in the birth rates (Tilman, 1980, 1982; McLean & May, 2007),

dN1

dt
=

[
min(α11c11R1, α12c12R2)− δ1

]
N1 ,

dN2

dt
=

[
min(α21c21R1, α22c22R2)− δ2

]
N2 . (9.31)

The minimum function makes the resources both “essential”, i.e., both have to be consumed in
sufficient amount, and the actual birth rate is limited by the resource that is most needed.
c. Explain that this indeed corresponds to a model for two essential resources.
d. Sketch Tilman diagrams of this model for α11 = α12 = α21 = α22 = 1 and α11 = α22 < α12 =
α21 (you can help yourself by using the tilmanMin.R model). Note, that Grind model calls
newton() to compute the 4-D Jacobian.

e. What is now the condition on having stable co-existence, and can you explain that?
f. Like in the online tutorial one can define two non-replicating resources, which we here simplify

by scaling the resource densities, and the time, by setting si = di = 1, i.e., dRi/dt =
1−Ri−c1iN1Ri−c2iN2Ri for i = 1, 2, such that we can write the quasi steady state resource
densities as

R1 =
1

1 + c11N1 + c21N2
and R2 =

1

1 + c12N1 + c22N2
.

Use the QSSA model in tilmanMin.R to study the phase space of the two consumers, and
confirm what you found above.

Question 9.9. Co-existence by trade-offs?
Posfai et al. (2017) study the “Paradox of the plankton” by modeling resource competition be-
tween a large number of consumers. Their major idea is that consumers are expected to specialize
on a subset of the resources, and therefore they introduce trade-offs among the consumption rates
when parametrizing their model. Surprisingly, they find that an unlimited number of species can
coexist, and that their model reproduces several features of natural ecosystems, including key-
stone species and population dynamics characteristic of neutral theory. The consumer equation
of their model takes the following form:

dNi

dt
=
(∑

j

βijcijRj
hij + cijRj

− δi
)
Ni ,

where each additional resource increases the maximum birth rate, βi =
∑

j βij , that is ap-
proached when all resources are available at large densities, i.e., when Rj � hij for all j (which
would be the natural situation when all consumer densities are low).
a. This is different from Eq. (9.22a): is this a proper model for substitutable resources?
b. This is also different from Eq. (9.25a): is this a proper model for essential resources?
c. When you choose this as a project, you could use Grind to study the idea of a trade-off in our

own models for competition between substitutable or essential resources. Do we find similar
results, and —if so— what is actually required to repeat these results? What do you think
of this paper: is this indeed resolving the Paradox of the plankton?
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Question 9.10. Fitness (challenging)
In this book we typically used the fitness R0 = b/d to clean up the equations, and in Eq. (9.13)b
we have seen that the critical resource requirement, R∗i = hi/(R0i − 1) , where R0i = bi/di
defines which species is the best competitor. This R0 is based upon an infinite resource density,
however. We could also have used the carrying capacity of the resource to define the R0, and
would then have arrived at a complicated expression for the fitness, i.e.,

R̂0i =
bi
di

R̄

hi + R̄
,

where R̄ = s/d. Since this contains all parameters defining R∗i , and one could think that the
species having the highest fitness, R̂0i , should also be the best competitor, i.e., have the lowest
R∗i . Due to the fact that the birth rates are saturation functions of the amount of resources
consumed, one can already see that this need not always be true, as a consumer that is best at
high resource densities, need not be the best one at low resource densities, i.e., around R∗.
a. Can you formalize this and show that the species with the lowest fitness, R̂0i , can be the best

competitor?
b. A related challenge is to make a phase plane where a typical r-selected species, with rapid

birth and death rates and a low carrying capacity, outcompetes a typical K-selected species.



Chapter 10

Co-existence in large communities

The scaled Lotka-Volterra competition model of Eq. (9.20) has been used in many different
theoretical studies of competition in ecosystems. Thanks to its simplicity it has few parameters,
and this has allowed theoretical ecologists to define “understandable” models for communities
composed of many competing species. We here discuss a few classic examples. The first considers
competition along a resource axis, and has the “natural” restriction discussed in Chapter 9
that all intra-specific competition parameters parameters are smaller than the inter-specific
parameters. We proceed by discussing classic work based upon the Jacobi matrix of large random
dynamical systems. We investigate this further by returning to high-dimensional Lotka-Volterra
models, and saturated consumer-resource models, by assigning randomly chosen parameters to
the species of these communities. We close by discussing “neutral” models that ignore ecological
interactions, and focus completely on random immigration and death, and with models for cross-
feeding in microbial communities.

10.1 Niche space models

There is an interesting classic modeling formalism for resource competition that is based on a
resource axis along which species are distributed (see Fig. 10.1) (MacArthur, 1972; May, 1974;
Scheffer & Van Nes, 2006). Think of several species of Darwin finches that each have a preferred
seed size because they evolved different beak sizes. The preference of each species can be modeled
with a Gaussian function of the seed size x, i.e., f(x̂) = exp[−(x − x̂)2/(2σ2)] that is centered
around the preferred seed size x̂i of species i (see Fig. 10.1). One can interpret this function
as the probability of using a seed of size x, where seeds of the preferred size are consumed
with probability one. For simplicity, one assumes that the species are evenly distributed over
the niche space (one would expect evolution to select for such a maximal niche separation).
This simplifies the whole problem of niche overlap to just two parameters: σ for the standard
deviation of the Gaussian functions, and d for the distance between the preferred seed sizes of
neighboring species. One can define the niche overlap between two consumers separated at a
distance d on the resource axis as the probability of both species eating seeds of the same size,
i.e., as the product of their Gaussian preference functions at all seed sizes. To properly scale
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Figure 10.1: Resource usage of three “finch species” consuming seeds of different sizes. The distance
between the preferred seed size of neighboring species is d, and σ is the standard deviation of the Gaussian
seed-size preference functions. The niche overlap between neighboring species at distance d is called α,
and hence the overlap between species at distance 2d is α4 (see Eq. (10.2)).

this, we normalize with the overlap that a species has with itself,

α =

∫∞
−∞ e−

x2

2σ2 × e−
[x−d]2

2σ2 dx∫∞
−∞ e−

x2

2σ2 × e−
x2

2σ2 dx
= e−( d

2σ )
2

, (10.1)

which is maximally one, i.e., α ≤ 1. With α = e−( d
2σ )

2

, the niche overlap only depends on
the distance d weighted by the standard deviation σ, and the overlap of a species with itself is
indeed one (because at a distance zero, α = e0 = 1). The overlap between the first and the last
species in Fig. 10.1 is determined substituting by their distance 2d into Eq. (10.1), i.e.,

e−( 2d
2σ )

2

= e−4( d
2σ )

2

= α4 . (10.2)

Likewise, one can see that the niche overlap between species at distance 3d will be α9.

An ecosystem of n competing species that are equally distributed at distances d on a resource
axis can therefore be described with the Lotka-Volterra competition model of Eq. (9.20),

dNi

dt
= rNi

(
1−

n∑
j=1

AijNj

)
, (10.3)

where we now know all the elements of the interaction matrix,

A =


1 α α4 α9 α16 . . .
α 1 α α4 α9 . . .
α4 α 1 α α4 . . .
α9 α4 α 1 α α4 . . .
. . .

 (10.4)
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and where we have given all species the same natural rate of increase, r (because a different ri
in Eq. (9.20) play no role in the competitive strength of the species at steady state).

One can analyse this model by increasing its diversity, n, one by one. A system of two species
obeys

dN1

dt
= rN1(1−N1 − αN2) and

dN2

dt
= rN2(1−N2 − αN1) . (10.5)

We have learned in Fig. 9.2d that this 2-dimensional ecosystem will have a stable non-trivial
steady state whenever α < 1. Thanks to our definition of the maximal niche overlap one would
conclude that two species can be located infinitely close on the resource axis and co-exist. Thus,
the critical niche overlap of a 2-dimensional system is α = 1 (or d/σ → 0). Note that this is an
“artifact” of using the scaled version of the competition model, i.e., Eq. (9.20). If two species
have different birth rates, consumption rates, death rates, and carrying capacities, they will not
co-exist when the niche overlap for their limiting resource is very small.

Next consider three species. What would be the maximal niche overlap, or the minimal distance
d, required for co-existence of all three species? This can be analyzed by considering Fig. 10.1
and numbering the species from left to right as N1, N2, and N3. This is a symmetric system,
i.e., the ODEs of N1 and N3 should have the same form, and dN2/dt should have the strongest
competition because it has two direct neighbors, i.e.,

dN1

dt
= rN1(1−N1 − αN2 − α4N3) ,

dN2

dt
= rN2(1−N2 − α[N1 +N3]) ,

dN3

dt
= rN3(1−N3 − αN2 − α4N1) . (10.6)

The existence and stability of the 3-dimensional steady state can be investigated by testing the
invasion of the species in the middle, N2, in the steady state of those at the ends. For this
invasion criterion one first sets N2 = 0 to compute the steady state of the 2-dimensional system.
Employing the symmetry of the system one sets N1 = N3, and obtains their steady state by
solving N̄ = 1/(1 + α4) from 1−N − α4N = 0. When N2 → 0 the invasion of N2 is described
by dN2/dt ' rN2(1− 2αN̄). This means that co-existence is guaranteed whenever

1− 2α

1 + α4
> 0 or 1 + α4 − 2α > 0 . (10.7)

This fourth order equation can be solved numerically as α < 0.54 (or d/σ > 1.54), which means
that the maximal niche overlap of a 3-dimensional system is α ' 0.54.

Since all species approach their carrying capacity, N̄i = 1, when α = 0, one can generalize
this approach by considering an n-dimensional system and gradually increasing α from zero to
one, until some of the species start going extinct. In the script niche.R this is performed for a
range of values of n. Because the steady state values of the first and the last species, N̄i and
N̄n, are the largest, as they suffer from only half of the competitive interactions, it is typically
the second, N2, and the one-but-last, Nn−1, species that go extinct first (see Fig. 10.2a). The
results of such an analysis are summarized in Fig. 10.2b, which depicts the lowest niche overlap
at which at least one species goes extinct, as a function of the diversity n of the system. The
figure reveals a fast convergence to α ' 0.63 (i.e., to d/σ ' 1.3). This niche overlap that is
ultimately approached is called the “limiting similarity”, which means that species cannot be
too similar. Otherwise they start excluding each other.1 The value of α where N2 and Nn−1 go

1Remember this when we discuss the neutral model of Hubbell (1979, 2001) below.
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extinct actually corresponds to a transcritical bifurcation (see Chapter 12). So instead of tracing
at which value of α a population becomes zero (as we do in the script niche.R), one could also
trace the largest eigenvalue to test at what value of α the largest eigenvalue, λmax = 0.

Finally, one can obtain some intuition why this limiting similarity corresponds to α = 0.63.
Consider the steady state of an infinite version of Eq. (10.3) where all species are the same, i.e.,

dN

dt
= N(1−

∑
j

AijN) = N(1−N
∑
j

Aij) (10.8)

which has the steady state

N̄ =
1∑
Aij

=
1

1 + 2α+ 2α4 + 2α9 + . . .
' 1

1 + 2α
, (10.9)

where in the latter we have ignored all higher order terms of α for k ≥ 4. Thus, in a large system
all species in the middle should therefore approach N̄ ' 1/(1 + 2α). Using this approximation
one can write for the first 3 species at the left boundary

dN1

dt
= N1(1−N1 − αN2) ,

dN2

dt
= N2(1− αN1 −N2 − αN3) ,

dN3

dt
= N3(1− αN2 −N3 − αN4) ' N3(1− αN2 −N3 − αN̄) , (10.10)

where N̄ in the last equation is given by Eq. (10.9). The steady state of these 3 species at the
boundary is defined by 3 linear equations that can be solved (e.g., by Mathematica). Subse-
quently, solving at which value of α the second species goes extinct, i.e., solving when

N̄2 =
3α2 − 1

(1 + 2α)(2α2 − 1)
= 0 or α3 =

1

3
, (10.11)

gives α = 1/
√

3 ' 0.58. Despite the simplifications this resembles the critical α = 0.63.

Infinite resource axis

The original analysis of this model by May (1974) addressed the relationship between the niche
overlap and the diversity of the system by also considering an infinite resource axis along which
infinitely many species were distributed at distance d. An infinite system has the mathematical
advantage that the effects of the edges disappear, which means that all equations become identi-
cal (see Eq. (10.8)). Thanks to this simplification, May (1974) was able to compute the Jacobian
of the infinite system, and he could compute the largest eigenvalue of the Jacobian as a function
of the niche overlap α. Because all equations were identical by the assumption of an infinite
system, no single species could ever go extinct, and the largest eigenvalue was approaching zero
when the niche overlap α was approaching our limiting similarity of α ' 0.63. In our analysis
we were breaking the symmetry of the system by distinguishing the species in the middle from
those at the borders, and were obtaining (transcritical) bifurcation points when increasing α.
Because the symmetry could not break in the original infinite system, the largest eigenvalue was
just approaching zero. May (1974) therefore had to define variation in the abiotic circumstances
that required the value of the largest eigenvalue to remain below some critical negative level.
Doing so he obtained a limiting similarity that is very similar to the one derived numerically in
Fig. 10.2b. The mathematical analysis of May (1974) is addressed further in one of the extra
exercises.
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Figure 10.2: Properties of the niche model of Eq. (10.3). Panel (a) depicts the steady state population
sizes, N̄i, for n = 21 species at the critical niche overlap α = 0.63, and at a lower niche overlap α = 0.5.
Note that N̄2 = N̄20 → 0 when α = 0.63. Panel (b) depicts the limiting overlap as a function of the
diversity, n, computed numerically with the script niche.R. Panel (c) depicts the results of Pianka (1974).

Lizard man

Pianka (1974) measured the niche overlaps between several species of lizards in various desert
habitats from all over the world. He distinguished three niche dimensions: (1) food, as deter-
mined from the contents of their stomachs, (2) habitat, and (3) the time of the day at which
they were active. These observations were translated into a single measure of the niche overlap
by considering both additive and multiplicative measures for defining the total niche overlap.
Pianka confirmed that the niche overlap decreased to a limiting value when the diversity of the
ecosystem increased (see Fig. 10.2c). This occurred at about 20 species in the data, and around
about 10 species in the model (compare Fig. 10.2b with c). A natural solution for this difference
was proposed by Rappoldt & Hogeweg (1980) who extended the model into a 2-dimensional
niche space, where the Gaussian curves become circular and are tiled in a hexagonal lattice. In
such a 2-dimensional lattice there are many more species at the borders of the niche space, and
hence it takes a higher diversity for the effects of the borders to peter out.
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10.2 Stability and Persistence

The relationship between the complexity of a biological system and its stability has been de-
bated over decades. Based on fairly romantic considerations ecologists have liked to think that
the more diverse and complex an ecosystem, the higher its degree of stability. However, one
could also turn this around by arguing that stable ecosystems have had more evolutionary time
to become diverse. Additionally, it remains unclear what one means with the stability of an
ecosystem. This could vary from a local neighborhood stability defined by the largest eigenvalue,
(i.e., a robustness against minor perturbations around the steady state), to having large basins
of attraction (i.e., robustness to macroscopic perturbations), to a mere persistence over time. It
is rather obvious that most biological systems are not persisting as stable steady states, because
they are all driven by diurnal rhythms, seasonal fluctuations, and/or “random” temporal dis-
turbances. Finally, robustness to invasion by new species can also be considered to be a form of
stability. Unfortunately, we have no well-defined modeling approach to study what properties
of an ecosystem would make it resilient to perturbations like the removal or introduction of a
species.

Classic studies of the properties of random matrices that were used as a model for the Jacobi
matrix of a steady state of a random complex system, have facilitated our thinking about
the relationship between stability and complexity (Gardner & Ashby, 1970; May, 1972, 1974).
Consider an arbitrary steady state of an arbitrary (eco)system, and address the question whether
or not this steady state is expected to be stable. To do so, one can write a random Jacobian J , of
a system with n species. To keep the analysis manageable they posed the following requirements:
1. Let every population have a carrying capacity and the same return time to this carrying

capacity. For the Jacobian matrix this means that all elements on the diagonal are scaled to
Jii = −1.

2. The off-diagonal elements of the matrix are set with a probability P . Thus, P determines the
likelihood that two species are involved in an interaction. Hence P determines the connectivity
of the system, i.e., each species is expected to have P (n− 1) interactions with other species.

3. The interaction elements that are set are drawn from a normal distribution with mean µ = 0
and standard deviation σ.

Summarizing, one draws a random matrix with dimension n× n of the following form

J =


−1 0 0 a 0 0 b 0 . . .
0 −1 0 0 0 c . . .
0 0 −1 0 . . .
d . . . −1 . . .

 , (10.12)

where a, b, . . . , d are randomly chosen values from a standard normal distribution centered at
zero. This matrix is interpreted as the Jacobian of a steady state of an (eco)system, Having
drawn such a random Jacobian matrix, the question is how its stability depends on the param-
eters n, P , and σ. One can use the theory on the largest eigenvalue of large random matrices to
prove that the probability that the largest eigenvalue is negative, i.e., λmax < 0, is described by

σ
√
nP < 1 . (10.13)

The biological interpretation of this rather abstract analysis is that increasing the number of
interactions per species, (n − 1)P , and/or increasing the absolute interactions strengths, σ,
decreases the chance that the steady state is stable. This suggests that complex systems cannot
a priori expected to be stable (Gardner & Ashby, 1970; May, 1972, 1974). In the exercises we
will suggest that the critical interaction strength scales as function of

√
nP because the standard
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deviation of the sum of the nP random variates in each row in the matrix2 is proportional to√
nP , and that the < 1 in Eq. (10.13) hinges upon the diagonal elements being −1.

The result of Eq. (10.13) seems to contradict the co-existence of many species in the niche-space
model (MacArthur, 1972; May, 1974). However, in the niche-space model the average interaction
strength decreases when the diversity increases (see Eq. (10.4)). Increasing the diversity n
therefore implicitly decreases the interaction strength σ in Eq. (10.13). This may also be true
for natural systems: when the number of species n increases, the number of connections per
species, nP , need not increase, and the strength of their connections, σ, may decrease. Another
criticism on this analysis is that it only considers one steady state of the system, and that
complex systems may have very many steady states, of which only a few need to be stable to
guarantee its persistence as a high-dimensional system. Additionally, communities need not be
stable and can persist by periodic or non-periodic behavior.

Despite these criticisms, this classic work did change the historical view of “diversity entails
stability” into questions like “how do complex systems persist over long periods of time?” and
“why are complex systems relatively resistant to macroscopic perturbations?”. Addressing these
questions has indeed led to novel results showing that the non-random architecture of natural
food webs makes a difference. The fact that most ecosystems have a pyramid structure, having
much more biomass at the bottom than at the top, makes that loops within the network tend
to have a low weight (Neutel et al., 2002). Weak interactions indeed tend to have a stabilizing
effect (McCann et al., 1998; Cui et al., 2021; Gellner et al., 2023), and it was shown for several
soil communities that feedback loops caused by omnivory tend to remain weak because of this
pyramidal shape (Neutel et al., 2007).

10.3 Random assembly

For several decades theoretical ecologists have tried to create complex artificial ecosystems by
drawing randomly chosen parameters for new species, and studying which of these species can
together form a persistent community (Pimm, 1980; Post & Pimm, 1983; Law & Blackford, 1992;
Yodzis, 1989; Roberts, 1974; McCann et al., 1998; Huisman et al., 2001; Rodriguez-Sanchez
et al., 2020). Typically most of the randomly assigned species will go extinct, as they could be
unviable (R0 < 1), unable to invade into the current state of the system, or become excluded
later when other species invade. However, since these studies can allow for a large initial set of
random species, the ultimate diversity of such an artificial system could still be large. A major
advantage of this approach is that species may persist because the system develops periodic
or chaotic behavior, which may circumvent the expected competitive exclusion in equilibrium
situations (Law & Blackford, 1992). Investigators have added space, with migration between
different areas, and have created systems that become diverse because of spatial heterogeneity,
i.e., with different species persisting in different areas (Yodzis, 1989). Tilman diagrams have been
studied in high dimensions to study the relationship with productivity and diversity in plant
ecosystems (Tilman et al., 1997). We here review a small subset of these randomly parametrized
and/or high-dimensional studies to become familiar with the most common approaches, and the
results that are typically obtained.

2Remember that the linear system x′ = Jx involves sum of random Jij values as x′i =
∑
Jijxj .
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Random Lotka-Volterra models

Roberts (1974) criticized the work on the stability of random Jacobi matrices (Gardner &
Ashby, 1970; May, 1972, 1974), arguing that these matrices may include “unfeasible” systems
having negative population sizes. Although this criticism is ill-defined, as there are no explicit
population sizes in random Jacobi matrices, he illustrated his point by numerically analyzing
the stability and the feasibility of a random Lotka-Volterra model,

dNi

dt
= Ni(ri −

n∑
j

AijNj) , (10.14)

where ri = 1 for all n species, the diagonal elements of the interaction matrix were all set to
Aii = 1, and the off-diagonal elements were set randomly to Aij = ±z, with equal probability
for a positive and negative elements, and a fixed value of z. Roberts (1974) computed the
steady state of Eq. (10.14) by solving the corresponding n-dimensional algebraic system of
linear equations, i.e., ~r−A ~N = 0. After computing the inverse of the matrix, A−1, this solution
was given by ~N = A−1~r (see the accompanying Ebook (Panfilov et al., 2025) and roberts.R for
a script). Solving such a linear system indeed does not guarantee that the vector ~N is strictly
positive, and he found that the fraction of feasible (i.e., all N̄i positive) steady states decreases
with z and n.

Nowadays we have fast computers and one can just numerically integrate such a model (see the
script roberts.R). Doing so one finds that a subset of the species can go extinct, but that the
remainder tend to persist in a stable steady state.3 Thus, although it is unlikely that a complete
n-dimensional system has a stable equilibrium where all species are present, it appears to be
quite likely that a subset of the species can coexist in a stable steady state. Moreover, we suggest
in the exercises that the likelihood of stability indeed obeys Eq. (10.13). Unfortunately, like the
random Jacobi matrix analyses, this analysis remains fairly abstract because it is difficult to
envision biological populations corresponding to this model with a random sign-structure of the
interaction matrix.

Especially, the assumption that Aii = −1 for all species is open to debate. In the earlier chapters
we have seen that consumers need not have any intra-specific competition, i.e., consumers tend
to have Aii = 0. Instead, in the Roberts (1974) model each of the species has a carrying
capacity that will be approached when they have weak interactions with the other species (i.e.,
when all off-diagonal elements Aij → 0). Thus all species apparently are consumers relying on
some limiting resource(s), which enables them to establish a population at carrying capacity.
Nevertheless, they also have positive and negative interactions with the other consumers, which
one would have to interpret as symbiotic (Aij = Aji = +z, 25% of the cases), competitive (Aij =
Aji = −z, 25%), or parasitic (Aij = +z with Aji = −z), 50% of the cases). In the exercises you
will be challenged to modernize this model by drawing random positive and negative interaction
values, and to study a random Lotka-Volterra competition model by restricting the interaction
matrix to competitive interactions (i.e., by keeping A11 = 1 and drawing all off-diagonal elements
Aij = Aji ≥ 0). Additionally, one can also assign negative ri values to a subset of the species to
define consumers with a death rate ri (Gellner et al., 2023).

3When all species survive this steady state has to be identical to the one solved from the linear algebraic
system.
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Random pre-defined food chains

Several decades ago, when the first computers became generally available for basic research,
theoretical ecologists already created multi-layered food webs by randomly assigning interaction
parameters (Pimm, 1980; Post & Pimm, 1983). One early approach was based upon a high-
dimensional Lotka-Volterra model like the one provided in Eq. (10.14). They started with a
random layer of 6 non-competing resources, by setting all off-diagonal elements to zero, i.e., all
Aij = 0, and setting the diagonal elements, 0 < Aii < 1, and all growth rates, 0 < ri < 1, to
random values drawn from a uniform distribution, for the first six species. Subsequently random
consumers, and later consumers of these consumers were added by choosing an ri randomly from
the interval (−0.1, 0) to allow for a density-independent death rate, by setting their Aii = 0 to
not allow for intra-specific competition among consumers, and by assigning a fraction of the
off-diagonal elements, Aij , to random values representing consumption of an existing species, or
being consumed by an existing species. These mass-action consumption parameters, Aij , were
sampled from uniform distributions, with the constraint that the positive Aij parameter of a
predator i eating prey species j was on average 10-fold lower than the corresponding consumption
rate Aji (to model the typical 10% trophic conversion). Novel species were only allowed to enter
the system after testing whether they were able to invade (R0 > 1), and after testing that the
new species would not form a loop, like A eats B eats C eats A (Post & Pimm, 1983). Each
successful invasion adds a row and a column to the interaction matrix, Aij . At the time this was
quite a heroic attempt. For instance, it was not feasible to numerically solve high-dimensional
systems of ODEs. Rather Post & Pimm (1983) also solved the steady states by computing the
inverse of A to solve the linear algebraic system ri −

∑
AijNj = 0, and disregarding solutions

having negative population densities.

Their major findings were that (1) the number of species grows over time (but n remained
fairly small), (2) the larger the number of resident species, the more difficult it is to invade,
(3) that the return time, TR, of the full system at steady state decreases when the diversity
increases, and (4) that invaders that eat little, but grow well, and die slowly, do best. Thus,
the system becomes more resistant to invaders over time, which is a form of robustness, but
approaches a lower degree of stability as measured by the largest eigenvalue. The former was
recently confirmed in microbial communities that indeed are more resistant to invading species
when the diversity is high (Spragge et al., 2023).

Later it was realized that communities of primary resources, consumers, and consumers of
consumers, need not persist in a stable equilibrium, as species can co-exist indefinitely on a
limit cycle or a chaotic attractor (Law & Blackford, 1992; McCann et al., 1998). In these
two papers the network of interactions in the community was predefined, e.g., as a linear food
chain, a branched food chain with two competing consumers at the same level, or a chain with
consumers eating from various levels (i.e., omnivores), and the interactions strengths were drawn
randomly. It was indeed found that for a large fraction of the parameter realizations the full
community was persisting by periodic or aperiodic behavior in the absence of an n-dimensional
stable equilibrium (Law & Blackford, 1992). Interestingly, it was shown that adding weak
interactions to such networks facilitated the persistence of the full community (McCann et al.,
1998; Marsland et al., 2020; Cui et al., 2021).
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Random high-dimensional resource-consumer models

Several authors have studied the general Tilman model for n cellular consumers competing for
m essential resources in a chemostat (Tilman, 1982),

dNi

dt
= Ni(bifi(R1, . . . , Rm)− di) , for i = 1, . . . , n

dRj
dt

= D(Sj −Rj)−
n∑
i

cijbifi(R1, . . . , Rm)Ni , for j = 1, . . . ,m

with fi() = min

(
R1

hi1 +R1
, . . . ,

Rm
him +R1

)
, (10.15)

where fi() takes the minimum of all Monod saturation functions for each consumer to define
its actual birth rate bifi(). The resource is consumed proportional to this birth rate multiplied
with the amount of resource, cij , contained in each cell of species i. The model would therefore
apply well for algae or bacterial growing in a chemostat (or bacteria in the gut microbiome).
The concentration of resources in the inflow is defined by the Sj parameters, D is their turnover
rate (with 1/D the residence time), and if the consumers are largely lost by being washed out
from the chemostat, one would set di = D (Huisman & Weissing, 1999; Huisman et al., 2001).
Drawing random values for the saturation constants, hij , and the amount of resource contained
in each cell, cij , one can study how many consumers can coexist on a limited number of resources,
m. One “realistic” scenario considered by Huisman et al. (2001) was that species containing a
large amount of a particular resource also need a high concentration of this resource to achieve
a half-maximal birth rate, i.e., that hij and cij are positively correlated.

Huisman & Weissing (1999) studied this model in parameter regime where the populations
fluctuate (periodically or chaotically), to show that in such non-equilibrium situations many
consumers can be maintained on a limited number of resources, i.e., they proposed that the
“Paradox of the plankton” (Hutchinson, 1961) can be solved in non-equilibrium situations. Re-
member that we have seen in Eq. (5.6) that the non-trivial steady state of a 2-dimensional
Monod-saturated consumer-resource model with a non-replicating resource tends to be stable.
Huisman & Weissing (1999) therefore enabled the high-dimensional system to oscillate by defin-
ing cyclic dependencies between the consumers, e.g., when species succeed each other by being
the better competitor for a unique resource, while they are limited more by another resource,
that the next species is the better competitor for (Huisman & Weissing, 1999). Because such a
cyclic topology need not be realistic (Huisman et al., 2001), we have an exercise where you can
study the same competitive system with a more random network of interactions in the exercises,
e.g., by drawing random values for the saturation constants, hji, and assuming the cjis to be
proportional (which is scenario 3 in Huisman et al. (2001)).

Rodriguez-Sanchez et al. (2020) study a somewhat similar system with replicating resources to
study under what parameter regimes chaos or periodic behavior is to be expected. They define a
high-dimensional form of the Monod-saturated consumer-resource model that is parameterized
on freshwater plankton systems. They consider additive resources, i.e.,

dNi

dt
=

egNi
∑m

j SijRj

h+
∑m

j SijRj
− dNi ,

dRj
dt

= rjRj

(
1−

m∑
i

AijRi/K
)
− gRj

n∑
i

SijNi

h+
∑m

k SikRk
, (10.16)

for i = 1, . . . , n consumers and j = 1, . . . ,m resources, respectively. Note that we have derived
a similar n-dimensional functional response in Eq. (7.18), and that this function allows for a
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“kill-the-winner” effect (Winter et al., 2010), because a heavy consumption of one particular
resource, i.e., a large SijRj element, reduces the consumption of the other resources. Here ri
is the maximal growth rate of the resource, K is a carrying capacity, g is a grazing rate, e is
a conversion factor, h is the saturation constant of the saturation function, d is the death rate
of consumers, A the m×m competition matrix between resources, and S the n×m consumer-
preference matrix (Rodriguez-Sanchez et al., 2020). They vary the total number of resources
and consumers, but initialize the system with more resources than consumers, i.e., n : m = 2 : 3
(Rodriguez-Sanchez et al., 2020). The competition coefficients, Aij , were drawn randomly from
different uniform distributions centered below, around and above one (keeping Aii = 1, ∀i).

They run simulations with strong interspecific competition (Aij > Aii), with near-neutral sys-
tems (Aij ' Aii), and with systems where the intra-specific competition (Aij < Aii) dominates.
Since not all resource species survive in these simulations, they may find non-equilibrium situ-
ations where the number of persisting consumers outnumbers the number of surviving resource
(despite starting with n : m = 2 : 3). The major result is that this system is most likely
to be chaotic or periodic, when the competition coefficients are very similar (i.e., in the near-
neutral Aij ' 1 regime). This establishes a connection between explaining high diversity with
non-equilibrium behavior (Huisman & Weissing, 1999), and with neutral competition (Hubbell,
1979, 2001). In the exercises you can study this system to see whether or not the number of
persisting consumers is likely to outnumber the number of surviving resources in this parameter
regime.

Founder effects in space

Yodzis (1978) studied a spatial model where consumers obeying a Lotka-Volterra competition
model migrate between several areas (all having identical environmental parameters). He was
interested in parameter regimes where for most pairs of species the competitive interaction would
be strong and hence define founder-controlled relationships (i.e., the unstable steady state of
Fig. 9.2c). Distributing n consumers over m areas, using the general Lotka-Volterra competition
model to define the competitive interactions in each area, and diffusive flux between the areas,
one ends up with a model ecosystem of n×m equations,

dNai

dt
= riNai

(
1−

n∑
j=1

AijNaj

)
+

m∑
b=1

Dab(Nbi −Nai) , (10.17)

for a = 1, . . . ,m and i = 1, . . . , n. Here Nai defines the population size of species i in habitat
a. The flux of individuals of species i between habitats a and b is described by a symmetric
“dispersal” matrix D, where Dab = Dba is inversely related the distance between habitat a to
b. The net flux of individuals between two habitats is then given by Dab(Nbi − Nai), which is
like a diffusion term where the net flux is proportional to the difference in the concentrations.
All species have the same intra-specific competition by setting Aii = 1,∀i, and the natural
rates of increase were all scaled to ri = 1. The off-diagonal competition coefficients, Aij , and
the dispersal rates, Dab, were drawn randomly. The system was initialized by distributing the
species at low densities sparsely over the areas. The interaction strengths were drawn randomly
from various distributions centered around a relatively high mean, such that typically most of the
off-diagonal, Aij elements were larger than one (i.e., larger than the intra-specific competition,
Aii = 1). The fraction of off-diagonal elements larger than one was counted and expressed as
C = P (Aij > 1). Yodzis (1978) performed many simulations starting with different numbers
of species, 3 ≤ n ≤ 80, and for different values of the average competition strength, i.e., for
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Figure 10.3: Figure 5.5 in Yodzis (1989) page 144: the steady state diversity as a function of the initial
number of species, for various intensities of the competition C = P (Aij > 1).

0.9 ≤ C ≤ 0.99. The average number of species persisting in these simulations is depicted in
Fig. 10.3.

Increasing the competition strength increased the total diversity of the communities distributed
over all areas (Fig. 10.3). One readily achieves quite diverse ecosystems, e.g., almost 40 of the
n = 80 species persist when C = 0.99. This seems unexpected (Gardner & Ashby, 1970; May,
1972, 1974; Grime, 1997; Hanksi, 1997; McCann et al., 1998), but the reason why the diversity
increases with competition strength in these simulations is the spatial embedding, i.e., in each
habitat one initially finds only a small subset of the species. Having many founder controlled
situations the species that settle initially in a habitat tend to win the competition. Basically
the model is a “resident always wins” system, where the final diversity is largely determined by
the number of species that are distributed initially over the habitats. Diversity does not come
about by stable coexistence but by the spatial distribution of the species over the habitats.

10.4 Neutral coexistence

A null-model for explaining the high diversity of ecosystems and of microbial communities is
the neutral model proposed by Hubbell (Hubbell, 1979, 2001). In its most simple form one
considers a community of individuals of several species, and at each time point one randomly
picks an individual to die, and replaces the empty spot by an offspring of a randomly selected
individual from the local community (and/or from a large community elsewhere). In case the
newborns are sampled from the local community only, one needs to add a “mutation” rate
whereby new species are being formed, i.e., with some small probability the newborn is a new
species (otherwise species will go extinct). If the model is completely neutral, meaning that
all death rates and birth rates are equal, there will be no competitive exclusion because all
species have the same fitness. This model readily accounts for highly diverse communities.
Several properties of this stochastic model can be captured by analytically derived equations
(Etienne, 2007). Surprisingly, this simple neutral model lacking any form of ecology, tends to be
in good agreement with experimental data. Most importantly, neutral theory very reasonably
describes the measured abundances of species in several ecological and microbial communities
(Caswell, 1976; Hubbell, 1979; Etienne, 2007; Woodcock et al., 2007). This has spurred a lot of
debate because biologists tend to think that –besides migration– these species are involved in
various types of ecological interactions (like depletion of resources by consumption, competition,
mutualism, and cross-feeding).

This neutral model where a species going extinct in a local community can be re-introduced by
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individuals from elsewhere, resembles the 1-dimensional metapopulation model of Levins (1969)
and Levins & Culver (1971) that we analyzed in one of the exercises in Chapter 3. Variants of this
metapopulation model has been used as a paradigm system for the “Single Large Or Several
Small” (SLOSS) discussion on the optimal design of fragmented ecosystems (Hanksi, 1998).
These metapopulation models in turn are built upon the famous Island theory (MacArthur &
Wilson, 1967) for the species richness on islands receiving immigration of individuals from a
large continent. Island theory also ignores the abundances of the species, and only keeps track
of the species richness, n, on an island,

dn

dt
= i(N − n)− en , (10.18)

where n is the number of species on an island, N is the total number of species on the continent,
and i and e are the immigration and extinction rates. Because the steady state richness of Eq.
(10.18) is defined by a balance of the immigration and extinction rates, i.e., n̄ = iN/(i+e) < N ,
small islands (high extinction) that are far from the continent (low immigration) are expected
to have the lowest diversity. Hubbel’s neutral models do describe the abundance of each species
(Hubbell, 1979, 2001).

10.5 Cross-feeding

Microbial communities, like the microbiome in our gut or bacterial ecosystems in the soil, are
famous examples of highly diverse and complex communities also exhibiting the paradox of the
plankton (Hutchinson, 1961). An important new factor in microbial systems is the secretion
of novel resources by the consumers, which is called “cross-feeding” (Goldford et al., 2018;
Dal Bello et al., 2021). These novel resources are typically metabolic byproducts produced by
the microbiota after consuming a primary resource. Since the consumption of these byproducts
by other microbes can lead to the production of yet other metabolic byproducts, one obtains
networks where consumers create novel niches that may be exploited by other consumers, which
in a recursive manner can again create novel niches. Although novel niches should become more
“narrow” (smaller) because somehow energy needs to be conserved, cross-feeding should be able
account for high diversity of a community at steady state, since by even maintaining just a single
species within each niche, creating novel niches allows for a higher diversity.

Models for cross-feeding tend to consider chemostat equations, and tend to use mass-action
consumption terms (Goldford et al., 2018; Dal Bello et al., 2021). In two recent papers, the
formation of novel metabolic byproducts has been chosen randomly (Goldford et al., 2018), or
has been based upon the stoichiometry of the metabolites (Dal Bello et al., 2021). In both papers
the biomass, or energy content, of metabolites is conserved by defining fractions summing up to
one (Goldford et al., 2018; Dal Bello et al., 2021).

Dal Bello et al. (2021) define a stoichiometric matrix based upon known metabolic pathways,
and consider a chemostat where every consumer, Ni, feeds upon a single resource, Ri,

dNi

dt
= (1− αi)biRiNi − wNi ,

dRi
dt

= w(R̂i −Ri)− biRiNi +
∑
j

SijαjbjRjNj , (10.19)

where bi is a mass-action consumption rate (also defining the birth rate of the consumer), and αi
defines a fractional “leakage” parameter. The Ni concentration is therefore scaled by the energy
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content its resource. R̂i is the concentration of resource i in the supply (which is zero for all
novel metabolic byproducts). The stoichiometric matrix S defines whether the ith metabolite is
produced when metabolite j is consumed (Dal Bello et al., 2021). The chemostat starts with n
consumers specifically feeding upon the n resources in the supply, which will lead to additional
resources being formed, allowing additional consumers to invade (invasion is not represented in
Eq. (10.19)). In their paper, the properties of large microbial communities formed by the model
were compared with experimental measurements (Dal Bello et al., 2021). In the exercises you
will be asked to simplify this model for a situation with one resource in the source and one
metabolic byproduct, to better better understand the mechanisms underlying Eq. (10.19).

Goldford et al. (2018) define a somewhat more complicated model because they allow each
resource to be consumed by several bacterial species. They also extend standard mass-action
resource-consumer models with the formation of novel resources, i.e.,

dNi

dt
= Ni

(∑
j

CijAijRj − w
)
,

dRj
dt

= w(R̂j −Rj)−
∑
i

AijNiRj +
∑
i

∑
k

Si,jkAikNiRk , (10.20)

where C is a matrix defining the conversion rates from resource j into species i, Si is a species-
specific stoichiometric matrix, with Si,jk defining the number of molecules of resource j secreted
by species i per molecule of resource k it has taken up. The interaction matrix A collects the
mass-action consumption rates of species i on resources j. R̂i is the concentration of resource
i in the supply, which is zero for all novel metabolic byproducts, and w is the dilution rate of
the chemostat. The energy (or biomass) of the resource is conserved because the conversion
rates, Cij , are scaled by the secretion rates, i.e., Cij = cj−

∑
k Si,jkck, where cj is the maximum

energy (or biomass) supplied by resource j (Goldford et al., 2018). The co-existence of several
bacterial species was studied in chemostats where bacteria are feeding on various carbon sources,
like glucose, citrate and/or leucine. It was shown that several species can co-exist on a single
resource because novel metabolic by-products are secreted into the solution (Goldford et al.,
2018). These matrixes were defined by drawing random parameters for hundreds of species, and
it was demonstrate that a model like this can account for data where many species co-existed in
equilibrium with just a limited number of resources in the supply, and species form functional
groups specialized on particular resources (Goldford et al., 2018). In the exercises you will
confirm that Eq. (10.20) and Eq. (10.19) become identical in a situation with one resource in
the source and one metabolic byproduct.

Both models consider additive resources and mass-action consumption rates. For the resources
studied in these experiments (Goldford et al., 2018; Dal Bello et al., 2021), where species can
grow on single compounds, the resources should indeed be substitutable. Moreover, bacteria have
evolved mechanisms like the lac-operon, to readily switch between different resources (Jacob
& Monod, 1961). However, bacterial consumption is typically best explained by a Monod-
saturation (Monod, 1949), and not by mass-action. Liao et al. (2020) define models for a variety
of cross-feeding scenarios using Monod-saturated feeding functions resembling Eq. (10.15).

10.6 Summary

The simplicity of the scaled Lotka-Volterra competition model has allowed one to formulate in-
teresting and understandable models for large communities. When a sufficient number of species
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is packed along a (long) resource axis their degree of competition approaches a fixed niche overlap
corresponding to a limiting similarity. Large communities of randomly interacting species have
been studied by analyzing the properties of random matrices that were interpreted to represent
the Jacobi matrix of such communities, by solving the steady state of randomly parametrized
systems of ODEs, and/or by numerical integration of such systems. Communities can persist by
approaching a stable equilibrium, a limit cycle, or a chaotic attractor. Such aperiodic behavior
can allow for the persistence of multiple consumers on fewer resources. One typically finds that
only a small subset of a randomly constructed system persists. Spatial heterogeneity is an im-
portant factor allowing for diversity over a combination of different communities, species that
invade or evolve may be quite similar to resident species allowing for neutral competition, and
consumers can modify the environment thus creating novel niches (e.g., by cross-feeding). Thus,
although complex random communities are unlikely to have a stable steady state, answering the
question on the relationship between system complexity and its persistence, requires more than
just neighborhood stability. We at least need to consider non-equilibrium persistence, robustness
to invasion by novel species, spatial heterogeneity, near-neutral competition, and the emergence
of novel niches by resident species.

10.7 Exercises

Question 10.1. Invasion criterion
Consider a species immigrating into an area in which two other species are present that do not
compete with each other. Each of these two species therefore has a density equal to their carrying
capacity, and we let the new species compete equally with the other two species. Consider the
case where the carrying capacities are the same for all three species (which could be achieved
by scaling).
a. Consider a situation where competition takes place in a one dimensional resource space like

the one depicted in Fig. 10.1. Redraw this figure for the system where the established species
do not compete, and where the new species competes with both.

b. Make an ODE model of three equations.
c. Determine the parameter conditions for successful invasion of the third species in the steady

state of the other two, and give a biological interpretation in terms of competition strengths.

Question 10.2. Random Jacobian (R-script)
On the website we provide an R-script gardner.R that fills a random fraction, P , of the off-
diagonal elements of a matrix with random numbers drawn from a normal distribution with an
average µ = 0 and a standard deviation σ. All diagonal elements are set to −1, and the largest
eigenvalue, λ, is calculated. Interpreting this random matrix as the Jacobian of some dynamical
system you can use this script to numerically repeat the analysis of Gardner & Ashby (1970)
and May (1972, 1974).
a. What is the largest eigenvalue when the connectivity, P , is very low?
b. Can you confirm their result that λ < 0 when Eq. (10.13) holds?
c. The consumers in the models we have discussed typically do not have Jii = −1 diagonal

elements when we derived the Jacobian of their steady states. How do results depend to the
value of the diagonal elements? How do the results change when the diagonal elements have
different values?

d. The second half of this script provides a model of a paper reporting opposite results (Cui
et al., 2021). In a similar analysis they conserve the total interaction strength per species when
the connectivity of the matrix is increased. It would be an interesting project to understand
their analysis and discuss whether or not it contradicts Eq. (10.13). Then note that the same
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group also studied simplified large scale models for microbial diversity (Marsland et al., 2020).

Question 10.3. Roberts’ random Lotka-Volterra model (R-script)
In this chapter we shortly reviewed the work of Roberts (1974), who argued that the work of
Gardner & Ashby (1970) and May (1972, 1974) incorrectly allowed for negative population sizes,
i.e., for unfeasible systems. To better understand his criticism on their results obtained with
random Jacobi matrices we ask you to repeat his work using the script roberts.R. The script
modernizes the model somewhat by redefining z as an average, i.e., by drawing the off-diagonal
Aij elements from a normal distribution with an average of +z or −z. This prevents undesired
symmetries due to species having identical interactions, and with a small standard deviation
should not have a major impact. Moreover, it could be interesting how results change when one
allows for a larger standard deviation.
a. Study how the diversity of the system, and the likelihood that a system is stable and/or

feasible, depends on the interaction strength, z, and the maximum diversity n. Hint, remem-
ber that Eq. (10.13) suggested that stronger interactions decrease the likelihood of finding a
stable steady state, and that this scales with

√
n in a fully connected system.

b. Do the results change when the species have different growth rates, ri? Hint
r<-rnorm(n,1,0.1) draws n growth rates for a normal distribution with mean 1 and standard
deviation 0.1.

c. Do the results change when the diagonal elements are not all equal to one?

Question 10.4. Random Lotka-Volterra competition models (R-script)
We also concluded that the work of Roberts (1974) remains somewhat abstract because the
model defines consumers experiencing resource-independent symbiotic interactions, interference
competition, or parasitic interactions with all other species. We therefore ask you to repeat the
analysis with a well-defined random Lotka-Volterra competition model. A good start would be
a model for resource competition where all off-diagonal elements are positive and smaller than
one, 0 < Aij < 1, and where interactions are symmetric, Aij = Aji, and where species could have
different birth and death rates, e.g., dNi/dt = biNi(1−

∑n
j AijNj)− diNi, for i = 1, 2, . . . , n.

a. Define such a model in R, and or make use of the randomCompetition.R script.
b. Setting bi = 1 and di = 0 for all i, makes the model identical to that of Roberts. Study how

having competitive interactions only changes the relationship between diversity of the system
and the average interaction strength and the maximum number of species n.

c. Do the results change when the birth rates are not identical? Do they change when the death
rates are not identical?

d. Compare the properties of the species that survive with those that are excluded.
e. You can also write expressions for the average population sizes, N̄ , and the average total

interaction strength, F̄ , for a system where are species survive.

Question 10.5. Control by parasites
Many species of birds in their natural environment are infected with parasites and viruses.
Consider a population of birds with a birth rate that declines linearly with the population size,
and with a death rate that is independent of the population density. Let the individuals be
susceptible to an infection with a parasite that increases the death rate somewhat, but hardly
affects the birth rate. Assume that transmission of parasites occurs upon contacts between
infected and susceptible individuals, and obeys mass action kinetics. Let there be no vertical
transmission, i.e., the parasite is not transmitted to eggs.
a. Write a natural model.
b. What is the R0 and the carrying capacity of the population in the absence of the parasite?
c. What is the R0 of the infection?
d. What is the population density of the susceptibles when the parasite is endemic?
e. Suppose this bird species competes with related bird species that occupies the same niche,

but has a somewhat shorter life span, and is not susceptible to the parasite. Write a natural
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model for the 3-dimensional system.
f. Do you expect the resistant bird species to be present?
g. What would you expect for a large community of bird species, all sharing the same resource,

but each being susceptible to a host specific parasite species?

Question 10.6. Cross-feeding
The model of Eq. (10.19) considered several bacterial species in a chemostat each feeding upon
a unique resource, with the potential of leaking metabolic byproducts that form novel resources
for other bacteria.
a. Construct a specific example of this model for the situation with a single resource in the

source, e.g., saccharose (table sugar), which is bi-saccharide composed of glucose and fructose,
and a bacterial species using half of this sugar (i.e., glucose) for this own growth, while leaking
the other (i.e., fructose) into the environment. Define a second bacterial species fully using
fructose for its growth. In the original model the contribution of compounds within a resource
was scaled by their energy content, which had to be conserved, i.e., αi < 1. Here we can
assume that the two components are equally nutritious, i.e., α1 = 0.5. Define the new model
by writing out all equations and removing the sum term.

b. What is steady state of the model? Can you use this to define parameter conditions for
presence of both bacteria?

c. Formulate the same situation in the model of Eq. (10.20). Are both cross-feeding models
defined in the Chapter identical for this bi-saccharide in the source?

Question 10.7. Neutral theory of biodiversity
Does the fact that Hubbell’s neutral model can account for measured species-abundance dis-
tribution in several ecological and microbial communities demonstrate that the abundances of
these species are hardly affected by ecological interactions (like competition, cross-feeding, and
consumption)? If not, how would you disprove such a seemingly perfect agreement?

Extra questions

Question 10.8. Huisman (R-script)
To facilitate the comparison of the R-script huisman.R with the model defined in their paper, we
here first repeat Eq. (10.15) in the original notation of the Huisman & Weissing (1999) paper:

dNi

dt
= Ni(µi(R1, . . . , Rm)−D) , for i = 1, . . . , n

dRj
dt

= D(Sj −Rj)−
n∑
i

cijµi(R1, . . . , Rm)Ni , for j = 1, . . . ,m

with µi() = ri min

(
R1

Ki1 +R1
, . . . ,

Rm
Kim +R1

)
,

In the R-script huisman.R we allow for nr different resources, i.e., m = nr, and we define
a potentially endless list of consumers, i.e., n = 1, 2, · · · ,∞, each having a birth rate ri, a
vector of m randomly chosen saturation constants, Kij , and a vector of m resource contents,
cij . The birth rates of all consumers are collected in the vector r, the vectors of saturation
constants in the list Ks, and the vectors of resource contents in the list Cs. To not allow for
consumers with low saturation constants for all resources the average of the m saturation con-
stants is scaled to 0.5 for every invader, i.e., Ki <- runif(nr,0,1); Ki <- 0.5*Ki/mean(Ki),
and by default the resource constants correlate with the saturation constants, i.e., Cs[[i]] <-

0.05*Ki*rnorm(nr,1,0.01) (Huisman et al., 2001). A total of Ninvaders consumers is intro-
duced sequentially. If a new consumer cannot invade into the current state of the system, new
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parameters are drawn until a successful colonist is found (this may take many trials after the
community has filled up). Typically only a small subset of them can co-exist on m resources.
This is reported at the end by the variable Npresent.
a. Does this procedure of letting random consumers sequentially invade lead to the aperiodicity

that is required for having more consumers than resources?
b. Is this more easy when starting with more resources, i.e., after increasing m in the R-script?
c. What kind of consumers is this procedure selecting for? Why is the script not report the

average hij?

Question 10.9. Scheffer (R-script)
The R-script scheffer.R implements Eq. (10.16) using a pre-defined m×m competition matrix,
A, between the resources, and a m × n interaction matrix, S, defining the consumption rates.
In the script nr defines m, the number of resources, and nn defines n, the initial diversity of
consumers. Both resources and consumers start at a small random initial density. The off-
diagonal elements of the competition matrix are drawn from a uniform distribution centered at
1 + eps, with a given width w, i.e., runif(nr*nr,1+eps-w,1+eps+w). The diagonal terms are
equal to 1. When the parameter eps is negative the off-diagonal Aij elements tend to be smaller
than the diagonal Aii = 1 elements, when eps is positive the interspecific competition tends
to be stronger than the intra-specific competition, and they call the eps=0 case “near-neutral”
competition (Rodriguez-Sanchez et al., 2020). They vary eps between -0.8 and 0.8 and set the
width to w=0.1. Have a look at the (short) paper to see what behavior they find over this range
from weak to strong inter-specific competition.
a. Is there a range of eps-values with attractors having more consumers than resources?
b. Does this depend on the initial diversity of resources and consumers?
c. What kind of consumers is this procedure selecting for?

Question 10.10. Monopolization
In the scaled Lotka-Volterra model of Eq. (9.20) we have seen that the natural rate of increase of
a species, ri, has no effect on the competitive ability of a species. We know this is a consequence
of the scaling because we also know that it is the species with the lowest resource requirements,
R∗i , that is the best competitor, and that R∗i depends on several parameters, including the birth
and death rates, and hence the natural rate of increase ri = bi − di. In the model of Yodzis
(1989) the natural rates of increase were also removed, see Eq. (10.17).
a. Do you expect that if species were to have different growth rates, that those with fast growth

rates would be expected to survive better in the simulations?
b. Would this make a difference for the general conclusion that the diversity increases with the

intensity of the competition?

Question 10.11. Symbiosis
This book has a strong emphasis on the competition between populations. This seems a rather
negative view on biology because many populations are also involved in symbiotic interactions.
In ecology one distinguishes two basic forms: obligatory symbionts cannot grow in the absence
of each other, and facultative symbionts help each other but do not strictly require each other.
a. Write a model for two symbiotic populations that strictly require each other, and study your

model by phase plane analysis (a model is available as the file symbiosis.R).
b. Change the previous model in an asymmetric symbiotic interaction. Let the first species be

dependent on the second, and let the second be ignorant of the first. An example would be
saprophytes.

c. Write a model for a facultative symbiosis.
d. Can you change the latter model into a model of obligatory symbionts by just changing the

parameters?

Question 10.12. Infinite niche space (Challenging)
In an infinite implementation theniche model we have seen in Eq. (10.9) that all species have
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the same steady state

N̄ =
1∑
Aij

=
1

1 + 2α+ 2α4 + 2α9 + . . .
.

a. What is the Jacobian corresponding to this steady state? Hint: do not substitute the expres-
sion for the equilibrium density, but write N̄ , and observe that the elements on the diagonal
can be written as 1− N̄ −

∑
AijN̄ .

b. Can one obtain the stability of the system directly from the interaction matrix A, or should
one first compute the Jacobian?
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Chapter 11

Maps

The models considered hitherto have neglected externally driven oscillations, i.e., periodic forc-
ing, and have mostly been formulated in autonomous ordinary differential equations. Ecological
models sometimes implement seasonal variation by means of sine or cosine function influencing
a few of the parameters of the model (we have an exercise on a seasonal algae-zooplankton
model proposed by Scheffer et al. (1997)). Insect populations are also strongly influenced by the
season, and many of the insect species in the temperate climate zones have a relatively short
season in which they are active, and a long period around winter during which they survive as
larvae. Because the growth season is short, insect populations are often modeled with maps,
or difference equations, that describe the population size in the next year as a function of the
population size in the current year. Since the behavioral properties of maps differ significantly
from those of ODEs we will first cover some theory on maps, and then derive the Beverton-Holt
model ourselves from a seasonally reproducing insect population.

11.1 Stability

First consider one-dimensional maps for the growth of a single population, i.e.,

Nt+1 = f(Nt) , (11.1)

where f() is an arbitrary function mapping the population size at time t to a new population size
at time t+ 1. Between times t and t+ 1 the population size is undefined, and can be interpreted
as the hibernation stage during a winter season. Typical examples of maps used in ecology are

f(N) = rN(1−N/k) and f(N) =
rN

1 +N/k
, (11.2)

which are called the “logistic map” and the “Beverton-Holt” model, respectively. Because we
have used similar functions to describe the birth rate in ODEs, we are already familiar with the
shape of these two functions. The logistic map is a parabola, which by being non-monotonic
assumes that the maximum population size in the next year is attained from an intermediate
population size in the current year. Importantly, by intraspecific competition, large populations
tend to be mapped into small populations in the next year. The second model is a monotonically
increasing Hill function assuming the population size in the next year is a saturation function of
the population size in the current year. Below we will derive the Beverton & Holt (1957) model
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Figure 11.1: Stability of maps. Panel (a) depicts the logistic map, which is a parabola, and Panel (b)
shows the saturation function underlying the map of Eq. (11.2)b. The diagonal line is the line at which
Nt+1 = Nt. Steady states therefore correspond to the intersections of the map with the diagonal line.

ourselves. The same equation has also been proposed by Maynard Smith & Slatkin (1973) and
later by Hassell (1975).

The steady states and the stability properties of maps differ from those of ODEs. To compute
the steady state of a map one should not set f(N) to zero, but compute the population size,
N̄ , for which Nt+1 = Nt. To see how one computes the stability of a steady state of a map, one
should redo the linearization, i.e.,

Nt+1 = f(Nt) ' f(N̄) + ∂Nf(N̄) (Nt − N̄) = N̄ + λht , (11.3)

where we have defined λ = ∂Nf(N̄) and the distance to the steady state, ht = Nt − N̄ . Sub-
tracting N̄ from the left hand side and the right hand side one obtains

ht+1 ' λht , (11.4)

because ht+1 = Nt+1 − N̄ . Thus, like in 1-dimensional ODEs, λ remains to be the derivative
of the population growth function at the steady state value, N̄ . The difference with ODEs is
that the steady state is not stable when λ < 0, but when the next size of the perturbance, ht+1,
is smaller than the current, ht. In maps this is the case when −1 < λ < 1 (general these λs
are called Floquet multipliers). For −1 < λ < 0 the sign of ht is alternating in time, which
corresponds to a dampened oscillation approaching ht = 0. Since λ is the slope of the map at
the steady state, one immediately sees an important difference between the two maps in Eq.
(11.2). Since the function of Eq. (11.2)b is monotonically increasing, λ is always larger than
zero, and the behavior of the map will never be oscillatory. Conversely, the logistic map has
a positive slope when N < k/2, and a negative slope when N > k/2, and should therefore be
capable of oscillatory behavior when the steady state is located above N > k/2.

A graphic method for finding steady states of maps is to sketch the map, and the diagonal
Nt+1 = Nt in one graph (see Fig. 11.1). The points at which the two lines intersect are steady
states. We have learned above that the slope of the map at these intersection points determines
the stability of the steady state. For example, let us determine the stability of the steady state
of the logistic map, and solve the steady state from

N = rN(1−N/k) or N̄ =
r − 1

r
k . (11.5)

Because ∂Nf(N) = r − 2rN/k, one obtains by substitution of the steady state value that
λ = 2 − r. Since the steady state is stable when −1 < λ < 1, i.e., when −1 < 2 − r < 1, the
condition for stability is that 2 − r < 1 and −1 < 2 − r, i.e., that 1 < r < 3. The requirement
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Figure 11.2: The behavior of the logistic map as a function of its natural rate of increase r. For each
value of r the map is run for a long time until the attractor is approached. Subsequently the map is run
for twenty time steps, and each value of Nt is depicted as a point. For r < 3 all points collaps onto the
steady state value N̄ = k(r− 1)/r, for 3 < r < 3.45 Nt oscillates between two values, for 3.45 < r < 3.55
Nt oscillates between four values, and so on. Note the window of r values where the logistic map has a
three point cycle. This led to the famous paper by Li & Yorke (1975) with the title “Period three implies
chaos”.

that r > 1 is trivial because the population cannot maintain itself when the next population size
is always smaller than the current one. The instability at r = 3 leads to oscillatory behavior:
when r → 3 the slope λ = 2 − r → −1, and the steady state is approached by a dampened
oscillation. For r > 3 the oscillation is no longer dampened but approaches a stable limit cycle.
For 3 < r < 4 this limit cycle undergoes a period doubling cascade (see Chapter 12), giving rise
to the famous chaotic behavior of the logistic map (see Fig. 11.2).

The stability of the steady state of the second example in Eq. (11.2) is computed similarly. The
steady state is derived from

N̄ =
rN

1 +N/k
, i.e., N̄ = k(r − 1) , (11.6)

and because

∂Nf =
r

1 +N/k
− rN/k

(1 +N/k)2
, (11.7)

one obtains for the slope at the steady state N̄ that

λ =
r

r
− r(r − 1)

r2
=
r − (r − 1)

r
=

1

r
. (11.8)

Thus, whenever the population can maintain itself, i.e., whenever r > 1, the steady state will
always be stable.

Oscillatory behavior is therefore not necessarily expected for populations described by maps.
This is important because the insect populations that one typically models with maps often
have a very large natural rate of increase r, i.e., an insect can lay thousands of eggs. The
logistic map has r = 4 as the maximum rate of increase; for larger r the population size becomes
negative. Finally, note that the second example in Eq. (11.2) generalizes to the Maynard Smith
& Slatkin (1973) model

Nt+1 =
rN

1 + (N/k)n
, (11.9)
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where the density dependence is a simple inverse Hill function. For n = 1 this provides the
Beverton-Holt model considered above. Whenever the exponent, n, of the Hill function becomes
larger than one, the function will no longer be monotonic (see Chapter 15), and chaos and
oscillations will be possible (Hassell et al., 1976).

11.2 Deriving a map mechanistically

The two examples of maps of Eq. (11.2) have frequently been used for describing seasonal
population growth. However, the logistic map is typically used for convenience, and not because
one really has data supporting the so crucial humped shape of the map. The chaotic behavior
that theoretical ecologists generally attribute to seasonally growing populations could therefore
well be an artifact of too easily adopting humped or logistic equations. To develop an opinion of
what type of maps would be appropriate we develop the model ourselves (by essentially following
the derivation proposed by Beverton & Holt (1957)).

The biology that is typically neglected when populations are described with maps is that seasonal
populations do have a season in which they are active, and which could be modeled with a
conventional ODE. Think of insects that lay their eggs at the end of the season shortly before
they die, and where the new generation hatches from the eggs at the start of the next season.
During the season the insects do not reproduce, as all growth is determined by the number of
eggs deposited at the end of the season. Density dependent regulation of the population most
likely takes place during the season, as the eggs probably have a density independent chance to
survive the winter season. It could therefore be that most of the population regulation takes
place during a normal continuous part of the year. What we will do next is to derive a map for
the seasonal insect population sketched in this paragraph.

Let the population size during the season be described by n(t), where t is the time (e.g., in
days) since the start of the season. Let Nj be the population size at the end of the season,
where j measures times in years, i.e., j = 0, 1, 2, . . . . For a season length of τ days, one should
have in year j that Nj = n(τ). Assuming that at the end of the season each individual lays g
eggs that are expected to survive the winter season, one obtains that at the start of the season
n(0) = gNj−1 (see Fig. 11.3a).

The main challenge is to write a natural model for the population during the active season. Since
there is no reproduction one could assume a straightforward density dependent death model like

dn

dt
= −dn(1 + n/k) with the solution n(t) =

kn(0)

kedt + n(0)[edt − 1]
, (11.10)

where d is a normal density independent death rate, e.g., due to predation by birds, and the
parameter k determines the density dependent death rate (i.e., at n(t) = k the death rate has
doubled).1 For a season of a fixed length of τ days, and a starting number of n(0) = gNj−1 the
solution becomes

Nj = n(τ) =
kgNj−1

kedτ + gNj−1[edτ − 1]
, (11.11)

and because edτ is just a certain value (for which we happen to known that edτ − 1 > 0), this
can be rewritten into

Nj+1 =
rNj

1 +Nj/c
where r = ge−dτ and c =

k

g(1− e−dτ )
. (11.12)

1This solution is known as Eq. (11.10) is a Logistic growth model with opposite signs of the parameters.
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Figure 11.3: Discrete and continuous seasons in an population of insects (a). To obtain a humped
relationship between the initial and the final population size trajectories have to cross (b).

This has the form of the Beverton-Holt model that we have studied above, which implies that
we expect our seasonal insect population to approach a stable state value over the years, and
never be oscillatory or chaotic (see Eq. (11.8)). This does not mean that we predict that insect
populations should typically approach a steady state, but demonstrates that we need not expect
that seasonal populations readily become chaotic.

An even simpler alternative of Eq. (11.10) is to ignore the density independent death and write

dn

dt
= −dn2 with the solution n(t) =

n(0)

1 + dtn(0)
, (11.13)

which for a fixed length of the season also assumes the form of the Beverton-Holt model.

The fact that we fail to obtain periodic behavior with a single ODE describing density dependent
death during the season seems quite general. We learned that oscillatory behavior can be
obtained only when the map has a maximum, and hence has a region where its slope λ < 0.
This can only come about when there is a range of large n(0) values for which the number
of individuals, n(τ), at the end of the season is smaller than what would have survived at
intermediate n(0) values. This cannot happen in the one-dimensional phase space of an ODE,
because at some point in time the trajectory with a large starting number should cross the one
with an intermediate starting number. At this point in time the two trajectories should obey
the same derivative, and cannot end differently (see Fig. 11.3b).
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Figure 11.4: The solution of Eq. (11.15) (a) and various simulations of the model of Eq. (11.14) for one
season of τ = 10 days, and c = d = 0.1 per day, starting at a scaled food density of r(0) = 1.

How to obtain oscillations?

As simple one-dimensional death models fail to do the job, we apparently have to do some work
to allow for oscillations in biologically realistic maps. One could argue that if a large initial
population depletes most of the available food during the early days of the season, that many
will die by starvation during the later half of the season. Intuitively, it seems that too large
populations could be at a disadvantage, and end up with less survivors than populations of an
intermediate size. Since we know this requires a 2-dimensional model one could propose

dr

dt
= −crn and

dn

dt
= −dn/r , (11.14)

where r is the amount of resource, c is the feeding rate of the insects on the resource, and d/r
is the per capita death rate of the insects. It is somewhat disturbing to divide by the resource
density r in dn/dt, but because r will always remain larger than zero, and because we need a
model that can be solved analytically, this seems allowable here. One can scale the initial food
availability to r(0) = 1, such that d is a normal per capita death rate when food is abundant,
which increases rapidly when the amount of food declines. Because we have deliberately kept
the model simple one can still obtain the solution

n(t) = f [n(0)] =
cn(0) + d

c+ det[cn(0)+d]/n(0)
. (11.15)

Plotting the population size at the end of the season, i.e., n(τ), as a function of the initial
population size, n(0), one obtains a humped shape for f [n(0)] because Eq. (11.15) is an increasing
function when n(0) is small, while it approaches zero when n(0) is large, i.e.,

lim
n(0)→0

f [n(0)] = e−dτn(0) and lim
n(0)→∞

f [n(0)] = 0 . (11.16)

Substituting parameter values indeed reveals a humped relationship (see Fig. 11.4a), and simu-
lations of the 2-dimensional model confirm that large population have fewer survivors because
they deplete the resource faster (see Fig. 11.4b).
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11.3 Eggs produced during the season

Geritz & Kisdi (2004) also derived maps from populations competing within a continuous season.
Working with models where eggs are produced during the season there were able to provide a
mechanistic underpinning of various different maps, such as the logistic map, the Beverton-Holt
model, and the Ricker model. Their basic model was a single ODE for the number of eggs
produced over the season. The number of eggs at the end of the season depended on the total
number of adults and the availability of resource during the season, and they easily obtain a non-
monotonic relation between the initial number of adults and the final number of eggs. Starting
with few adults few eggs are produced. Starting with too many adults the resource availability
is low, and again few eggs are produced. The maximum number of eggs is produced when the
season starts with an intermediate number of adults. Eggs also “die” during the season.

One example of their models has a a resource growing logistically:

dR

dt
= rR(1−R)− bRA and

dE

dt
= cbRA− dE , (11.17)

where R is the resource, E is the egg density, and A is the fixed number of adults the season
starts with, e.g., for a season of length τ one would write Aj = αE(τ)j−1. Assuming that the
dynamics of the resource is fast compared to that of the eggs, Geritz & Kisdi (2004) simplified
by writing the quasi state state of the resource, R = 1− bA/r, obtaining for the eggs

dE

dt
= cb(1− bA/r)A− dE . (11.18)

Since cb(1 − bA/r)A does not depend on time, t, this is a source/death model similar to those
solved in Chapter 2, i.e.,

E(t) =
cb(1− bA/r)A

d

(
1− e−dt

)
. (11.19)

For a fixed length of the season of τ days E(τ) is therefore completely defined by the parameters
and the number of adults A. Defining a map for the number of adults Aj+1 in year j + 1 as a
function of those in year j, one obtains

Aj+1 = αE(τ)j = ρAj [1−Aj/K] , (11.20)

where ρ = αcb[1 − e−dτ ]/d and K = r/b, which is the conventional logistic map. Taking non-
logistic growth functions of the resource other maps were obtained (Geritz & Kisdi, 2004); see
the exercises.

The within season models studied by Geritz & Kisdi (2004) provide a non-monotonic map with
just one ODE, whereas we needed at least two ODEs to obtain this with the density dependent
death model of Eq. (11.10). How can this be? The simple reason is that in the model of Eq.
(11.10) the information transferred between the years is an initial condition, i.e., n(0) is the
number of adults hatching from the eggs produced the year before. In the models of Geritz &
Kisdi (2004) the number of adults in the current year is a parameter set by the within season
dynamics of the previous year. The problem that trajectories cannot cross if just the initial
condition is different (see Fig. 11.3) therefore never arises: if the continuous dynamics in a
season are parameterized by the previous year it is perfectly possible to have a humped relation
between the initial population size and the final population size. An interesting question now
is if we can identify populations where the information transfer between the years goes via an
initial condition (e.g., the number of eggs) or via a parameter (e.g., a fixed number of adults).
It is again somewhat disturbing that such a technical difference seems so important for the
expected behavior of the population.
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11.4 Summary

Oscillations and chaos are by no means the expected behavior of seasonally reproducing popula-
tions. Periodic behavior or chaos is not difficult to obtain, but we had to do work to obtain this
when the information transfer between the years was just an initial condition. Finding chaos
or oscillations by modeling populations with an arbitrary humped map could well be artificial,
and one basically needs evidence, or a good argument, to use a humped survival function.

11.5 Exercises

Question 11.1. Geritz & Kisdi (2004)
Follow the procedure of Geritz & Kisdi (2004) explained in this Chapter to show that the
Gomperz equation for population growth, i.e., dR/dt = rR(1− ln[R])−bRA, delivers the Ricker
map, Nt+1 = aNte

−bNt .

Question 11.2. Insect population
In the model of Eq. (11.14) the death rate of the insects will go the infinity when the amount
of resource approaches zero. This was done to keep the model simple, such that it remained
feasible to obtain a solution.
a. Write a more realistic version of Eq. (11.14).
b. Study the model numerically to see if the humped relationship between n(τ) at the end of

the season and n(0) at the start of the season remains a possibility. Begin with studying one
season with various initial values of n(0) (and keep r(0) = 1).

c. On the website you will find a file discreteSeason.R as an example of the seasonal population
of Eq. (11.14). Try to obtain oscillations and/or chaos in your extension of this model.

Question 11.3. Periodic forcing
Scheffer et al. (1997) have extended the Monod saturated algae zooplankton model of Chapter
7 with a seasonal variation of the birth rates to model the bloom of algae in the spring. Ad a
consequence model the model became capable of chaotic behavior. In Grind one would write
something like:

b <- b0 + e*(sin(2*3.1416*(t-Delta)/365))

dA <- b*A*(1-A/k) - d*A ....

where the paramater Delta can be used to shift the peak of the seasonal variation to the
appropriate time of the year, and the parameter e defines the amplitude of the variation around
the average value b0 (see the file season.R).



Chapter 12

Bifurcation analysis

In several chapters of this course we have encountered examples where a property of a steady
state changes at some critical parameter value. A good example is the steady state of the Monod
saturated consumer-resource model, which changes stability precisely when the vertical consumer
nullcline intersects the top of the parabolic resource nullcline. We have seen that at this “Hopf
bifurcation point” the stability of the steady state is carried over to a stable limit cycle (or vice
versa). In the same model there was another bifurcation point when the consumer nullcline
crosses the carrying capacity of the resource. This is a so-called “transcritical bifurcation” at
which the presence of the consumer is determined. In ODE models there are only four different
types of bifurcations that can happen when one is changing a single parameter. This chapter
illustrates all four of them and explains each of them in phase plane pictures.

Bifurcation diagrams depict what occurs when one changes a parameter, and therefore provide
a powerful graphical representation of the different behaviors a model may exhibit for different
values of its parameters. Bifurcation diagrams are typically made with special purpose software
tools (like MatCont by Yuri Kuznetsov or the deBif R-package by Andre de Roos). Grind has
a fairly primitive algorithm for continuing steady states (continue). In the exercises you will
be challenged to sketch a bifurcation diagram with pencil and paper.

Several other bifurcations may occur when one is changing two parameters at the same time.
These can be summarized in 2-dimensional bifurcation diagrams, which can provide an even
better overview of the possible behaviors of a model. Such 2-dimensional bifurcations will not
be discussed here, and we refer you to books or courses on bifurcation analysis.

12.1 Hopf bifurcation

At a Hopf bifurcation a limit cycle is born from a spiral point that is switching stability. This
was already discussed at length in Chapter 7 for models with a saturated functional response.
Fig. 12.1 depicts the nullclines of a consumer-resource model with a sigmoid functional response
for several different values of the death rate, d, of the consumer N . In Chapter 7 we already
calculated for the model

dR

dt
= rR(1−R/K)− bR2N

h2 +R2
and

dN

dt
=

cbNR2

h2 +R2
− dN , (12.1)
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Figure 12.1: Two Hopf bifurcations in the sigmoid consumer-resource model. The vertical lines depict
the dN/dt = 0 nullcline for various values of R∗ = h√

R0−1
. The “Argand diagrams” depict the eigenvalues

by plotting the real part on the horizontal, and the imaginary part on the vertical axis (see also Fig.
15.6). Hopf bifurcations corresponds to a complex pair moving through the imaginary axis.

that the non-trivial consumer nullcline is a vertical line located at the resource density R∗ =
h/
√
R0 − 1 where R0 = cb/d. Thus by changing the consumer death rate d one actually moves

the consumer nullcline, and because the consumer death rate is not part of the ODE of the
resource, the resource nullcline remains identical.

First consider values of the death rate d in Fig. 12.1 for which the consumer nullcline is located
at the right side of the top of the humped resource nullcline. The graphical Jacobian is

A =

(
−a −b
c 0

)
such that tr = −a < 0 and det = bc > 0 . (12.2)

Close to the top of the resource nullcline the discriminant of this matrix, D = a2 − 4bc, will
become negative, and the steady state is a stable spiral point with eigenvalues λ± = −a ± ib.
(Below we will see that the same steady state will be a stable node when the nullcline intersects in
the neighborhood of the carrying capacity.) Decreasing the parameter d the consumer nullcline
is shifted to the left, and will cross through the top of the resource nullcline. When located left
of this top the graphical Jacobian is

A =

(
a −b
c 0

)
such that tr = a > 0 and det = bc > 0 . (12.3)
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Figure 12.2: A bifurcation diagram with the two Hopf bifurcations of Fig. 12.1. The circles in panel (b)
depict the stable limit cycle that exist between the two Hopf bifurcations for many different values of the
parameter d.

Close to the top the discriminant, D = a2 − 4bc = tr2 − 4 det, will remain to be negative, and
the steady state is an unstable spiral point.

For the critical value of d where the consumer nullcline is located at the top, i.e., at R∗ =
(K − h)/2 (see Chapter 7), the local slope of the parabolic nullcline in the space of N versus R
is perfectly horizontal, and as a consequence the graphical Jacobian is

A =

(
0 −b
c 0

)
such that tr = 0 and det = bc > 0 . (12.4)

The imaginary eigenvalues λ± = ±i
√
bc have no real part and correspond to the structurally

unstable equilibrium point of the Lotka-Volterra model lacking a carrying capacity of the resource
(see Eq. (5.20)). Summarizing, at a Hopf bifurcation a complex pair of eigenvalues moves through
the imaginary axis. At the bifurcation point the steady state has a neutral stability, and a limit
cycle is born.

Fig. 12.1 has little diagrams displaying the nature of the eigenvalues. These so-called “Argand
diagrams” depict complex numbers as a vector representing the real part of an eigenvalue on the
horizontal axis, and the imaginary part on the vertical axis (see Fig. 15.6). In these diagrams a
complex pair of eigenvalues, λ± = a± ib, is located at one specific x-value (a), with two opposite
imaginary parts (+b and −b). A real eigenvalue will be a point on the horizontal axis. The
Hopf bifurcation can neatly be summarized as a complex pair moving horizontally through the
vertical imaginary axis (see Fig. 12.1).

This is summarized in the bifurcation diagram of Fig. 12.2 which depicts the steady state value
of the consumer as a function of its death rate d. Here stable steady states are drawn as heavy
red lines, and unstable steady states as light blue lines. We have chosen to have the consumer on
the vertical axis to facilitate the comparison with the phase portrait of Fig. 12.1, which also has
the consumer on the vertical axis (note that if we had chosen the resource on the vertical axis
the steady state would be a line at R̄ = h/

√
R0 − 1). Sometimes one depicts the “norm”, i.e.,
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N2 +R2, on the vertical axis. It it is not so important what is exactly plotted on the vertical axis
as long as it provides a measure of the location of the steady state. The bifurcation diagram
displays another Hopf bifurcation that occurs when the consumer nullcline goes through the
minimum of the resource nullcline. Between these critical values of d there exits a stable limit
cycle, of which we depict the amplitude by the bullets in Fig. 12.2b. Decreasing d the limit cycle
is born at the top and it dies at the bottom of the resource nullcline. Increasing d this would
just be the other way around. Fig. 12.2 does provide a good summary of the behavior of the
model as a function of the death rate d.

In Fig. 12.2b the amplitude of limit cycle is depicted by the bullets. Conventionally closed
circles are used to depict stable limit cycles, and open circles are used for unstable limit cycles
(that we have not discussed explicitly in this book; but there is one in on the front page of this
book). Grind plots the minima and maxima of the limit cycle for each value of the bifurcation
parameter. To depict and study limit cycles one can also plot the consumer value when the limit
cycles crosses through a particular resource value. Such a value is called a Poincaré section, and
on this Poincaré plane one can define the limit cycle as a map, mapping one point on the section
to the next crossing by the limit cycle. The stability of the limit cycle is then determined from
the “Floquet multipliers” of this map (see Chapter 11).

12.2 Transcritical bifurcation

If one starts with a consumer nullcline located at the right hand side of the top of the parabolic
resource nullcline, i..e., at (K − h)/2 < R∗ < K, and increases the death rate d in the same
model, the consumer nullcline moves further to the right. As long as this nullcline remains left
of the carrying capacity the non-trivial steady state will remain stable. However, at one specific
value of d it will change from a stable spiral into a stable node. In the Argand diagram this
means that the complex pair collapses into a single point on the horizontal axis, after which
the eigenvalues drift apart on the horizontal (real) axis (see Fig. 12.3b). When the consumer
nullcline is about to hit the carrying capacity, one can be sure the steady state has become a
stable node, i.e., it will have two real eigenvalues smaller than zero.

Increasing d further leads to a transcritical bifurcation at K = h/
√
R0 − 1. Here the stable

node collapses with the saddle point (N̄ , R̄) = (K, 0). After increasing d further the saddle
point becomes a stable node, and the non-trivial steady state becomes a saddle point located
at a negative consumer density. At the bifurcation point one of the eigenvalues goes through
zero (see the arrow in Fig. 12.3d), which again corresponds to the structurally unstable neutral
stability. Transcritical bifurcations typically take place in a situation where the steady state
value of one of the variables becomes zero, i.e., correspond to situations where one of the trivial
steady states changes stability. Because in biological models a population size of zero often
corresponds to an equilibrium, transcritical bifurcations are very common in biological models.

12.3 Saddle node bifurcation

The saddle-node bifurcations that occur in the sigmoid consumer-resource model of Eq. (12.1)
are famous because of their interpretation of catastrophic switches between rich and poor steady
states that may occur in arid habitats like the Sahel zone (Noy-Meir, 1975; May, 1977; Rietkerk &
Van de Koppel, 1997; Scheffer et al., 2001; Scheffer, 2009; Hirota et al., 2011; Veraart et al., 2012).
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Figure 12.3: Panels (a–c) depict the phase space for three values of d around a transcritical bifurcation,
that is occurring in Panel (b). Panel (d) depicts the corresponding bifurcation diagram of a transcritical
bifurcation with d as the bifurcation parameter on the horizontal axis.

To illustrate this bifurcation one can treat the consumer density as a parameter, representing
the number of cattle (herbivores) that people let graze in a certain habitat. This reduces the
model of Eq. (12.1) to the dR/dt equation. The steady states of this 1-dimensional model are
depicted in Fig. 12.4a with the number of herbivores, N , as a bifurcation parameter plotted
on the horizontal axis. Because this parameter is identical to the consumer variable plotted
on the vertical axis of the phase spaces considered before, these steady states correspond to
the dR/dt = 0 nullcline. The bifurcation diagram shows two saddle-node bifurcations (see Fig.
12.4a). At some critical value of the herbivore density on the upper branch, corresponding
to a rich vegetation, disappears. At intermediate herbivore densities the vegetation can be in
one of two alternative steady states, that are separated by an unstable branch (see Fig. 12.4a).
This bifurcation diagram has the famous hysteresis where, after a catastrophic collapse of the
vegetation, one has to sell a lot of cattle before the vegetation recovers (Noy-Meir, 1975; May,
1977; Rietkerk & Van de Koppel, 1997; Scheffer et al., 2001; Scheffer, 2009).

To show a more complicated bifurcation diagram with a Hopf bifurcation, and two different
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Figure 12.4: The bifurcation diagram of the saddle node bifurcations in Eq. (12.1a) with a fixed number
of consumers N as a bifurcation parameter, and the phase space (b) and bifurcation diagram (c) of the
full model of Eq. (12.5) with the density dependent death rate e as a bifurcation parameter. The phase
space in (b) is drawn for several values of e, and the arrows denote the two saddle-node bifurcations.

saddle-node bifurcations in the same consumer-resource model, we extend Eq. (12.1) with direct
interference competition between the consumers, i.e.,

dN

dt
=

cbNR2

h2 +R2
− dN − eN2 . (12.5)

To illustrate the saddle node bifurcations we will study the model as a function of the competition
parameter e, and will sketch a bifurcation diagram with e on the horizontal axis (see Fig. 12.4c).

First, choose a value of the death rate, d, such that the consumer nullcline intersects at the
left of the valley in the resource nullcline (see Fig. 12.4a). For e = 0 there is a single stable
steady state. Increasing e the consumer nullcline will bend because the consumer nullcline can
be written as the sigmoid function

N =
(cb/e)R2

h2 +R2
− d/e , (12.6)

intersecting the horizontal axis at the now familiar R∗ = h/
√
R0 − 1. The resource nullcline

remains the same because it does not depend on the e parameter. By increasing the curvature
with e, this low steady state first undergoes a Hopf bifurcation in the valley of the resource
nullcline (see Fig. 12.4b & c). Then the consumer nullcline will hit the resource nullcline close
to its top (see the highest arrow), which creates two new steady states at a completely different
location in phase space. Increasing e a little further leads to the formation of two steady states
around this first intersection point (see the lowest arrow). One is a saddle point and the other
a unstable node (see Fig. 12.4c). A “saddle node” bifurcation is a catastrophic bifurcation
because it creates (or annihilates) a completely new configuration of steady states located just
somewhere else in phase space.

12.4 Pitchfork bifurcation

Thus far we have discussed three bifurcations, i.e., the Hopf, transcritical, and saddle node
bifurcation, and we could all let them occur in a conventional consumer-resource model. The
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Figure 12.5: The Pitchfork bifurcation of the Lotka-Volterra competition model. Panel (a) and (b) show
the phase spaces for c < 1 and c > 1, and Panel (c) shows the bifurcation diagram.

fourth, and final, bifurcation is called the pitchfork bifurcation, and can be demonstrated from
the scaled competition model of Eq. (9.20), when extended with a small immigration term:

dN1

dt
= i+ rN1(1−N1 − cN2) and

dN2

dt
= i+ rN2(1−N2 − cN1) . (12.7)

Whenever the competition parameter c is smaller than one, the species are hampered more by
intraspecific competition than by interspecific competition, and they will co-exist in a stable node
(see Fig. 12.5a), and there will be one stable steady state. Increasing c above one will change
this node into the saddle point corresponding to the unstable founder controlled competition
(see Fig. 12.5b). In between these two cases there is a bifurcation point of c, where one real
eigenvalue goes through zero (see Fig. 12.5c). Because of the hyperbolic nature of the nullclines,
one can see that when the non-trivial steady state becomes a saddle, the nullclines form new
steady states around the two carrying capacities. These new states are stable nodes (see Fig.
12.5b & c). In the bifurcation diagram this is depicted as three branches, one for the stable node
becoming a saddle point, and two for the stable nodes born at the bifurcation point. Because
of the shape of the solutions in this bifurcation diagram this is called a pitchfork bifurcation.

Both the pitchfork bifurcation and the Hopf bifurcation have mirror images. At a so-called
subcritical Hopf bifurcation point an unstable limit cycle is born from an unstable spiral point
becoming stable. In a subcritical pitchfork bifurcation, an unstable branch of two outward
steady states encloses a stable branch in the middle. Both will not further be discussed here.

12.5 Period doubling cascade leading to chaos

Having covered all possible bifurcations of steady states in ODE models we will illustrate the
period doubling bifurcation that limit cycles may undergo when one parameter is changed (be-
cause this occurs in a large variety of ODE models (and in maps; see Fig. 11.2). The period
doubling bifurcation is interesting because a cascade of period doubling bifurcations is a route
to chaotic behavior approaching a “strange” attractor. Thus in ODE models one can have three
types of attractors: (1) stable steady states, (2) stable limit cycles, and (3) chaotic (or strange)
attractors.

Since chaos can only occur in ODE models having at least three variables, the bifurcation will be
explained by means of an 3-dimensional ODE model taken from Yodzis (1989). It is a simplified
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Figure 12.6: The nullclines of the two resource species of Eq. (12.8) in the absence of the consumer.
The curved line is a trajectory.

model with two resource species that are eaten by a single consumer

dR1

dt
= R1(1−R1 − α12R2)− a1R1N ,

dR2

dt
= R2(1−R2 − α21R1)− a2R2N ,

dN

dt
= N(ca1R1 + ca2R2 − 1) , (12.8)

with mass-action predation terms. Time is scaled by setting the growth rates of the two resource
species and the death rate of the consumer to one. Additionally, both carrying capacities have
been scaled to one. Setting the parameters α12 = 1 and α21 = 1.5 the resource species exclude
each other in the absence of the consumer (see Fig. 12.6). The behavior of the model is studied
by varying the predation pressure, a1, on the winning species. By setting a2 = 1 and c = 0.5,
i.e., ca2 = 0.5, the model is designed such that the consumer cannot survive on R2 alone. For
3.4 ≤ a1 ≤ 5.5 one obtains a stable steady state where all three species co-exist. Around a1 = 5.5
this steady state undergoes a Hopf bifurcation, and a stable limit cycle is born. (Note that at
a1 = 2 a transcritical bifurcation occurs when the consumer can invade, and that at a1 = 3.4 a
second transcritical bifurcation allows the second resource to invade (because the first one now
suffers sufficiently from the predation)).

Fig. 12.7 shows what happens if a1 is increased further. For a1 = 6 there is a simple stable limit
cycle that was born at the Hopf bifurcation (see Fig. 12.7a). At a1 = 8 this limit cycle makes
two rounds before returning to its starting point: the period has approximately doubled at a
period doubling bifurcation somewhere between 6 < a1 < 8. This repeats itself several times,
and at a1 = 10 the system is already chaotic (see Fig. 12.8).

Chaotic behavior is defined by two important properties:
1. An extreme sensitivity for the initial conditions. An arbitrary small deviation from a chaotic

trajectory will after sufficient time expand into a macroscopic distance. This is the famous
“butterfly” effect where the disturbance in the air flow caused by a butterfly in Africa flying
to the next flower causes a rainstorm in Europe after some time.

2. A fractal structure: a strange attractor has a layered structure that will appear layered again
when one zooms in (e.g., see Fig. 12.8).
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Figure 12.7: Period doubling cascade of the limit cycle of Eq. (12.8). In Panel (a) we set a1 = 6 and the
model behavior is a simple limit cycle, in Panel (b) we set a1 = 8 and the limit cycle makes two loops
before returning to the same point, and in Panel (c) we set a1 = 10 and find a chaotic attractor. This
figure was made with the file rrn.R.

The first property is obviously important for the predictability of biological models, as this
suggests that we will never be able to predict the precise future behavior of several ecosystems
(like we will never be able to predict the weather on June 17 in the next year). This sensitivity
comes about from the “folding” and “stretching” regions in strange attractors where many
trajectories almost coincide and are torn apart again.
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Figure 12.8: Period doubling cascade of the limit cycle of Eq. (12.8) illustrated by plotting 200 values
of R1 obtained for many different values of a1. The values of R1 are recorded when the trajectory crosses
a Poincaré plane located around R2 = 0.8. Note how similar this is to the famous bifurcation diagram of
the Logistic map.

12.6 Summary

Varying a single parameter of an ODE model a steady state may undergo one of four different
bifurcations: a Hopf, transcritical, saddle-node, or a pitch-fork bifurcation. A saddle-node
bifurcation is called catastrophic because it involves a large jump in phase space. Bifurcation
diagrams provide an excellent summary of the possible behaviors of a model. We have discussed
chaotic behavior to demonstrate that it is strange but expected behavior of simple ecological
models having at least three variables. Thus, despite being strange it is normal.

12.7 Exercises

Question 12.1. Biomanipulation
Lakes often look green because of eutrophication. Such lakes have a high density of algae and
fish, and little zoo-plankton. Experiments show that catching sufficient fish can make the water
clear again. Scheffer (1991) proposed the following model:

dA

dt
= A(1−A/k)− pZ A

1 +A
,

dZ

dt
= −mZ + pZ

A

1 +A
− F Z2

h2 + Z2
,

where A represents algae and Z zoo-plankton. Basically, this is the same Holling type II model
as considered above, extended with predation by a fixed density of the fish, F , having a sigmoid
functional response. Study the model for the parameters: h = 1,m = 0.4, p = 0.5, 5 ≤ k ≤ 15,
and 0 ≤ F ≤ 1; see the model fish.R.
a. Choose different values for the parameters indicated by the ranges, and draw nullclines with

Grind.
b. Is it possible to have a permanent effect by temporarily (e.g., once) removing a large fraction

of the fish?
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c. Sketch the bifurcation diagram of the model with the carrying capacity k on the horizontal
axis, and Z̄ on the vertical axis. Identify all the bifurcations.

Question 12.2. Early warning signals
The notion that we might be able to observe “early warning” signals in time series data of
systems that are about to collapse is receiving a lot of attention recently (Scheffer et al., 2009;
Veraart et al., 2012; Scheffer et al., 2012). This theory is based upon the fact that when
a system approaches a catastrophic bifurcation (like a saddle-node bifurcation) the dominant
eigenvalue is approaching zero, implying that the return time of the system to its steady state
is becoming very long. Thus, an increasing return time of a system under slowly changing
environmental conditions could provide a warning signal for an upcoming catastrophe. It would
be extremely important if one could indeed detect such early warning signals in the time series
of any particular system, because one could change the environmental conditions to prevent a
future disaster. Long return times should be associated with more variation in the data, and
hence to a better correlation between subsequent data points. The review paper by Scheffer
et al. (2009) provide interesting examples of early warning signals in biological data, and clearly
explain the underlying theory in several boxes. Read this paper before you embark on this
exercise. On the website we provide a Grind model (warning.R) based upon the ODE, dX/dt =

X(1 − X/K) − cX2

1+X2 , that they use in the legend of their first figure, where they set K = 10
and vary the consumption rate c. In the Grind model we make c a function of time such that
we can slowly change the consumption rate, by writing c(t) = c+ εt.
a. Plot the steady state of X as a function of the consumption parameter c (using the

continue() function and set ε = 0).
b. Add noise to the system by adding and removing individuals using the option after

in your call to run(). It is wise to prevent negative values of x by calling abs()

within after (see the file warning.R). Check for different —but fixed– values of c how
the system responds to the noise (i.e., keep ε = 0 and vary c). Plot Xt+1 as a
function of Xt and compute the (auto)correlation between the two. Note that you
plot autocorrelations by saving the data provided by model simulations, e.g., data <-

run(1000,...,table=TRUE), and then plot the value of X as a function of a previous value
of X, e.g., plot(data$X[1:999],data$X[2:1000],pch="."). Finally note that you can cal-
culate correlations with the R-function cor().

c. Study the behavior of the model for a slowly changing c by setting ε to a small positive or
negative value (with and without noise). Check beforehand how c(t) changes over time for
your settings of c, ε, and the run time.

d. Another form of stochasticity is to allow for noise on a parameter, i.e., on K. Test how the
system responds to noise on one of its parameters.

e. Do you think you would be able to predict a catastrophic bifurcation, and what would be
the best approach to detect this?

You have seen that early warning signals are not always present, and one of the reasons for
this is discussed in a paper by Boerlijst et al. (2013). Boettiger and Hastings also discuss the
predictability of critical transitions (Boettiger & Hastings, 2012, 2013; Boettiger et al., 2016).
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Chapter 13

Numerical exercises

13.1 Grind

Most phase portraits in this book were made with a computer script called Grind, for Great
integrator differential equations. Grind is an R-script called grind.R,1 and is based upon the R-
packages deSolve, FME, and rootSolve developed by Karline Soetaert and colleagues (Soetaert
& Herman, 2009; Soetaert et al., 2010; Soetaert, 2009; Soetaert & Petzoldt, 2010). Grind uses
a function in R for plotting contour lines to make phase planes. Grind simplifies the interface
to these libraries by having five easy-to-use functions:
• run() integrates a model numerically and provides a time plot, or a trajectory in the phase

plane,
• plane() draws nullclines and can provide a vector field or phase portrait,
• newton() finds steady states (using the Newton-Raphson method) and can provide the Ja-

cobian with its eigenvalues and eigenvectors.
• continue() performs parameter continuation of a steady state, providing a bifurcation dia-

gram,
• fit() fits a model to time-course data by estimating its parameters, and depicts the result

in a timeplot.

The best way to get started is to try a few tutorials provided on the Grind homepage,
tbb.bio.uu.nl/rdb/grind.html. These were made in the RStudio environment (watch the video
tbb.bio.uu.nl/rdb/bm/clips/grind if you are not used to RStudio). Start with the main tutorial
on “phaseplane” analysis and parameter continuation. The “running” tutorial provides exam-
ples on add noise to simulations. Read the “fitting” tutorial on parameter estimation before
fitting any data.

Download the grind.R and the lotka.R files via the two links on the Grind homepage (or save
them directly from the Grind directory tbb.bio.uu.nl/rdb/grindR/). Store both R-scripts in a
local directory, and open them via the File menu. Both will become tabs in the code window.
Set the working directory to the folder where your R-codes are stored (Set working directory

in the Session menu of RStudio). Files with then be opened and saved in that directory.

First “source” the grind.R file (button in right hand top corner) to define the five functions.

1Previous versions were coded in C or Fortran: Grind has a very long history that started in 1983!.

https://tbb.bio.uu.nl/rdb/grind.html
https://tbb.bio.uu.nl/rdb/bm/clips/grind
https://tbb.bio.uu.nl/rdb/grindR/
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(In case you get an error message like “Error in library(deSolve): there is no package called
deSolve”, the three Soetaert libraries have to be installed by using Install Packages in the
Tools menu of RStudio). When grind.R is successfully “sourced”, it is time to “run” the model
with its parameter and state definitions from the lotka.R script. In the R-console below the
lotka.R panel, one can then type the function calls given in the example session below. Once
you have a picture that you like, you may copy the lines creating that figure into the lotka.R

window for later usage. (Use “Run” or “Control Enter” to execute lines from the lotka.R panel
into the console).

13.2 Numerical exercises

Question 13.1. Cell division takes time
A simple model for a population of proliferating cells is dN/dt = (p − d)N , which defines cells
that are dividing at a rate p and dying at a rate d. Both rates are density independent. Like all
ODEs, this model assumes that cellular division and death times are exponentially distributed,
which actually means that most cells divide and die instantaneously. Since the process of cell
division is composed of various “time consuming” phases, i.e., DNA has to be synthesized,
and chromosomes have to properly align, cell division cannot occur instantaneously, and takes
a minimal amount of time. The quite famous Smith-Martin model (Smith & Martin, 1973)
accounts for this by a implementing a fixed time delay between an exponentially distributed
“trigger” to initiate division, and the time at which the cell actually divides. This model
successfully described the growth of tumor cells in vitro. Smith & Martin (1973) wrote: “Some
time after mitosis all cells enter a state (A) in which their activity is not directed towards
replication. A cell may remain in the A-state for any length of time, throughout which its
probability of leaving A-state remains constant. On leaving A-state, cells enter B-phase in
which their activities are deterministic, and directed towards replication.” To introduce the
model we first ignore the death rate and write the delay-differential equation (DDE):

dA(t)

dt
= 2pAt−∆ − pA(t) and

dB(t)

dt
= pA(t)− pAt−∆ , (13.1)

defining that cells in the A-state move to the B-phase at rate p, and that the same cells disappear
from the B-phase after a delay, ∆, and at the same time re-appear in the A-state as two daughter
cells. Note that dA/dt is independent of B, and that the equation for the B-phase is just required
for bookkeeping the total cell number. Adding an exponentially distributed death rate, d, which
in the most simple form is not different between the A-state and B-phase, we need to allow for
the fraction of cells surviving the time period, ∆, in the B-phase. Since the exponential decay
of a single cell over a time window ∆ is defined as its survival probability, e−d∆, we arrive at
the Smith-Martin model

dA(t)

dt
= 2pAt−∆e−d∆ − (p+ d)A(t) and

dB(t)

dt
= pA(t)− dB(t)− pAt−∆e−d∆ , (13.2)

where e−d∆ is the fraction of cells surviving the B-phase. The total number of cells at time t is
defined as N(t) = A(t)+B(t), and starting with a quiescent population N(0) = A(0) it will take
at least ∆ time units before the first new cells are born. Ganusov et al. (2005) have analyzed
the Smith-Martin model, and derive that after an initial phase the total number of cells, N(t),
approaches a growth rate, r, that can be solved from the equation

2pe−(d+r)∆ − (r + p+ d) = 0 , (13.3)
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which for ∆ = 0 indeed yields r = p− d. The Smith-Martin model, with a function call solving
Eq. (13.3) numerically is available as the file sm.R.

Because DDEs are difficult to solve numerically, and because fixed time delays need not be
realistic, it can sometimes be better to replace the time delay by defining a large number, n,
of “dummy” intermediate populations, Bi, with a transition rate, n

∆ , such that the expected
length of the delay remains ∆ time steps, irrespective of n. For large n this model approaches
a “smooth” time delay of ∆ time steps (smooth here means without a discontinuity). An
alternative formulation of the Smith-Martin model would therefore be

dA

dt
= 2

n

∆
Bn−(p+d)A ,

dB1

dt
= pA−

(
d+

n

∆

)
B1 and

dBi
dt

=
n

∆
(Bi−1−Bi)−dBi , (13.4)

for i = 2, 3, . . . n. This model is available as the function erl() (for Erlang distribution) in the
file sm.R. Here the total number of cells is defined as A+

∑n
i Bi.

a. What is the ODE for total number of cells in the Smith-Martin model at early time points,
i.e., for t < ∆? Would that be different in the model with a flexible delay?

b. What is dA/dt in the Smith-Martin model at early time points, i.e., for t < ∆, when we
start with a quiescent population, i.e., N(0) = A(0)? Verify your answer by running the
Smith-Martin model and the erl() model for a short period of time.

c. What is the expected time between divisions in the dN/dt = (p′−d)N ODE model, and how
is this division time defined in the Smith-Martin model? How would you redefine p′ in the
ODE model to have an equivalent interdivision time in both models?

d. Would the cells grow equally fast if after defining this equivalent interdivision time in the
ODE model?

e. What is the asymptotic behavior of the Smith-Martin model? How different is it from the
dN/dt = (p′ − d)N model, and how does this depend on the relative length of the A-stage
(1/p) and the B-phase (∆)?

Question 13.2. Sexual reproduction
All population models considered thus far fail to distinguish between the two sexes. Basically
these models only consider the females in a population, and ignore the males. Extend the Lotka-
Volterra competition model with sexual reproduction, using a Hill function for the probability
that a female finds a male, and see how this effects its possible phase spaces, and their biological
interpretation. A Grind model is provided in the file sexual.R.

Question 13.3. Paradox of Enrichment
Repeat the Rosenzweig (1971) analysis with the Holling type II consumer resource model:

dR

dt
= bR(1−R/k)− d1R−

eNR

h+R
and

dN

dt
= −d2N +

ceNR

h+R
,

which is provided on the website tbb.bio.uu.nl/rdb/bm/models as rosenzweig.R.
a. Think about scaled and/or reasonable parameter values. Use pencil and paper during your

computer exercises: make sure that populations can grow, i.e., have an R0 > 1.
b. Draw nullclines, check the various possibilities, and run trajectories for each case.
c. Study the effect of eutrophication by increasing the carrying capacity.
d. Continue the non-trivial steady state as a function of k (with the continue() command).
e. Do the same for a model having a functional response with “predator interference”.
f. Replace the f = R/(h+R) functional response by one with a refugium with a size of r prey

individuals, i.e., define R̂ = max[0, R− r] and f = R̂/(h+ R̂); see Page 68. You may want to
use the R-file refugium.R where the parallel pmax() function is called to achieve this.

https://tbb.bio.uu.nl/rdb/bm/models
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Question 13.4. Dampened oscillations
Because simplification is so important when we make models for complex biological systems we
also tend to use mass-action terms for most of the interactions between the various populations
in a model. Although mass-action terms provide a natural starting point, they come with several
drawbacks. First, mass-action terms tend to give rise to models resembling the Lotka-Volterra
equations, in which one can often cancel each variable from its own ODE when computing
steady states. This leads to the strange result that the length of the food chain determines
which variables respond to a change of parameters (Arditi & Ginzburg, 1989; Abrams, 1994;
Kaunzinger & Morin, 1998; De Boer, 2012). Second, mass-action terms can give rise to “wild”
dynamics because they involve the multiplication of two population densities that may both be
small and both be large. One area where this is causing problems is the standard model for HIV
infection, with target cells, T , infected cells, I, and an immune response E, which typically only
approaches its steady state after dampened oscillations that are not found in data. This can be
solved by using interaction terms based upon the Beddington functional response (Gadhamsetty
et al., 2016).
On the website we provide a simplified example of this in the Grind script dampen.R, which
implements two models, i.e., a scaled Lotka-Volterra model that is based upon a mass-action
killing rate a1, and a scaled Beddington model based upon Eq. (7.38) with a mass-action killing
rate a2, and a saturation constant h = kR = kN . Both models with trivially be identical
whenever h is large. We also make both models “equivalent” for low values of h, by requiring
that they have the same steady state. This can be achieved by computing both non-trivial
steady states, and solving for which value of a2 they are identical, which leads to

a2 = a1 +
1 + d

h
− d

a1h
,

where d is the death rate (see the Mathematica notebook dampen.nb for the fairly complicated
derivation of this expression for a2). Note that we indeed obtain that a2 → a1 when h is large.
a. Which parameters in the model were removed by the scaling?
b. Study the dynamics of both models for various values of h. Confirm that the behavior of the

Beddington version is similar when the saturation constants are set to high values, and that
lowering the saturation constant dampens the oscillations.

c. Can you provide a biological argument why using these “Beddington” interaction terms does
make some sense?

d. Study the eigenvalues of the non-trivial steady state. Is the Return time a function of h?
How come that the Beddington functional response is dampening the oscillations?

Question 13.5. Stem cell renewal
Many tissues and populations of cells are maintained by a subpopulation of stem cells. Classic
examples are the formation of several populations of circulating cells in the blood by a relatively
small population of haematopoietic stem cells (HSCs) in the bone marrow, and the stem cells
located deep in the crypts of the epithelial layer lining the gut. Stem cells are self-renewing cells
that (at least sometimes) divide into two different daughter cells, which is called an asymmetric
division. When a sufficient fraction of their daughter cells remains as a stem cell, the stem cell
population can maintain itself, and provide progeny to the populations of differentiated cells that
depend on it. It is unclear how stem cells regulate the fraction of asymmetric divisions, as at least
half of their cell divisions should give a daughter with stem cell properties. Otherwise the stem
cell population declines. The first question of this exercise is to write a model for the simplest
situation where on average half of the daughter cells remains a stem cell while the other half
differentiates. You will see that to compensate for the death of stem cells, this fraction should
be more than one half, and hence that it is unclear how the fraction of asymmetric divisions is
regulated.
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Lander et al. (2009) developed an interesting model for this problem by arguing that the fraction
of renewal divisions providing a daughter with stem cell properties should depend on the density
of the population. This could either be the total density, i.e., stem cells plus differentiated cells,
the density of differentiated cells, or the density of stem cells. This is interesting because this
entails the population with at least two density dependent mechanisms, one regulating the
fraction of self-renewal divisions, and another regulating the rate of cell division. They develop
a chain of equations where at every level cells may divide asymmetrically. Lander et al. (2009)
show that the parameters of that system determine which population in the chain will function as
stem cells for the entire chain. Here we simplify their model by considering just two populations:
stem cells, S, and differentiated cells, D. In the questions below we ask you to devise a model
where both the fraction of asymmetric divisions, 0 < f(D) ≤ 1, and the division rate of the stem
cells, g(D) for growth, depends on the density of differentiated cells. Following Lander et al.
(2009) suggestions it would be natural to allow for a larger fraction of asymmetric divisions, and
a higher division rate, when the population is small and the tissue should be regenerated. Such
a model can be studied numerically by taking the file lander.R as a template.
a. Write a model for a population of stem cells, S, and differentiated cells, D, with a fixed

division rate of the stem cells, and where on average half of the stem cell divisions are
asymmetric.

b. Expand your model to account for the situation where the fraction of asymmetric divisions,
0 < f(D) ≤ 1, is regulated by the density of differentiated cells.

c. Expand the previous model to allow for a density dependent division rate of the stem cells.
d. Differentiated cells may also divide, and this rate could also depend on the density. How

would that change the model, and do you expect qualitatively different dynamical regimes?
e. Finally, remember that we made a spatial model where the stem cells are localized on a

substrate allowing a maximum of K cells to bind in Chapter 3. Does that model properly
regulate the fraction of self-renewal divisions?

Question 13.6. Lymphocyte migration
Naive T cells in the immune system circulate via the blood between various lymphoid organs,
such as the spleen and many different lymph nodes. The residence time in the blood is short,
and under normal conditions only a small percentage of the naive T cells reside in the blood.
In the spleen the residence time is about 6 hours and a typical residence time for a peripheral
lymph node is about 13.5 hours (Textor et al., 2014). A model considering the number, N , of
naive T cells specific for a particular antigen (e.g., a peptide derived from a virus) would be

B = N − S − L ,
dS

dt
= iSB − eSS and

dL

dt
= niLB − eLL , (13.5)

where B is the number of cognate naive T cells in the blood, S is the number of cells in the
spleen, L is the total number of cells in all n lymph nodes, and the i and e parameters are influx
rates and efflux rates into the lymphoid organs. Textor et al. (2014) estimate that iS = 1h−1

and that niL = 1.5h−1, i.e., most cells leave the blood by entering a lymph node, but the spleen
is the organ receiving the vast majority of naive T cells from the blood. Estimating n is difficult
because lymph nodes have different volumes, and there are many small “nodes” like Peyers
patches in the gut. Textor et al. (2014) estimate that in a mouse there are about n = 39 major
lymph nodes.

When an organism is challenged by a pathogen in one of its tissues, proteins from the pathogen
are transported to the lymph node(s) draining this tissue, and this triggers an immune response
by the cognate naive T cells that are present in this lymph node(s). Since there are so many
lymph nodes, only a small fraction, i.e., about 1/n, of the naive T cells is expected be present
in the draining lymph node. However, various experiments have demonstrated that during a
localized infection almost all cognate naive T cells are recruited into the immune response on a
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time scale of a few days. Since cognate naive T cells are trapped in the draining lymph node
when they find their antigen there, one would predict that they will slowly accumulate there.
This accumulation is expected to be too slow because naive T cells exiting from another lymph
node have only a 1/n probability to arrive in the draining lymph node, and therefore probably
end up in another node, where they are expected to spend another 13.5 hours (Textor et al.,
2014). In one of the questions below you will study how long this would take. The real solution
for recruiting most naive T cells is to enlarge the influx into the draining lymph node, and it
is quite spectacular how inflamed lymph nodes can increase their blood supply by angiogenesis.
To study this we extend the model by assigning one of the lymph nodes as the draining lymph
node, and provide this one lymph node with parameters fi and fe to modify its influx and efflux
upon infection,

dS

dt
= iSB − eSS ,

dL

dt
= (n− 1)iLB − eLL and

dD

dt
= fiiLB − feeLD , (13.6)

where B = N − S − L−D and fi = fe = 1 when there is no infection. This model is available
as the file circulation.R

a. Why can this model be written without a differential equation the number of cells in the
blood? What would dB/dt be if one were to write it? Would that be an identical model?

b. Find the steady state of Eq. (13.6) by running the model in the absence of an infection for a
cognate naive T cell population of a 100 cells (which for most antigens in mice is a realistic
number). How many cognate naive T cells are there in any particular lymph node?

c. The steady state of Eq. (13.5) is

S̄ =
eLiSN

eLeS + eLiS + eSniL
and L̄ =

eSniLN

eLeS + eLiS + eSniL
,

(see the Mathematica notebook circulation.nb). How many cells do you expect to be
present in the blood at steady state? Do you understand why the number of cells in the
spleen, S̄, increases with the efflux, eL, of cells from the lymph nodes?

d. If cognate naive T cells fail to egress from the draining lymph node containing their antigen,
how long would it take to accumulate 50% of the cells? Hint: run the model.

e. Textor et al. (2014) cite papers showing that the rate of influx in a draining lymph node can
increase 9-fold within a few days. How long would it take to accumulate 50% of the cells
in the draining lymph node if the influx is increased 9-fold from the start? Hint: do this
numerically with Grind.

f. How would you modify Eq. (13.6) to increase the influx into the draining lymph node more
gradually?



Chapter 14

Make a model

The ultimate aim of this course is that you learn to devise a natural mathematical model
describing the particular biological system you are interested in. In several of the exercises in
the previous chapters you have been challenged to translate a biological story into ODEs, and
subsequently analyze the steady states and the behavior of that model to test its validity, and
then explore what the model tells us about this particular biological system. Our procedure
for developing models was to write a mathematical term for each individual biological process,
to define natural concepts like “empty space” and the “concentration of EPO”, and to sketch
simple graphs for how each process depends on these concepts, and/or directly on the variables
of the model. In this chapter we focus just on this procedure for devising natural models for
biological populations. To avoid any distraction, these novel models will not be analyzed (this
will be done in some of the exercises in the other chapters). Here we will only need to explain
the choices we make, and discuss possible alternatives, to arrive at a reasonable model. Complex
biological systems can be translated into many different mathematical models, but only few of
them will be relevant and natural when our aim is to better understand the biological system.

14.1 Exercises

Question 14.1. Seedlings over-shadowed by adult plants
Consider a field in which the seeds of one particular plant species are sprouting from a large
slow seed bank. The seeds in the seed back are so long lived that the production of novel
seeds by the current population hardly matters. On a daily basis a few seeds sprout from the
soil to form small seedlings that either die or mature to become an adult plant (we ignore
seasonality). Adult plants die (and produce seeds), and have to be replaced by novel seedlings
that successfully mature. Since adult plants are larger than the small seedlings, seedlings growing
under the cover of adult plants will receive less sunlight, and hence mature slower than those
that directly exposed to the sun. Make a natural model for the number of seedlings and adult
plants in the field.

Question 14.2. Whales
Develop a simple model for a population of whales in the oceans. The special thing about
whales is that at low population densities the females face difficulties finding a male. Therefore
include the likelihood of finding a mate in your model. Also make sure that the population has
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a carrying capacity.

Question 14.3. Kingfishers
Consider a lake that is visited by members from a population of Common Kingfishers (a colorful
bird diving into the water when spotting a fish fitting its beak). The kingfishers have no suitable
nesting places at this particular lake, and fly in depending on the availability of fish in the lake,
and out after they have caught a fish. Since the kingfishers also forage in other lakes in the area,
we assume that their density in the area is independent of their consumption in this particular
lake. The fish in the lake grow logistically and have these kingfishers as their major predator.
Write a natural model for the total fish density and the density of kingfishers present at this
lake.

Question 14.4. Influenza virus infecting epithelial cells
Epithelial cells in the lungs form a two-dimensional tissue, filling in voids through cell division.
Healthy cells have a life expectancy of a few weeks. During a flu inflection, the influenza virus
spreads across this tissue by infecting epithelial cells. Infected cells have a life expectancy of a
few days and produce new viruses. In addition, infected cells produce a protein (interferon) that
rapidly spreads through the tissue, and protects uninfected cells against new infections. Assume
that the virus and the interferon spread so rapidly through the tissue that it reasonable to ignore
spatial effects, and make a natural model in terms of ODEs for the uninfected epithelial cells,
the infected cells, the virus, and for the interferon.

Question 14.5. DNA circles
T cells are lymphocytes that play an important role in the immune response to viruses. During
their development in the thymus they rearrange the DNA coding for the protein with which
they recognize viral fragments (and other peptides). As a consequence of this rearrangement, a
small piece of DNA is excised, which forms a plasmid-like circle that persists in the cytoplasm.
Mature T cells leave the thymus and enter the circulation to check the body for viruses. They
now-and-again divide, and because the DNA circle is not replicated during cell division, only
one of the two daughter cells inherits the circle. Using a PCR based method one can measure
the fraction of T cells containing such a circle, and this fraction has been used as a proxy for
the contribution of the thymus to the maintenance of the population (Hazenberg et al., 2000;
Den Braber et al., 2012). Indeed one can view such a DNA circle as a marker for a cell that was
born in the thymus. Write a natural model for the number of cells and the fraction of circles
they contain.

Question 14.6. Maintenance and reproduction
Zooplankton species like Daphnia eat algae and need this resource both for their own mainte-
nance (i.e., in order to survive), and to reproduce (e.g., the production of eggs). Both processes
depend on the amount of algae that they consume and when they consume too little, no (or
virtually no) eggs are produced because they need all they can eat for their maintenance. Sketch
simple curves for the survival rate, and the rate at which eggs are produced, as a function of the
per capita consumption, and write a natural model for the zooplankton, their eggs, and algae
in an aquarium.



Chapter 15

Appendix: mathematical
prerequisites

15.1 Phase plane analysis

Most mathematical models in biology have non-linearities and can therefore not be solved explic-
itly. One can nevertheless obtain insight into the behavior of the model by numerical (computer)
analysis, by sketching nullclines, and by solving for steady states. One determines the stability
of these steady states can be determined by linearization around the steady state, or from the
vector field. Two simple examples for sketching nullclines and finding steady states are given
in our online tutorial tbb.bio.uu.nl/rdb/bm/clips/nullclines. The remainder of this paragraph
provides some background information.

The long-term behavior of a model typically approaches a stable steady state, a stable limit
cycle, or a chaotic attractor. Phase plane analysis is a graphical method to analyze a model to
investigate these behavioral properties. Considering a model of two variables x and y,

dx

dt
= f(x, y) and

dy

dt
= g(x, y) , (15.1)

one can define a “phase space” or “state space” with x on the horizontal axis and y on the vertical
axis, where each point in this space is one particular “state” of the model. To obtain further
insight in the model one sketches the “nullclines” f(x, y) = 0 and g(x, y) = 0. This is useful
because at the x-nullcline dx/dt switches sign, and at the y-nullcline dy/dt switches sign. Two
simple nullclines therefore typically define regions in the state space with qualitatively different
signs of the ODEs. Nullclines enable one to localize all steady states of the model because these
correspond to the intersections of their (i.e., f(x, y) = g(x, y) = 0). This is very useful because
models may have multiple steady states that could be difficult to find analytically.

For each steady state one has to determine whether it is an attractor, i.e., a stable steady state,
or a repellor, i.e., an unstable equilibrium. The local vector field around a steady state in a
phase space with nullclines often provides sufficient information to see whether the steady state
is stable or unstable. In 2-dimensional phase spaces there are three classes of steady states:
nodes, saddles, and spirals. Nodes and spirals are either stable or unstable, and a saddle point is
always unstable because it has a stable and an unstable direction. The two nullclines intersecting
at the equilibrium point define four local regions of phase space around the steady state, each

https://tbb.bio.uu.nl/rdb/bm/clips/nullclines
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with its unique local vector field. These four local vector fields define the nature of the steady
state.

A simple example is a “stable node”, for which all four vector fields point towards the steady state
(see Fig. 15.1a). A stable node is therefore approached by trajectories from all four directions
(Fig. 15.1b). When the vector fields point outward in all four regions the equilibrium is an
“unstable node” (Fig. 15.1c), and trajectories are repelled in all four directions (Fig. 15.1d).
The local vector fields in Fig. 15.1e define a “saddle point”, which has a stable and an unstable
direction (Fig. 15.1f). The stable direction of a saddle point defines a “separatrix” because all
trajectories starting at either side of this line end up in another attractor (i.e., a separatrix
defines different basins of attractions).

The local vector field can also suggest rotation (see Fig. 15.2), suggesting (!) that the steady
state is a spiral point. This need not be true, however. Fig. 15.2e illustrates an example of
a stable node surrounded by rotating vector field. A rotating local vector field provides little
information for determining the stability of a steady state, and one typically needs to resort to
linearization and determine the Jacobi matrix (see the accompanying Ebook (Panfilov et al.,
2025)). There is a simple trick that can provide an indication on the stability of a steady
state surrounded by a rotating vector field. First, such a steady state cannot be a saddle point
because the local vector field has no stable and unstable direction, i.e., the determinant of the
Jacobi matrix will be positive. Thus, it would be sufficient to know the sign of the trace of the
Jacobian. Second, we can graphically determine the sign of the two elements of the diagonal of
the Jacobian by studying the local feedback of the populations onto themselves. For instance,
in Fig. 15.2c, one can see that increasing y from its steady state value makes dy/dt > 0, which
corresponds to a positive local feedback allowing y to increase further when y increases. This
is definitely destabilizing, and establishes that ∂ydy/dt > 0, allowing the trace to be positive.
Fig. 15.2d confirms that this is an “unstable spiral” point. Conversely, the spiral point in Fig.
15.2a is stable, and locally has negative feedback for both x and y, i.e., increasing x makes
dx/dt < 0 and increasing y makes dy/dt < 0. This has a stabilizing influence, and establishes
that ∂xdx/dt < 0 and ∂ydy/dt < 0, which defines the trace to be negative. Thus, if neither
of the two variables has a positive local feedback onto itself, one may expect a steady state
surrounded by a rotating vector field to be stable.

This trick of determining the local feedback from the vector field can be generalized, as one
can determine all signs of the Jacobi matrix from the local vector field around the steady state
(again see the accompanying Ebook (Panfilov et al., 2025)). Consider the vector field around the
steady state of some system dx/dt = f(x, y) and dy/dt = g(x, y). Around the steady state (x̄, ȳ)
in the phase space (x, y) the sign of dx/dt is given by the horizontal arrows, i.e., the horizontal
component of the vector field. The sign of ∂x f can therefore be determined by making a small
step to the right, i.e., in the x direction, and reading the sign of dx/dt from the vector field.
Similarly, a small step upwards gives the effect of y on dx/dt, i.e., gives ∂y f , and the sign can
be read from the vertical arrow of the vector field. Trying this for the non-trivial steady states
in Fig. 15.2, one finds in Fig. 15.2a and e the graphical Jacobian,

J =

(
−α −β
γ −δ

)
, (15.2)

and because tr(J) = −α − δ < 0 and det(J) = αδ + βγ > 0 this firmly establishes that the
equilibrium is stable. Conversely, the Jacobian of the non-trivial steady state in Fig. 15.2c,

J =

(
−α −β
γ δ

)
, (15.3)
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Figure 15.1: Qualitatively different steady states are determined by the local vector field in the
four regions defined by the nullclines. Stable node (a,b): the vector field points inwards in all
four sections. Unstable node (c,d): the vector field points outwards in all four sections. Saddle
point (e,f): the vector field points inwards in two sections, and outwards in the other two regions.
A saddle point is an unstable steady state with a stable and an unstable direction.

has tr(J) = −α + δ and det(J) = −αδ + βγ, which both have an unknown sign, confirming
that the steady state need not be stable. This graphical method is also explained in the book
of Hastings (1997).

15.2 Linearization

Complicated non-linear functions, f(x), can be approximated by a local linearization around
any particular value of x (see the accompanying Ebook (Panfilov et al., 2025)). Fig. 15.3 shows
that the local tangent at some point linearizes the function so that nearby function values can
be estimated. This derivative can be used to approximate the curved f(x) around a particular
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Figure 15.2: Stability of steady states surrounded by a rotating vector field. In all Panels the
vector field rotates anti-clock wise, but the phase portraits show that the steady state can be a
stable spiral point (a-b), an unstable spiral point (c-d), or a stable node (e-f). The stability in
Panels (a) and (e) can be guessed because increasing x at the steady states makes dx/dt < 0,
and increasing y at the steady states makes dy/dt < 0 (which is both stabilizing). The unstable
spiral in Panel (c) can be guessed because increasing y at the steady states makes dy/dt > 0
(which is destabilizing). Panels (e & f) reveal that one cannot tell from the local field whether
or not a steady state is a spiral point or a node.

value x̄, and from Fig. 15.3 we can read that

f(x) ' f(x̄) + ∂x f(x̄) (x− x̄) ,

where h = x− x̄ is a small step in the x-direction that we multiply with the local slope, ∂xf(x̄),
to approximate the required change in the vertical direction. Basically, one estimates the vertical
displacement by multiplying the local slope with the horizontal displacement. A simple example
would be the function f(x) = 3

√
x (with derivative f ′ = 3/[2

√
x]). The true function values for

x = 4 and x = 5 are f(4) = 6 and f(5) = 6.71, respectively. We can approximate the latter by
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Figure 15.3: Linearization of a non-linear function: f(x) ' f(x̄) + ∂x f(x̄) (x − x̄) = f(x̄) + f ′h. The
heavy line is the local tangent f ′ = ∂x f(x̄) at x = x̄.

(a)

x

f
(x

)

0
0

h

1
(b)

x

f
(x

)

0
0

h

1

Figure 15.4: Increasing saturation functions defined by Eqs. (15.7) and (15.11). Panel (a) depicts
f(x) = x/(h + x) (red) and f(x) = 1 − e− ln[2]x/h (blue), which both have the convenient property that
0 ≤ f(x) < 1 and f(x) = 0.5 when x = h. In Panel (b) we draw their corresponding sigmoid variants

f(x) = x2/(h2 + x2) (red) and f(x) = 1− e−ln[2](x/h)
2

(blue). Figure made with hillFunctions.R.

writing

f(5) ' f(4) +
3

2
√

4
× 1 = 6 + 3/4 = 6.75 , (15.4)

which is indeed close to f(5) = 6.71. The same can be done for 2-dimensional functions, i.e.,

f(x, y) ' f(x̄, ȳ) + ∂xf(x̄, ȳ) (x− x̄) + ∂yf(x̄, ȳ) (y − ȳ) . (15.5)
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15.3 Convenient functions

Once we have a sketch of how some process should depend on a variable of the model, we need
to translate this graph into a mathematical function. We therefore need simple and preferably
non-dimensional functions. For instance, a simple and convenient non-dimensional function is

f(x) = 1− (x/k)n , (15.6)

which declines from one to zero over the interval x = 0 to x = k. When n = 1 the decline is
linear, when n > 1 the function is concave, and when n < 1 it is convex. A drawback of this
function is that it becomes negative when x > k, which we repair in Eq. (3.12) by adding a
maximum function, i.e., f(x) = max[0, 1 − (x/k)n]. Obviously, the same power term, (x/k)n,
can also be used to define increasing non-dimensional functions, e.g., f(x) = (x/k)n.

Another convenient family of non-dimensional functions are the Hill-functions and exponential
functions, which are frequently used to formulate positive and negative effects of populations
onto each other. Because these functions are dimensionless and remain bounded between zero
and one, i.e., 0 ≤ f(x) ≤ 1, one can easily multiply any term in a model (corresponding to some
biological process) with such a function. We here define families of functions, f(x), that increase
with x, are zero when x = 0, and approach a maximum f(x) = 1 when x → ∞. Whenever
one would need a different maximum in the model, one could simply multiply f(x) with some
parameter. Having increasing functions 0 ≤ f(x) ≤ 1, one can easily define decreasing functions
by considering g(x) = 1− f(x).

Hill functions define a very conventional and convenient family of saturation functions:

f(x) =
xn

hn + xn
and g(x) = 1− f(x) =

1

1 + (x/h)n
, (15.7)

in which you may recognize the classic Michaelis-Menten saturation function for n = 1 (see Fig.
15.4a). The “saturation constant” h is the value of x where f(x) or g(x) attains half of its
maximal value. The exponent n determines the steepness of the function: whenever n > 1 the
function is sigmoid (see Fig. 15.4b). For n → ∞ both f(x) and g(x) become step functions
switching between zero and one at x = h. The slope of f(x) in the origin is determined from its
derivative, which for n = 1 equals

∂xf(x) =
1

h+ x
− x

(h+ x)2
, (15.8)

which gives a slope of 1/h for x = 0. For n > 1 the derivative is

∂xf(x) =
nxn−1

hn + xn
− nx2n−1

(hn + xn)2
, (15.9)

which means that for x = 0 the slope is zero. An advantage of using Hill functions in mathe-
matical models is that solving steady states corresponds to solving polynomial functions.

The declining power function of Eq. (15.6) and the declining Hill function of Eq. (15.7) differ
in the interpretation of their parameters k and h, because k is the density at which f(x) = 0 in
Eq. (15.6), and h is the density at which g(x) = 0.5 in Eq. (15.7). Obviously, we can re-define k
in Eq. (15.6) into an h parameter corresponding to the x-value where f(x) = 0.5. To do so we
define f(x) = 1− (x/(αk))n, set x = k, and solve α from 0.5 = 1− (1/α)n, which gives α = n

√
2

as a scaling factor. Thus, renaming k into h, and defining

f(x) = 1−
( x

n
√

2h

)n
, (15.10)
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we have simple linear, convex, or concave declining function that is half-maximal at x = h.

The following exponential functions,

f(x) = 1− e− ln[2]x/h and g(x) = e− ln[2]x/h , (15.11)

are similar to Hill functions, because by adding the ln[2] correction we have again scaled h such
that f(x) = g(x) = 0.5 when x = h (e− ln[2] = 0.5). Like Hill functions we have f(0) = 0, and
the slope in the origin is determined from the derivative ∂x[1− e− ln[2]x/h] = (ln[2]/h)e− ln[2]x/h,
which for x = 0 gives a slope of ln[2]/h. The sigmoid form of the exponential function is known
as the Gaussian distribution

f(x) = 1− e− ln[2](x/h)2
, and g(x) = e− ln[2](x/h)2

. (15.12)

Thanks to the same scaling with ln[2] these sigmoid functions are also half maximal when
x = h (and x = −h); see Fig. 15.4b. Exponential functions may be more convenient for finding
solutions of equations, but they are more cumbersome when it comes to finding steady states.

Finally, we have seen that discontinuous saturation functions can easily be written with minimum
and maximum functions. For instance, f(x) = min[1, x/(2h)] has its half-maximal value f(x) =
0.5 when x = h, and has a discontinuity at x = 2h where f(x) = 1. Summarizing, we have a
variety of simple non-dimensional functions at hand to define various sorts of density dependent
relationships in our models.

15.4 Scaling

Models can be simplified by scaling variables and time to reduce the number of parameters. Such
scaled variables are typically dimensionless. Reducing the number of parameters of a model can
be very helpful to completely understand its behavior, e.g., there will be fewer parameters
that need to be studied by bifurcation analysis. The technique is explained here by making
a dimensionless logistic growth model. In the exercises you will be asked to make a non-
dimensional Lotka-Volterra model.

Write the logistic equation as
dN

dT
= rN [1−N/k] , (15.13)

where r is the per capita maximum rate of increase, and k is the carrying capacity. The
parameter r is a rate, with dimension 1/T , and the parameter k has the dimension “biomass”
or “number of individuals”. First scale the biomass such that the carrying capacity becomes
one. We introduce a new variable n with the property n = N/k such that n = 1 when N = k.
Now substitute N = kn in Eq. (15.13), i.e.,

dkn

dT
= k

dn

dT
= rkn[1− kn/k] , (15.14)

which simplifies into
dn

dT
= rn[1− n] , (15.15)

which indeed has a carrying capacity n̄ = 1.
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Figure 15.5: Finding the saturation constant, h, at which the resource nullcline of a model with a
sigmoid functional response has its characteristic non-monotonic shape. Panel (a) plots Eq. (15.18) for
r/a = K = 1 and h = 0.1 (red), h = 0.15 (blue), h = 1/

√
28 ' 0.189 (green), h = 1/

√
27 ' 0.192

(orange), h = 1/
√

26 ' 0.196 (purple), and h = 0.25 (pink), respectively. Panel (b) plots the simplified
numerator, R2 − 2R3/K − h2, of Eq. (15.19) for K = 1 and the same six values of h (using the same
colors), which shows that R2 − 2R3 − h2 = 0 only has two positive solutions when h is sufficiently small
(i.e., only the red, blue and green lines intersect the dashed horizontal line at 0 twice). The orange line
depicts the critical value, h = 1/

√
27 ' 0.2 touching the horizontal axis at R = 1/3. This figure was

made with the script sigmoid0.R.

Having lost one parameter one can scale time, t = rT , such that the parameter r disappears,
i.e.,

dn

dT
=

dn

(1/r)dt
= r

dn

dt
= rn[1− n] . (15.16)

This defines a new time scale for which

dn

dt
= n[1− n] . (15.17)

This non-dimensional form of the logistic growth equation proves that its solution is always the
same sigmoid function. Thus, the only effect of choosing different parameter values of r and k
while plotting N(T ) as a function of time, is a scaling of the horizontal and vertical axis.

15.5 The resource nullcline with a sigmoid functional response

In Section 7.2 we wrote the resource nullcline of a model with a sigmoid functional response as
the following function

f =
r

a

h2 +R2

R

(
1− R

K

)
, (15.18)

which has a vertical asymptote at R = 0, is zero when R = K (see Fig. 15.5a), and is scaled
vertically by a constant r/a. This function will have minima and/or maxima when its derivative,
∂Rf = 0, i.e., when

∂Rf =
r

a

R2 − 2R3/K − h2

R
= 0 . (15.19)
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After scaling R and h by setting K = 1 this simplifies to solving when the numerator equals zero,
i.e., to solving when R2−2R3−h2 = 0. Since this expression has only one (scaled) parameter, h,
we plot it as a function of R for various values of h in Fig. 15.5b. This reveals that this equation
has no positive solutions when h2 > 1/27, and has two positive solutions when h2 < 1/27 (see
the red, blue and green lines in Fig. 15.5b). Thus, the critical value for having a minimum and
maximum is h < 1/

√
27 ' 1/5. The value of R at this critical value of h can be solved from

R2−2R3−1/27 = 0, yielding R = 1/3 (see the vertical dashed line in Fig. 15.5b). The minimum
and the maximum are therefore located below and above R = 1/3. Since we scaled K = 1 this
generalizes to h < K/5 and Rmin < K/3 < Rmax.

The location of the minimum, Rmin, can be estimated by considering that it is located at small
values of R, i.e., by assuming that 2R3/K ' 0, after which one obtains Rmin ' h from solving
the numerator R2 − h2 = 0, which is independent of the carrying capacity K. Conversely, for
large values of R (i.e., when R→ K) and small values of h (since h < K/5 anyway), the location
of the maximum can be solved from R2 − 2R3/K = 0 yielding Rmax ' K/2. The heavy red
nullcline in Fig. 15.5a, where K = 1 and h = 0.1, confirms these estimates (see the vertical
dashed lines). Note that the location of the maximum can also be estimated by considering
h ' 0 in Eq. (15.18), which then approaches f = (r/a)R(1−R/K), which is a parabola having
its maximum at R = K/2.

15.6 A few useful mathematical formulas

The website tbb.bio.uu.nl/rdb/bm/clips/algebra provides a tutorial summarizing some basic
algebra. Here we just provide a few standard formulas

ln 1 = 0 , lnxy = lnx+ ln y , lnx/y = lnx− ln y , eix = cosx+ i sinx , (15.20)

and the two roots of the quadratic equation

ax2 + bx+ c = 0 are x± =
−b±

√
b2 − 4ac

2a
. (15.21)

The standard rules of differentiation are

[cx]′ = c , [cxn]′ = ncxn−1 , [f(x) + g(x)]′ = f ′(x) + g′(x) , (15.22)

where the ′ means ∂x, and

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x) ,

[
f(x)

g(x)

]′
=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2
, (15.23)

and the famous chain rule

f [g(x)]′ = f ′(g) g′(x) , e.g.,
√

1 + ax ′ =

[
1

2
(1 + ax)−

1
2

]
a =

a

2
√

1 + ax
. (15.24)

Trace and determinant

In the accompanying Ebook (Panfilov et al., 2025) we explain that the eigenvalues of an arbitrary
matrix

A =

(
a b
c d

)
(15.25)

https://tbb.bio.uu.nl/rdb/bm/clips/algebra
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Figure 15.6: The stability of a steady state as a function of the trace and determinant of a 2-dimensional
Jacobi-matrix. The bullets depict the real and imaginary parts of the eigenvalues in so-called Argand
diagrams (where the horizontal axis reflects the real part, and the vertical axis the imaginary part of the
eigenvalue).

are the solutions of the characteristic equation

(a− λ)(d− λ)− bc = λ2 − λ(a+ d) + (ad− bc) = 0 . (15.26)

Defining the “trace” of the matrix as tr = a + d and the “determinant” as det = ad − bc, the
characteristic equation simplifies into

λ2 − trλ+ det = 0 (15.27)

with solutions

λ± =
tr±

√
tr2 − 4 det

2
=

tr±
√
D

2
, (15.28)

where D ≡ tr2 − 4 det is the “discriminant” of the matrix. If D < 0 the
√
D yields imaginary

solutions that correspond with oscillations (eix = cos[x] + i sin[x]).

Summing the two eigenvalues λ± yields

tr +
√

tr2 − 4 det

2
+

tr−
√

tr2 − 4 det

2
= tr , (15.29)

and the product gives

tr +
√

tr2 − 4 det

2
× tr−

√
tr2 − 4 det

2
= det . (15.30)
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If this matrix was the Jacobian of a steady state, we now observe that to check for stability, i.e.,
λ+ < 0 and λ− < 0, it is therefore in many cases sufficient to know the values of the trace and
the determinant. When det > 0 one knows that either both eigenvalues are negative or that
they are both positive. Having det > 0 and tr < 0 one knows that they cannot be positive, and
therefore that they are both negative and the steady state has to be stable. Summarizing an
easy test for stability is tr[J ] < 0 and det[J ] > 0 (see Fig. 15.6).

Although we do not proof this here, this result for the trace and determinant are also true for
high-dimensional matrices, i.e.,

∑
λi = tr(A) and

∏
λi = det(A). The latter also tells you that

the eigenvalues of a matrix in a triangular form, i.e., a matrix whose elements above or below
the main diagonal are all zero, can be solved from the characteristic equation (A11 − λ)(A22 −
λ) . . . (Ann − λ) = 0.

15.7 Parameter estimation

The interpretation of data comprised of longitudinal measurements of population densities can
be improved by describing the data points with an appropriate mathematical model. The param-
eters of a mechanistic model that reasonably “fits” the data provide quantitative information on
the biological processes implemented in the model, which together apparently suffice to explain
the data. Thus, it can be very useful to identify the models and parameters that can account for
the population dynamics described by data. The main problem with most interesting models in
biology is that they have complicated non-linear terms, and several parameters, which makes it
difficult to find the “optimal” set of parameters by simple statistical procedures (such as linear
regression).

There are several numerical techniques to fit complex models to data, and most of these are
based upon clever gradient descent methods, where one makes an initial guess on the parameter
values, and the algorithm subsequently makes small changes to all “free” parameters until it finds
a direction in parameter space bringing the prediction of the model closer to the data. This
process of taking small steps through parameter space is repeated until a minimum is found
where small changes no longer improve the quality of the fit. Although this may sound like a
straightforward approach, it is difficult to know whether or not this minimum corresponds to
the true optimum, i.e., to the global minimum. Additionally, whether or not these methods find
the optimum can crucially depend on the initial values of the free parameters, which are usually
based upon a wild guess. Complex models typically have several local optima and gradient
descent methods easily get stuck in a local minimum. It is therefore essential (1) to have an
informed initial guess, (2) to limit the number of free parameters, and (3) to try a variety of
initial guesses.

Non-linear parameter fitting procedures attempt to reduce the distance between the model
prediction and the data, and this distance is typically defined as the summed squared residuals
(SSR). For instance, consider a data set of population densities, N(t), measured at various
points in time, t. Since we may have several measurements at each time point we will call them
N(ti)i, where i is the index of the data point, and ti the time point at which the data point
was measured. Having a mathematical model with a vector of parameters, p, and an initial
condition, S(0) (for state), we can predict the state of this model, S(t) for all time points, ti,
in the data, by numerically solving the model. The distance between the data, N(ti)i, and the
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model prediction, S(t), for parameters, p, can then be defined as

SSR =
n∑
i

[N(ti)i − S(ti)]
2 , (15.31)

where we have n data points, and we sum the squared differences between each observed pop-
ulation density and the corresponding predicted density. Minimizing the SSR by an algorithm
searching better parameter values is called a “least-squares” approach. Note that an appro-
priate model may require more variables than are available in the data, i.e., not all variables
need to be observed, and we then have to match a subset of the variable(s) of the model to the
corresponding observable(s) in the data. Once a gradient descent method has minimized the
SSR and halts, the SSR is a measure for the quality of the fit of the model to the data.

One major problem with non-linear parameter fitting procedures is that there may be several
local minima, and that not all parameters need to be “identifiable” (James et al., 2014; Castro
& De Boer, 2020). The methods will nevertheless halt and report an SSR with an associated
set of “optimal” parameter values. For instance, if one were to fit the birth-death model,
dN/dt = (b− d)N , to the densities of a population that is growing exponentially by equivalent
birth and death events, the values of b and d are nevertheless not identifiable because the
observed time series of population densities only contains information on the net replication
rate r = b−d. Thus, the only identifiable parameters would be r and the initial condition N(0).
The estimates for b and d can take any value depending on their initial guesses, and these values
will be correlated because b = r− d. This is a trivial example, but in complex models it can be
very difficult to determine which parameters are identifiable.

It is therefore essential to quantify the potential variation of parameter estimates, and to check
for such correlations. An excellent approach to obtain such “confidence intervals” on the pa-
rameter estimates is “bootstrapping” (James et al., 2014), which basically means that new data
sets are created by sampling the original data (with replacement). Fitting the model to many
of these different “new” data sets provides a variety of values for every free parameter. Sorting
these, one can exclude the outliers (that apparently are due to outliers in the data), and report
the range of parameter values that is typically obtained, e.g., a 95% confidence interval for a
parameter corresponds to the range of its values observed in 95% of the fits to the bootstrapped
data. Since bootstrapping provides a variety of estimates for each parameter, one can also check
for pairwise correlations between parameters by plotting their individual estimates as a function
of each other (R provides the pairs() function for this).

Full textbooks have been written on this important topic, and this section is nothing more than a
short introduction. We end by saying that Eq. (15.31) may (or should) involve normalization of
the data, e.g., by taking the logarithm of the data and the prediction, and that it may (or should)
be weighted by the variance of the data. The latter is typically done in “maximum likelihood”
methods (that are favored by statisticians). Fortunately, as long one is fitting a single data set,
least-square and maximum likelihood methods are expected to give identical results (provided
the errors in the data are distributed normally). A more recent development is to use Bayesian
inference methods, and for this the https://mc-stan.org/ platform is gaining popularity. In this
course we use the least-square methods implemented in FME (Soetaert & Petzoldt, 2010), which
you can easily call by the fit() function in Grind. The parameter bootstrap in fit() allows
you to bootstrap the data (setting bootstrap=500 will make 500 re-sampled data sets, and will
probably take a while).

https://mc-stan.org/
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15.8 Gillespie algorithm

Differential equations describe the rate of change of populations, and although biological popu-
lations are composed of discrete individuals, cells, or molecules, in ODEs these changes typically
correspond to non-integer values (i.e., to real values). As a consequence the population densities
allow for fractions of individuals, and this will become unrealistic whenever population densities
are low (e.g., during an oscillation). This is sometimes referred to as the “atto fox” problem
(atto stands for 10−18), coming from models where tiny fractions of foxes were able to invade
into new territories. Whenever population numbers are low one should account for stochasticity
and only allow for integer numbers of individuals.

A solution to this problem is the Gillespie algorithm (Gillespie, 1977, 2007), in which the terms
of a model are interpreted as probabilities (or propensities), for the likelihood that particular
events, like a bi-molecular interaction, a birth, or a death, will occur within a short time interval,
given the current state of the system. Upon the completion of the randomly chosen event, the
population sizes are changed accordingly by a discrete number of individuals (which keeps all
population sizes an integer number of individuals). Thus, the Gillespie algorithm is a stochastic
simulation of a system of differential equations, and in linear (or linearized) systems it can be
demonstrated that the average of many of these simulations corresponds to the solution of the
system of ODEs (Gillespie, 1977, 2007).

For example, consider a Lotka-Volterra model with explicit birth and death rates, for prey, R,
and predators, N ,

dR

dt
= bR(1−R/k)− dR− aRN and

dN

dt
= aRN − δN . (15.32)

This model describes four potential events: birth of a prey individual (at a rate p1 = bR(1 −
R/k)), normal death of prey individual (at a rate p2 = dR), killing of a prey resulting in the
birth of a predator individual (at a rate p3 = aRN), and death of predator individual (at a rate
p4 = δN). Knowing the current state of the system at time t, i.e., (R(t), N(t)), one can compute
these four rates at this point in time, and hence one would know the relative probabilities with
which they are expected to occur in a next very small step, τ , i.e., within the time interval
[t, t + τ ]. According to the Gillespie algorithm, one draws a random number to select which
of the four events is going to happen, where the likelihood that a particular event is chosen is
proportional to its relative rate, i.e., to pi/

∑
pi. For example, one can draw a random variable,

0 < u < 1, from a uniform distribution (e.g., by calling runif(1) in R), define the cumulative
sum of the rates, p̂i =

∑j
1 pj , and find the smallest index i satisfying p̂i > u

∑
j pj . After

choosing the event, the state of the system is updated accordingly (here by adding or removing
one prey and/or predator individual).

Since in ODEs the time span between two events is exponentially distributed, and is inversely
proportional to the rate, one sums the rates to define an expected time τ̄ = 1/

∑
pi to the next

event. Next the actual time interval is determined stochastically by drawing from exponentially
distributed random numbers (rexp() in R). This random number is multiplied with the expected
time, τ = τ̄ × rexp(), and times is advanced by this time step, i.e., t ← t + τ . Time therefore
progresses in small intervals, τ , when there are many likely events, e.g., when populations
are large, and with larger steps, τ , when the system is slow, i.e., when the rates are small.
Summarizing, at each time step we need to determine the rates, pi, a random number to draw
which of the events will happen, and a random number to compute the time step (Gillespie,
1977, 2007).
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Figure 15.7: The Kinetic proofreading model. The figure shows the contour lines where C (red, n = 0
line) or Cn (blue, n = 10 or n = 100 curved lines) exceeds a certain threshold, θ. This was done for the
Michaelis Menten model of Eq. (15.33) and the Kinetic proofreading model of Eq. (15.34), respectively,
where the cells will get activated above the line, i.e., when the off-rate is sufficiently low and/or the ligand
concentration is sufficiently large. For n = 100 the Cn = θ-cline approaches a vertical asymptote corre-
sponding to the critical off-rate above which signaling never starts, whatever the ligand concentration,
L. This figure was made with proof.R.

The R-script gillespie.R provides an example where a Grind model for Eq. (15.32) is also
simulated with the Gillespie algorithm. The four rates are collected in the vector rates, the
cumulative rates in the vector summed, and the associated changes of the state in the list updates.
Note that the R function which.max() here returns the index of the first ‘true’ element in a
vector (e.g., which.max(c(F,F,T,T)) returns a 3). The script runs several simulations of Eq.
(15.32) starting with R = 90 and N = 10 individuals, until the time exceeds a 100 time units
(or until the system has died, i.e., R = N = 0, making the sum of the rates zero). These
trajectories typically approach the steady state of Eq. (15.32), and fluctuate around it. After
running the simulations, the system of ODEs is integrated numerically, which illustrates that
most simulations hoover around the expected trajectory.

15.9 Kinetic proofreading

A famous chain of equations is the “Kinetic proofreading” chain, that was first proposed to
improve the accuracy of transcription and translation (Hopfield, 1974; Ninio, 1975), and later to
allow for the discrimination between ligands of low and high affinity during the activation of T
cells (McKeithan, 1995). Quite recently experimental data confirmed that T cells indeed employ
kinetic proofreading to respond, or not respond, to antigens (Voisinne et al., 2022; Britain et al.,
2022); which is a fine example where theoretical predictions precede experimental confirmation
by several decades (which is common in Theoretical Physics and apparently also happens in
Theoretical Biology). We here shortly address kinetic proofreading in T cells by modeling the
chain of phosphorylation events that receptors may undergo after binding their cognate ligand.
Consider a population of R receptors on a cell with an on-rate, k1, and an off-rate, k−1, for a
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particular ligand with a certain concentration L, and assume that the cell will become activated
when sufficient receptors are ligated into a receptor-ligand complex C. The classic scheme for
this is the Michaelis Menten reaction,

F + L
k1


k−1

C or
dC

dt
= k1FL− k−1C , with F = R− C , (15.33)

where the density of free receptors, F , is given by the conservation equation R = F + C. After
making the QSSA dC/dt = 0 one obtains the classic C = RL

Km+L , where the Michaelis Menten
constant, Km = k−1/k1, is the inverse of the affinity. Since the number of complexes increases
with the ligand concentration, L, until all receptors are ligated (C̄ = R), high concentrations of
low affinity ligands will ultimately activate the cell. Ligands can therefore not be discriminated
on the basis of affinity, as a high concentration of a low affinity ligand can provide the same
activation signal, C, as a low concentration of a high affinity ligand (see the red straight line in
Fig. 15.7).

Kinetic proofreading does allow cells to discriminate between ligands, and the only requirement
for that was the (realistic) extension of this scheme with a chain of modification steps of the
complex, like phosphorylation events, that only occur when the receptor is binding the ligand.
If the complex can become phosphorylated at a rate k2, the scheme becomes

F + L
k1


k−1

C0 , Ci−1
k2→ Ci and Ci

k−1→ F ,

where F is again the concentration of free receptors, and the index i tracks the number of
phosphorylation steps. For receptors having n different phosphorylation sites, this translates
into the following chain

dC0

dt
= k1FL−(k−1+k2)C0 ,

dCi
dt

= k2Ci−1−(k−1+k2)Ci , and
dCn
dt

= k2Cn−1−k−1Cn (15.34)

for i = 1, 2, . . . , n− 1, and with the conservation equation F = R−
∑n

i Ci. Upon dissociation of
the ligand the receptor is assumed to de-phosphorylate rapidly (McKeithan, 1995). At steady
state, the concentration of the fully phosphorylated complex can be written as

C̄n =
RL

Km + L

(
k2

k−1 + k2

)n
, (15.35)

where the first term is the same Michaelis Menten function, and the second term resembling Eq.
(8.12c) introduces a novel dependence on the off-rate, k−1, which becomes steep for sufficiently
large k−1 and n (McKeithan, 1995). High concentrations of low-affinity ligands (with a fast off-
rate) will therefore no longer lead to high concentrations of Cn on the cell surface (see Fig. 15.7).
This allows cells to discriminate between high and low affinity ligands when their signaling is
initiated after several phosphorylation steps only. In one of the exercises in Chapter 8 you were
challenged to derive Eq. (15.35).

15.10 Tilman diagrams: the 4-dimensional Jacobian

In our online tutorial on Tilman diagrams tbb.bio.uu.nl/rdb/bm/clips/tilman we explain that
one can study the stability of the steady state of simple resource-consumer models by the
Jacobian of the 4-dimensional system. The models used in Chapter 9 are somewhat more
complicated because they use saturation functions for the amount of resources consumed for

https://tbb.bio.uu.nl/rdb/bm/clips/tilman
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defining the birth rate of the consumers. As a consequence, the Jacobi matrices are somewhat
more complicated, but the interpretation remains very similar. For instance, the Jacobian of a
2 × 2 model with substitutable resources, i.e., Eq. (9.22) for two consumers and two resources,
can be written as

J =

∂R1R
′
1 . . . ∂N2R

′
1

...
. . .

∂R1N
′
2 . . . ∂N2N

′
2

=


−d1−c11N̄1−c21N̄2 0 −c11R̄1 −c21R̄1

0 −d2−c12N̄1−c22N̄2 −c12R̄2 −c22R̄2

Φ1c11 Φ1c12 0 0

Φ2c21 Φ2c22 0 0

 (15.36)

where

Φ1 =
β1h1N̄1

(h1 + c11R̄1 + c12R̄2)2
and Φ2 =

β2h2N̄2

(h2 + c21R̄1 + c22R̄2)2
.

Fortunately, this more complicated matrix can be simplified into the same Jacobian used in the
tutorial, i.e.,

J =


−ρ1 0 −γ11 −γ21

0 −ρ2 −γ12 −γ22

φ11 φ12 0 0
φ21 φ22 0 0

 . (15.37)

In the tutorial we explain that the four eigenvalues defined by the characteristic equation of this
Jacobi matrix will all be negative when the Routh-Horwitz criterion,

(γ11γ22 − γ12γ21)(φ11φ22 − φ12φ21) > 0 , (15.38)

if fulfilled.

For substitutable resources, we know that the steady state can only exist if the two consumers
have a sufficiently different diet (see Fig. 9.3a). Therefore consider a case where consumer one
specializes on resource one, and consumer two on resource two, i.e., c11 > c12 and c22 > c21 (see
Fig. 9.3b). Checking the first term of Eq. (15.38) we see that in this case

(γ11γ22 − γ12γ21) = (c11R̄1c22R̄2 − c12R̄2c21R̄1) > 0 ,

because c11c22 > c12c21. For the second term of the a0 equation we observe in Eq. (15.36) that
φ11 > φ12 when c11 > c12 and that φ22 > φ21 when c22 > c21. As a consequence

φ11φ22 − φ12φ21 > 0 and, hence a0 > 0 ,

which fulfills this Routh-Horwitz criterion, allowing the steady state to be stable. We conclude
that if two consumers using two substitutable resources can co-exist, this steady state is expected
to be stable (see Fig. 9.3b). Note that in the tutorial a similar steady state can also be unstable,
which is not possible here because both resources are equally nutritious, i.e., they are weighted
equally in the sum term of Eq. (9.22a).

Essential resources. Can the Routh-Horwitz criteria also tell the difference between the stable
and unstable situation in Fig. 9.4? Using a 2×2 version of Eq. (9.25) for two consumers using two
“essential” resources, we obtain a Jacobian that is quite similar to that of Eq. (15.36) because
only the four ∂RN

′ elements change:(
∂R1N

′
1 ∂R2N

′
1

∂R1N
′
2 ∂R2N

′
2

)
=

(
Φ1

R̄2

1+R̄1/H11
Φ1

R̄1

1+R̄2/H12

Φ2
R̄2

1+R̄1/H21
Φ2

R̄1

1+R̄2/H22

)
=

(
φ11 φ12

φ21 φ22

)
(15.39)

where Hij = hij/cij and

Φ1 =
β1N̄1

(H11 + R̄1)(H12 + R̄2)
and Φ2 =

β2N̄2

(H21 + R̄1)(H22 + R̄2)
.
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The full Jacobian therefore has the same signs and zeros as the matrix in Eq. (15.36), which
means that the same a0 > 0 criterion remains a condition for stability.

Again consider a case where consumer one specializes on resource one, and consumer two on
resource two, i.e., c11 > c12 and c22 > c21. Like above, the first term of the a0 > 0 criterion,
γ11γ22 > γ12γ21, remains satisfied. However, the second term, φ11φ22 > φ12φ21, need not be
satisfied because the relative values of φij elements are no longer determined by the corresponding
consumption rates, cij . For instance, if species one, which consumes most of resource one, would
require more of resource two, i.e., if h11 < h12 (see Fig. 9.4b), the positive contribution of the
first resource may become smaller than that of the second, and one can obtain that φ11 < φ12.
Setting the same “non-optimal” requirements for the second consumer one would also obtain
that φ22 < φ21 (see Fig. 9.4b). Whenever (φ11φ22 − φ12φ21) < 0 and (γ11γ22 − γ12γ21) > 0, the
Routh-Horwitz criterion a0 > 0 fails, and the steady state is expected to be unstable (see Fig.
9.4d).

Like in the tutorial, we see that both consumers need to be restricted most by the resource they
eat most. When consumers strongly require a resource that is more strongly depleted by another
consumer than by themselves, they suffer more competition from the other consumer than from
themselves. This destabilizes the steady state and leads to the “founder controlled” phase space
of Fig. 9.4(d), where the initial condition determines which of the consumers survives.

15.11 Exercises

Question 15.1. Sketch a few functions
In this course we sketch nullclines from models with free parameters. It is important
therefore to know how to sketch arbitrary functions with free parameters (see the tutorial
tbb.bio.uu.nl/rdb/bm/clips/sketch):
a. Sketch y = h

h+x .
b. Sketch y = x

h+x .
c. Sketch aA− bLA− cL = 0 plotting L as a function of A, and plotting A as a function of L.
d. Sketch 0 = aY (1− Y )− bY X

c+Y . Hint: think beforehand which variable can best be expressed
as a function of the other variable.

e. Sketch y = a k−x
q+k−x − d assuming that a > d.

Question 15.2. Linearization
Consider the function f(x) = x2.
a. What is the derivative ∂xf(x)?
b. Use linearization around x = 3 to estimate the function value at x = 3.1. What is the true

value at x = 3.1?

Question 15.3. Linear models
Study the linear system

dx

dt
= ax+ by and

dy

dt
= cx+ dy .

What is the steady state of this system? Derive the Jacobi matrix for this system and use your
knowledge of the eigenvalues of this matrix to choose values of a, b, c, and d such that you obtain
a stable node, a spiral, and a saddle point. The model is provided as the file linear.R.

https://tbb.bio.uu.nl/rdb/bm/clips/sketch
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