
G R I N D: tutorial

Rob J de Boer & Ludo Pagie

Theoretical Biology, Utrecht University
Email: R.J.DeBoer@uu.nl

This document accompanies GRIND Version 2.17

Introduction. This tutorial introduces you to GRIND and its mostly used commands. GRIND is a
command line driven system for analyzing models in terms of differential or difference equations. GRIND
consists of two parts. The first part is a preprocessor reading your model. The second part is the command
line driven system in which you set (or vary) parameters and initial conditions, and in which you perform
the numerical analysis of your choice. GRIND commands have long names but can be abbreviated to the
first two (or more) characters of the name of the command.

Model definition. Use any text editor (e.g., xemacs, nedit, WordPad) to define your model by writing
a plain ASCII file of the following format

F = R^n/(h^n + R^n);

R ’= r*R*(1-R/K) - b*N*F;

N ’= b*N*F - d*N;

Which defines a predator-prey model with a sigmoid func-
tional response. The model has three equations, where F

is an algebraic variable, R and N are variables (for prey
and predator), and n, r, K, b and d are parameters.

Note that algebraic expressions, here F, have to be defined before the differential equations. The
GRIND preprocessor will also understand you if you use C-functions like sin(), cos(), log(), exp(),

sqrt(), fabs(), mod(x,y), max(x,y) and min(x,y).

Model analysis. When GRIND is installed properly you start GRIND in Unix by typing grind model

where we assume that the file that you made above is called model or model.grd. In case you are using
Windows you have to use this .grd extension (which should be linked to the grind.bat program), and
start GRIND by double clicking the model.grd icon. GRIND will check if your model has been pre-
processed before, and will start up its command line driven interface. After this you just start typing
commands like

r=1;K=1

b=.25

h=.1;d=.1

n=2

R=0.1

N=0.1

parameters model.txt

which initializes all parameters, the initial condition, and
gives an overview of all parameter values. Because the
parameters command contains a filename (model.txt),
the parameter values are also saved in that file.

Later you can read the old parameter values with read model.txt. In fact you can read files with all
sorts of GRIND commands. You can stop GRIND with the bye command.

Now that the parameters and the initial condition are defined one can run the model by a numerical
integrator

1



finish 20 20

run

axis v 0 2

timeplot

will “run” your model for 20 time steps printing some out-
put in 20 intervals (i.e., at every time step). The variables
that are printed can be modified with the output com-
mand. The axis v scales the vertical axis of the time
plot between zero and two, and which plots the data of
the previous run.

First do a run then call timeplot!

Phase space analysis. The axis command can also be used for defining a two-dimensional (or three-
dimensional) state space.

axis x R 0 1

axis y N 0 2

2d

nullcline R N

vector

which defines a state space by two axis commands. The
horizontal “x” axis is defined by the prey R, and runs
from R=0 to R=1. The vertical “y” axis is defined by the
predator N and runs from N=0 to N=2. The 2d command
displays the phase space on the screen, in which nullclines
are drawn and a vector field is indicated.

You can plot a trajectory in this two-dimensional space by typing

finish 25 50

run
which gives you a simulation of 25 time steps plotted at
50 intervals.

If you would like to continue this run just type

keep

run
where the keep command is used for copying the last state
into the initial condition.

Now we can change a parameter and start all over again:

h=.25

e2n

run

e2n

grid

where e2n is a predefined macro for erase;2d;nullcline,
and grid draws a grid of trajectories.

Defining a third “Z” axis, and calling the 3d command everything becomes three-dimensional. To illustrate
this, and to illustrate that an axis can also be defined by a parameter, you could type

axis z h 1e-3 1

e3n

shade R

Note that we prevent h=0 by starting the Z-axis at
h=0.001.

Equilibrium analysis. From any initial condition you can jump to an equilibrium point (stable or
unstable!) by calling the Newton-Raphson algorithm. Here we first pick an initial condition close to the
non-trivial equilibrium point defined by the intersection of the nullclines by activating the X11 cursor

cursor

newton

eigen

which asks you to click in the graphics window, finds an
equilibrium starting from the point where you clicked, and
reports the eigenvalues of the Jacobian matrix of the equi-
librium point.

For both maps and differential equations, GRIND allows for a very primitive continuation of equilibria.
Having found an equilibrium by the newton command above, you can define one of the axes as a parameter,

2



2d make a 2-dimensional phase space
axis define the identity and scaling of an axis
bye leave GRIND
bifurcate make a series of Poincaré sections
continue follow a steady state as a function of a parameter
cursor ask for a mouse click to set the initial condition
display filename show the contents of a text file
eigen compute eigenvalues
finish set the time span and number of points reported
grid start many trajectories
help get help
keepvar copy the final state into the initial state
newton approach a close-by equilibrium point
noise set white noise on a parameter
nullcline draw nullclines
option various options
parameter list parameter setting and/or save them into a file
poincare make a poincaré section
read filename read a file with parameters and/or commands
run solve the model numerically
timeplot depict the solutions
vector show the vector field
where where am I?

Table 1: A sample of the most important GRIND commands. Note that GRIND commands can be abbreviated
to the first two letters.

and continue that equilibrium along that axis. For instance

newton

axis x K 0 3

axis y N 0 5

2d

continue x

which plots the equilibrium value of the predator N for
various values of the carrying capacity K.

White Noise. You can set noise on a parameter by typing noise r 1 0.1 [pos]; which gives the
parameter r an average of one and a standard deviation of 0.1. If the pos option is provided, negative
parameters are set to zero. Random drawings are done at every output step of the integrator! Thus,
when the noise is on finish 100 50 will give different results from finish 100 100. Switch the noise
off by noise r off or use noise off to switch off the noise on all parameters.

Help, Input & Output. We have seen that files with GRIND commands can be written and be read.
One can save the data from a numerical integration by supplying a file name to the run command, e.g.,
run data1. Additionally, your current graphics screen can be saved in PostScript files by export file,
which creates a file “file.eps” with (Encapsulated) PostScript output. GRIND has a help facility which you
activate by typing command help, where command is the name of the command you need some information
about. The current status of a command is printed with command status. For detailed information you
will have to consult the GRIND manual in GRIND’s doc directory.

Maps or Difference equations. The model definition of a map follows that of differential equations.

3



Thus by writing x ’= a; we mean that the change ∆x = a, where ∆x = xt+1 − xt. For example, the
standard logistic map xt+1 = rxt(1−xt) has to be written as x ’= r*x*(1 - x) - x; Suppose that you
have called your file map.grd, then start GRIND by typing grind map, and enter the following lines

option map

option pos

r=3.3

x=0.1

finish 20 20

run

timeplot

Which tells GRIND that you want this model to be a map,
which prevents negative values of the x variable, which
sets r=3.3 and the initial condition x=0.1. Then ask for
twenty time steps, call for a run and plot the data.

You can draw the famous bifurcation diagram of the logistic map by the bifurcate command.

r=1

fin 100 100

run

axis x r 1 4

axis y x 0 1

2d

bifurcate x 20

First run to the attractor for r=1 and set a longer simula-
tion time. Next define a two-dimensional space, in which
you plot 20 points for several values of r.

Most commands for differential equations also apply for maps; the bifurcate command will do Poincaré
sections with differential equation models, however.

Run the model for a thousand time steps, and plot the results in a Takens reconstruction

axis t x 0 1

finish 1000 1000

run

takens 1

takens 2

noise r 3.5 0.1

run

takens 1

where the axis command defines the axis of the Takens
plot. The first takens command plots xt+1 as a function
of xt, and the second one plots xt+2 as a function of xt.
Finally, do the same with some noise on the growth rate
r.

Enjoy!

4


