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In many ecosystems food resources are available sequentially. The paper analyses a situation with
two competing prey species both of which are consumed by a common predator species. Within a
season the two prey species are available sequentially, although there may be an overlap. Three modelling
methodologies are applied to this system: discrete dynamical systems (difference equations),
individual-oriented event-driven simulations and cellular automata. The presence of the predator is shown
to have a strong impact on the outcome of the prey species competition. The system of coexisting prey
species changes to a system of founder-controlled competition. It appears that sequential predation can
even have counterintuitive evolutionary consequences for the prey species. The species which appears later
in the season will be more successful in its competition with the early species if it favours the predator;
for example, by a high leaf palatability. Spatial structuring and topological issues are found to play a
crucial role in both the ecological and evolutionary dynamics. The advantages of a multi-model approach
are discussed.

1. Introduction

In the standard theory of interspecific competition,
two categories of competition mechanisms are
generally distinguished: see, for example, Begon
et al. (1986) or Yodzis (1989): direct negative
interactions among the competing species (interference
competition), and concurrent utilization of a limiting
resource (exploitation competition). There are of
course other ways in which species can have indirect
negative interactions. Holt (1977, 1984) uses the term
apparent competition for another important situation
when two competing species are adversely affected by
a common predator. It is obvious that an increase in
the density of prey species 1 will lead to an increase in
predator abundance, which in turn will affect the
density of prey species 2.

The above-mentioned simple competition schemes
assume straightforward causal relations. Furthermore,
most of the analytical methods are based on static,

equilibrium conditions (Tilman, 1982). In this paper
we describe an ecosystem where the interspecific
interactions are dynamic and cannot be a priori
classified as positive or negative, at least not in an
absolute sense. Short-term advantage may turn into
massive losses in the longer term, and vice versa.

The situation we discuss here is a special case
of apparent competition. Two competing prey species
are consumed by a common predator, but their relative
availability to the predator within the season is not
synchronous—one of the prey species appears earlier
than the other, although there may be an overlap. We
call such an interaction scheme sequential predation. It
is common in many plant–herbivore systems, for
example in systems where insects feed on leaves or
flowers. Shifted timing of budbreak or flowering
period for different plant species results in the
sequential availability of the resources to insects.
Another example of sequential predation is the host
plant alternation exhibited by many aphid species
(Dixon, 1985). In this case, however, the preference for
each host plant spans over several generations> Author to whom correspondence should be addressed.
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of aphids. A field study conducted by Futuyma
& Wasserman (1980) on oak forests indicates
some counterintuitive phenomena connected with
sequential predation.

Hence, our first aim is to show that seasonal
succession of prey species can be an important factor
that influences not only the predator but also, via
feedbackmechanisms, the competition among the prey
species themselves. Furthermore,wewill show that this
can even have unexpected evolutionary consequences.
The second point we want to make is related to spatial
structuring. Localization of processes and interactions
often results in interesting spatial structures which in
turn can influence the dynamics on both the ecological
and evolutionary time scale. Finally, the third
intention of this paper is to compare three different
modelling formalisms when applied to the same
problem and demonstrate the advantages of this
multi-model approach.

2. The Ecosystem: Competing Tree Species and

Insects

Futuyma & Wasserman (1980) performed a field
study of a forest ecosystem consisting of two oak tree
species, scarlet oak (Quercus coccinea) and white oak
(Quercus alba), and foliage-feeding insects, namely
larvae of the fall cankerworm (Alsophila pometaria).
We took this system as a starting point for our
model-based study of sequential predation.

Futuyma & Wasserman (1980) describe this system
as a sample where the plant species in minority—be it
either scarlet or white oak—suffers greater herbivory.
They explain this phenomenon by the fact that the
insect larvae are dependent on both oak species due to
the difference in the availability of palatable leaves.
This is caused by a shift in timing of budbreak: scarlet
oak breaks bud approximately 10 days before white
oak. Larvae of the fall cankerworm hatch at about
the time that scarlet oak comes into leaf. Since they
cannot survive for more than two or three days without
food (Mitter et al., 1979), they are entirely dependent
on scarlet oak during early instars. However, they
cannot complete their development on mature foliage,
and when the leaves of scarlet oak are becoming
unpalatable they migrate to the white oaks. So, at the
end of their development the larvae depend on white
oak.

The relation of larvae to the two tree species is,
however, asymmetric. First, after hatching all larvae
immediately have to find an early tree (scarlet oak)
to feed on, whereas the transition to the late trees
(white oak) is gradual and may span the period from
budbreak of the late tree till the time when leaves of the

early tree become unpalatable. Second, because there
is only one generation of larvae during each season, the
number of larvae that start feeding on early trees is
necessarily greater than the number of those that
eventually migrate to late trees. On the other hand, the
late tree may suffer more extensively from the presence
of larvae since the per capita consumption increases
with their weight. The early tree may also benefit from
the earlier start of photosynthetic assimilation.

Another important feature of this particular eco-
system is the fact that most processes are strictly local,
including the dispersal of eggs, because the females of
A. pometaria are wingless.

3. Multi-model Approach

We have developed three models using different
formalisms:

, DDS—discrete dynamical system (difference
equations). This methodology, along with ordi-
nary differential equations, is used widely in
ecosystem modelling. It is supported by extensive
theory and a wide variety of analytical tools.
We formulate a simpleDDSmodel representing an
abstract system with sequential predation, and use
bifurcation analysis for studying the qualitative
properties of equilibrium points with respect to
changes in model parameters.

, Individual-oriented, event-driven simulation model.
This is a relatively new methodology which is
becoming popular in theoretical ecology
(Hogeweg & Hesper, 1979, 1990; Hogeweg, 1988a;
Villa, 1992; Judson, 1994).Recent developments in
hardware and software have made it feasible to
define simulation systems by means of local
interactions between individuals and to study the
dynamics of these systems as a whole. In such
models it is possible to define explicitly a sequence
of events, and simulate processes even if they occur
on different time scales. We use the Hobo
individual-oriented modelling environment
(Lhotka, 1994). Since models of this type are
defined in terms of individuals and local processes,
there is a clear biological interpretation for all
model parameters.

, CA—cellular automaton. A cellular automaton is
a collection of simple cells organized in a regular
grid. Each individual cell can have several states
which change according to a prescribed algorithm
(next state function), typically involving the
present state of the cell and of neighbouring cells.
Thus the model is expressed in terms of local
interactions between elements which represent
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space rather than individuals. It is well known that
cellular automata with only a few states and a
simple next state function can exhibit very
interesting complex behaviour (Gardner, 1970;
Wolfram, 1984). We use a multi-layer multi-
process stochastic cellular automaton, inwhich the
state of each cell represents the presence of one
individual (or clone). This type of cellular
automaton is a very powerful tool for studying
(eco)systems with spatial structure (Hogeweg,
1988b, 1989; Van der Laan & Hogeweg, 1992;
De Boer et al., 1993). We use the cellular
automaton as a large-scale model of a forest
ecosystem with sequential predation. As in the
DDS model many properties of the organisms are
lumped, for reasons of simplicity. It is possible to
perform long simulation runs which are necessary
for observing evolutionary trends. Unlike the
DDS model, the CA model is defined on a
fine-grained spatial structure.

In the main text we describe each of the models
briefly before discussing its results. This description
should be sufficient for a qualitative understanding
of model behaviour. Appendices A–C contain more
detailed information about the implementation of the
models.

4. DDS Model: From Coexistence to

Founder-controlled Competition

The equations of our DDS model are derived from
a simple Lotka–Volterra model with self-limitation for
prey:

Xt+1=Xt+a1Xt−b1Xt (Xt+gYt )−c1XtZt

Yt+1=Yt+a2Yt−b2Yt (Yt+gXt )+c2YtZtXt

Zt+1=Zt+e1c1XtZt+e2c2YtZtXt−dZt . (1)

In these equations X and Y are densities of early and
late prey, respectively, and Z is the density of the
predator. We include sequentiality in this model
by assuming that the number of predators that enter
the second part of a season is proportional to the
amount of early prey consumed. Therefore, predation
on late prey is influenced by both predator density and
early prey density. This results in the predation term
c2YZX in the equations for Y and Z. Further reasoning
behind the particular form of the eqns (1) and the
meaning and interpretation of parameters are
presented in Appendix A.

4.1.  

In the two-dimensional system of the prey
species only, there is a stable equilibrium (provided
gQ1). If predators are present (Zq0), a different
situation arises. After the third dimension (Z) is
added, this equilibrium with no predators may, for
some parameter values, lose stability and a pair of
new attracting equilibria emerge. One of these two
new equilibria has a high density of the early prey
species and a low density of the late prey species,
whereas the other one has low density of early prey
and high density of late prey. The nullclines of the
system are shown in Fig. 1. In the same figure,
trajectories to each of the two stable equilibria
indicate their position. Therefore, depending on the
initial situation one will obtain either a system
dominated by the early species or a system
dominated by the late species. This result clearly
demonstrates the effect of the predator on
the competition between the two prey species. In
the absence of the predator the two prey species
coexist, whereas in the presence of the predator
the final outcome of the competition is dependent
on the initial densities of the two prey species.
This type of competition is called founder-controlled
competition (Yodzis, 1989). However, in contrast to
the classic examples of founder-controlled compe-
tition, the non-dominant species will not
become extinct but will remain in the system at a low
density.

F. 1. State space of the DDS model, showing nullclines and
equilibria. Flat plane is nullcline of early prey (X), curved plane with
bold lines is nullcline of late prey (Y) and curved plane with dashed
lines is nullcline of predator (Z). Parameters: a1=a2=1;
b1=b2=0.005; g=0.75; d=1; c1=0.05; c2=0.00075; e1=0.00005;
e2=0.3.
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4.2.  

The asymmetry in the two predator-prey relations is
expressed explicitly in eqns (1): specific rate of
predation on early prey depends only on predator
density, whereas on late prey it depends on both
predator and early prey density. Consequently,
predator density has a different effect on each of the
two prey species. An increase in predator density will
always result in a decrease in the density of the early
prey. It is more complicated to see the effect of an
increase in predator density on late prey, since the
increase in predators will to some extent be
compensated by the decrease in early prey. We studied
this effect by performing a bifurcation analysis of the
system using the parameters, e1 and e2 (which are
the parameters of the numerical response of the
predator). Bifurcation diagrams are presented in
Fig. 2. Figure 2(a) shows that the position of the
equilibria does not change significantly with changing
e1. Figure 2(b) however shows amore interesting result:
for small e2 there is a stable (symmetrical) equilibrium
with both prey species present, but with Z=0. At
e2=0.10 there is a transcritical bifurcation: the
symmetrical equilibrium becomes unstable, whereas
one asymmetrical equilibrium emerges with early prey
dominant. If e2 is further increased the system goes
through a saddle-node bifurcation at e2=0.25: a
second asymmetrical equilibrium is born, with late
prey dominant. The basin of attraction of this new
equilibrium becomes larger if e2 is further increased.
Therefore, it is beneficial for late prey if e2 is large. This
result means that a mutant of late prey with higher
nutritional value for the predator will perform better
in competition with early prey than will a wild type.

However, if such a mutant were to appear in a
wild-type population of late prey it would never be able
to increase its density substantially. Once the system is
trapped in the equilibrium with early trees dominant,
an increase in e2 will not cause the system to move to
the other equilibrium. Moreover, even if it were
possible to make this move to the equilibrium with
dominance of late trees, then both the mutant and the
wild-type late tree would profit from this change. Thus
ifmutantswere to appear in the system, their frequency
(relative to wild type) would not increase.

5. The Individual-oriented Model

The individual-oriented Hobo model of sequential
predation is closely related to the ecosystem described
byFutuyma&Wasserman (1980).However, we do not
treat our simulations exclusively in the context of the
particular situation. Instead, we adopt the following

F. 2. Stability of equilibria of the DDS model as a function of
e1 (a) and e2 (b). Dashed straight line is the continuation of the
symmetric (X=Y; Z=0) equilibrium; other lines are the
continuation of the 3-D equilibria. At the bold line section equilibria
are stable, unstable equilibrium otherwise. Parameters: a1=a2=1;
b1=b2=0.005; g=0.75; d=1; c1=0.05; c2=0.00075; e1=0.00005;
e2=0.3.

qualitative assumptions about our ‘‘imaginary’’
systemof two species of trees and insect larvae that feed
on the leaves of both species:

, Both tree species have localized reproduction, i.e.
the spread of seedlings is limited to the
neighbourhood of the parent tree.

, A priori competitive advantage of the early trees
results in an increased production of viable
seedlings and decreased mortality.

, Ten age classes of trees are distinguished. A
new tree that had just colonized an empty patch is



 :  -  153

assigned age 1. Each season this number is
increased by 1, but only up to 10. After that the
age does not increase and the tree is considered
mature. Several parameters depend on tree age:
number of leaves, number of viable seedlings, and
mortality.

, A tree dies with a certain probability which is
proportional to the defoliation of the tree and
inversely proportional to the tree’s age.

, Whenever a tree dies, its patch is taken over by a
new young tree. The species of this invader is
determined probabilistically according to which
species is more abundant in the ‘‘seedling bank’’ of
the empty patch.

, The larval development has to finish within 32
days after hatching. A larva can successfully
pupate only if its weight is above a certain
threshold.

, However, the metamorphosis to pupa can take
place sooner if a larva reaches another—higher—
threshold.

, Additionally, we assume the larvae develop
through four instars. Thus, every 8 days after
hatching all larvae in the system are checked for
weight. Those that are below a prescribed value are
immediately killed.

, Food demand of larvae increases exponentially
during development and the leaf palatability,
hence the total utilizable food resources, decrease.
Therefore, near the end of development it is
considerably harder to find enough food than just
after hatching.

, The larvae migrate to neighbouring trees either via
overlapping branches, which is a common and
relatively safe way, or by leaving the host tree
and moving on the ground to another one, this
move being connected with an increased risk of
predation. We assume the latter dangerous way
is used only by larvae leaving a tree with no foliage
or with unpalatable foliage.

, The larvae search for better food resources by
means of trial-and-error only.

, We assume the adult insects have a 1:1 sex ratio
and the number of eggs produced by each female
is proportional to the weight reached at the end of
the larval stage.

, The standard variant of the model assumes
wingless females, which implies local reproduction
of the insects. A female is assumed to lay eggs on
the tree where it completed its larval development,
or on one of its immediate neighbours.

The temporal scale consists of discrete seasons, each
of them being 100 time units (days) long, i.e. seasons

start at times which are multiples of 100. Every season
is punctuated by the following events:

The events related to trees are b1=0 and b2=10: the
time of budbreak of early and late trees, respectively;
s=40: here both species produce seedlings; andv=50:
end of the season when the new composition of the
model forest is determined. The larval life
cycle contains the events h=1: time of hatching, and
li=8i+1, which is the deadline for finishing the i-th
instar, for i=1, 2, 3, 4. Note that after l4 it is only
the sequence of further events which is important
and the exact timing of s and v, and the length of the
season are irrelevant.

The Hobo model is built on a regular lattice
of square patches. Every patch is regarded as a
stand for a single tree and retains a specific set
of parameter values. Trees are thus defined as
properties of patches—in the following text we
effectively identify trees with their patches.

A detailed description of how the Hobo model is
implemented is given in Appendix B.

We use two sizes of simulated forest: 10×10 and
32×32 patches. In order to generate representative
seedling banks in all patches, we let all simulations first
run 100 seasons without larvae. Thus, the interesting
part of each simulation begins only at time 10000 and
is 25 seasons long (until 12500). Initial distribution of
larvae (i.e. those hatching at time 10001) is random,
each patch being given 0–20 larvae (with uniform
probability distribution).

The model and the Hobo simulation system itself are
written in the Smalltalk-80 language (ParcPlace
Systems, 1992). The simulations were carried out
on a UNIX workstation (HP 9000/720). The longest
runs on the 32×32 scale took about 40 hours to
complete.

5.1.  

To understand the major forces that drive model
dynamics, we first use a simple spatial configuration on
the smaller scale of 10×10 patches. We start with a
forest composed of early trees except for a 2×2
rectangle in the centre which contains four late trees.

Simulation results are visualized in Figs 3 and 4.
Figure 3 shows the time dependence of cumulative
numbers of insect eggs—we will use this quantity
throughout as a good interseasonal measure of
population density. We observe pronounced oscil-
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F. 3. Time plot of the number of eggs in the small-scale (10×10)
simulation with an initial minority of late tree. Dots indicate the
seasons when the snapshots in Fig. 4 were taken.

can recover again. Due to the asymmetry in predation
pressure on the two tree species, the late trees have
good chances of expanding into the free space. In this
way the gap is partly closed, the task of larvae becomes
easier and their population grows again. This process
is repeated cyclically and leads to the oscillations
observed in Fig. 3.

From the above analysis we can also deduce that the
most important part of the space is the boundary
between the areas occupied by different tree species.
The length of this boundary increases during the
simulation due to the expansion of late trees, and
accordingly there is an increase in the maximum
population size that can be supported in a particular
configuration (cf. Fig. 3).

Is it true here that the species in the minority suffers
greater herbivory, by analogy with the conclusion of
Futuyma & Wasserman (1980)? Of course, such a
comparison depends strongly on which sites are
selected for taking samples. As long as the area
occupied by late trees is small, most of the early trees
are unaffected by the presence of larvae, for these have
to stay close to the late trees. If we then take samples
of both trees at random positions, as Futuyma &
Wasserman (1980) probably did, we may very well find
the sampled early trees to be less damaged on average
than the sampled late trees, even though the minority
(late) species has a clear competitive advantage just as
in our simulation.

However, when the early tree is in the minority, it
really suffers more, by all measures, than the late tree.
To see this, we repeated the same simulation
experiment as above, but interchanged the roles of the
tree species in the initial configuration: that is, we
startedwith a 2×2block of early trees in the centre and
late trees elsewhere. The story was rather trivial this
time. A growing population of larvae was established
in the centre again where it caused gradual defoliation.
In this case, however, all the early trees were on the
boundary of the late trees and once the early trees had
been defoliated the system broke down immediately
and all larvae died.

5.2.    

In order to test the effects of spatial configuration on
the larger scale (32×32 cells), we used three different
arrangements of the tree species in space: random
configuration (type A), simulated forest (B), and
complete separation(C). At time 10000, when the
larvae are introduced, the three configurations are as
in Figs 5(a)–(c).

First we ran three simulations, 1A, 1B and 1C,
all using the standard parameter setting described in
Appendix B. Figures 5(d)–(f) show the status of

lations butwith an overall increase. This behaviour can
be explained using Fig. 4 which shows the spatial
distribution of four quantities recorded during
critical seasons before extremes in egg numbers were
achieved, as indicated by dots on the graph in Fig. 3.
In the ‘‘tree’’ column we see how the initially small
island of late trees (black squares) is steadily
expanding. The snapshots of larvae distribution
(second column) are taken at time 9 of each season (end
of the first instar). Naturally, almost all larvae are
found on early trees since it is just before the late trees
break bud. The third column, ‘‘eggs’’, shows an almost
complementary layout—most eggs are laid on late
trees. Finally, the ‘‘foliage’’ column shows the
distribution of foliage, which reflects both the age of
trees and level of defoliation during the season.

In the first season (denoted as 100) most of the larvae
were not able to find theirway to the late trees and died.
Eggs were laid on two trees only. During the following
five seasons the larval population grew steadily. In the
second row of Fig. 4 we see relatively high densities of
larvae and eggs in the central part. The larvae that
hatch in large numbers on late trees have to migrate
immediately to an early tree. Hence, early trees in the
neighbourhoodof the islandof late trees are intensively
defoliated, some of them die, and so season after
season the larvae have to travel further and further to
find enough food on early trees. The larger this
dispersal, the fewer larvae find their way back to the
late trees towards the end of the season. All these
factors increase the mortality of larvae. At some point,
when the defoliated ring is sufficiently large, most
larvae cannot be successful in this back-and-forth
migration and population density decreases. In the
column on the far right of season 105 we can clearly
see the defoliated ‘‘firewall’’ around the island of late
trees.

When the density of larvae drops, the defoliated gap
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the forest at the end of each simulation, i.e. after 25
seasons. Quantitative results are presented in Fig. 6.
We observe a monotonous decrease in the number
of early trees in all three cases, yet at different rates
[Fig. 6(a)]. Egg counts depend sensitively on the
configuration, as shown in Fig. 6(b).

With configuration C a relatively small population
of larvae was established near the borderline between

early and late forests and this population remained
relatively stable during the entire simulation. The
borderline itself moved slowly to the left in the same
way as we saw before in the small-scale simulation. The
size of the larval population is not affected by this
expansion of late trees as long as the borderline does
not come close to the left edge of the forest.

Conversely, the initial increase in the abundance

F. 4. Density plots of the distribution of trees (early=white, late=black), abundance of larvae, number of eggs and foliage, for seven
seasons of the small-scale (10×10) simulation with an initial minority of late trees. Numbers on the left are the sequential numbers of the
season, and numbers at the bottom give the time within the season when the snapshots were taken. The shades of grey are comparable
throughout each column.
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F. 5. Distribution of trees (white=early, black=late) for
simulations 1A (a, d) 1B (b, e) and 1C (c, f). Figures (a), (b) and (c)
show the situation just before the larvae have been introduced
(time=10000) and (d), (e) and (f) show the final situation
(time=12500). See text for more description.

which leads here to an exclusion of the early
trees.

5.3.    

The outcome of competition between the two tree
species is largely determined by the presence of larvae
which favours the late tree. An increase in the density
of larvae should thus amplify the competition
processes. We will now show that due to this fact it is
advantageous for late trees to ‘‘support’’ the larvae
even if the late trees themselves suffer from an
increased herbivory.

To this end, we set up another simulation, 2B,
configured as a simulated forest. The difference
between this simulation and simulation 1B is the use of
a different leaf palatability function for late tree. Both
tree species have leaf palatability equal to 1 for leaf
maturation t (time since budbreak) or less than 8 days.
For te8 we use the palatability function
q'(t):=(48−t)/40 for late trees, while for early trees
the standard function q(t):=(28−t)/20 is used.

F. 6. Time plot of the number of early trees (a), number of eggs
(b) and foliage on early trees (c) in simulations 1A (full black line),
1B (grey line) and 1C (dashed line).

of larvae is very fast in a random configuration
(simulation 1A), which leads to a rapid defoliation of
all early trees [see Fig. 6(c)] and after another small
oscillation the larvae die out. This is caused by the fact
that almost all trees have neighbours of the other
species; hence the boundary-based competition
mechanism is very intensive.

As expected, the dynamics of the simulated forest
(simulation 1B) is somewhere in between the extreme
cases 1A and 1C. The same competition mechanism
works here—the expansion of late trees proceeds along
the entire boundary of the areas of early and late trees,
cf. Fig. 5(b), (e).

Therefore, in summary we can say that the
most crucial topological property of this
sequential predation system is the character of the
interface between the areas occupied by early and
late trees, respectively—the more interwoven are the
two areas, the faster is the competition process
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F. 7. Final distribution of trees in simulation 2B (early=white,
late=black).

early trees in 2B is about four seasons ahead of 1B, as
we can see from Fig. 8(b).

These results thus demonstrate that a late tree can
indeed increase its competitive advantage by providing
more valuable food for the larvae. The damage to a late
tree caused by the increased abundance of larvae is
more than outweighed by the high losses of early trees
in the initial phase of each season.

5.4.     

 

We have already seen that the larvae have to
stay close to the boundary between early and late trees
because of the back-and-forthmigration. The localized
character of insect reproduction (wingless females) is
in accord with this requirement in that the eggs are also
laid close to the boundary. It is natural to ask what
would happen if the insect females had wings and eggs
were thus dispersed over the space. This question was
investigated for the same three spatial configurations
as studied before, using a different algorithm for the
distribution of eggs: first the eggs produced by all
females are accumulated and then dispersed evenly
over the entire space.

With configuration C (complete separation of the
tree species) the outcome is the easiest to predict.
Because most eggs are laid far from the borderline
between the early and late forests, the viable part of the
larval population (located near the borderline) is
strongly diluted in each season. Indeed, population
density of larvae in corresponding simulation 3C
rapidly decreased and after four seasons there were
no larvae left.

In a random configuration (simulation 3A) virtually
all patches are on the boundary of the early and late
forests. Therefore, there should be no topological
difficulties for larvae such as existed in the preceding
case. What happened is shown in Fig. 9. The larvae did
not survive much longer than in the previous situation.
This time, however, the population density underwent
first an explosive growth and attained much higher
value at the first peak than in the case of local
reproduction [Fig. 9(a)]. Dispersed reproduction
permitted a more efficient utilization of available
resources, but resulted in a global and absolute
defoliation of early trees [see Fig. 9(b)]. After losing
this critical resource, the larvae died out immediately.

It is not clear a priori which of the two factors
will dominate in simulation 3B (simulated forest).
However, Fig. 9(c) and (d) show dynamics that is
similar to but slower than the dynamics as in the case
of random configuration. Apparently, the topological
constraints were too weak to prevent the initial
defoliation.

This modification makes leaves of late tree relatively
more palatable, especially towards the end of the
season.

Figure 7 shows the status of the forest at the end of
the simulation. When compared to the final picture of
the simulation 1B with default (faster decreasing) leaf
palatability function [Fig. 5(e)], we see considerably
fewer early trees here. The dynamics of the number of
eggs is shown in Fig. 8(a), for the two simulations 1B
and 2B. In the initial phase the larval population grew
much faster in 2B. Later the two curves are not
significantly different, but the process of exclusion of

F. 8. Time plot of the number of eggs (a) and number of early
trees (b) in simulation 2B (black line), compared to simulation 1B
(grey line).
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F. 9. Time plot of the number of eggs (a, c) and foliage (b, d)
on early trees. Figures (a) and (b) show these quantities for
simulation 3A (black line) and simulation 1A (grey line). In figures
(c) and (d) a comparison has been made between simulation 3B
(black line) and simulation 1B (grey line). The values in each season
were taken at time 40.

6. CA Model: Evolutionary Consequences of

Sequential Predation

The cellular automaton model of sequential
predation is defined in terms of simple local variables
and interactions in a spatial ecosystem. Every
cell represents a patch of space with qualitative
states (present or absent) for trees and insects. The
different processes which act on the variables are
modelled as a sequence of cellular automaton rules.
For a detailed description of the model we refer to
Appendix C.

The rectangular space of the simulated forest
consists of 240×120 patches. The tree dynamics is
characterized by local processes: the colonization
of empty patches is dependent on the species
composition of neighbouring patches. This localized
reproduction implies competition for space both
within and between tree species. The mortality of trees
is effected by three different factors:

, A tree can die in a particular season with a certain
probability Mg . We will call this global mortality,
since it is independent of the local situation.

, A tree surrounded by other trees of its own species
has an extra probability of dying Ml . This extra
density-dependent mortality, which we call local
mortality, is added to the model in order to take
the effect of intraspecific competition into account.
Without this local mortality intraspecific and
interspecific competition of the trees would be
equal (g=1 in the DDS model).

, Insect defoliation also affects the probability that
a tree will die (Mi ). Since the insects increase
in weight during the season, mortality due to the
presence of insects is assumed to be higher for trees
of the late species than for trees of the early species:
Mi (2)qMi (1).

With respect to insect dynamics we will assume that
the sequential predation is obligatory. This means that
during the first half of the season insects can only
survive on early trees, whereas in the second half they
can only survive on late trees. When switching from
early to late tree, insects migrate by a passive diffusion
process, which can take them to a distance of at
most five patches. At the end of the season insects
reproduce locally, which means that they can colonize
some of the surrounding trees in an area which consists
of a square of 5×5 patches (with the source tree in the
middle). The proportion of trees of this area (Pr ) which
they actually will colonize is the key parameter to
manipulate. This parameter can be regarded as
equivalent to the parameter e2 in the DDS model. A
nutritious tree of the late species (or a late tree with less

Despite the fact that qualitatively different
mechanisms govern these three simulations, we
found dispersed reproduction to be a destabilizing
factor which in all cases leads to the extinction of
larvae.
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tannin in its leaves) will contribute to a higher
reproduction of the insects that live on that tree. In the
model this would mean a higher value for Pr .

New insects can originate by reproduction or as a
result of global influx. Global influx has been added to
the model in order to guarantee the presence of insects
during the whole simulation.

6.1.       

We start our simulations with a forest consisting
of 50% early and 50% late trees randomly distributed.
Aninitialperiodwithout insectsresults inastablemixed

F. 11. Distribution of trees on a gradient with localized insect
reproduction (white=empty patch; light grey=early; dark
grey=late; black=mutant). Figure (a) shows the situation without
insects (t=0), (b) shows the situation with insects at t=1000, and (c)
shows the situation at t=2500 (after the introduction of mutants of
the late tree at t=1000). Parameters: Mg (1)=gradient from 0.02 to
0.04; Mg (2)=Mg (m)=0.03; Ml (1)=Ml (2)=Ml (m)=0.05;
Mi (1)=0.35; Mi (2)=Mi (m)=1.0; Pr (2)=0.5; Pr (m)=0.95;
I=0.001.

F. 10. Distribution of trees (white=empty patch; light
grey=early; dark grey=late). Figure (a) shows the situation without
insects (t=0), figures (b) and (c) showa forest at t=1000with insects,
having low reproduction, Pr=0.4 (b) or high reproduction, Pr=0.7
(c) Parameters: Mg (1)=Mg (2)=0.03; Ml (1)=Ml (2)=0.05;
Mi (1)=0.35; Mi (2)=1.0; I=0.001.

forest with a small-scale patchiness of tree distribution,
due to the localized reproduction [Fig. 10(a)]. We
then introduce insects in 0.1% of the trees, randomly
distributed over the forest, and simulate the forest
for 1000 years. We do this for two different values of
Pr , the reproduction of insects. The positive effect of
a high insect reproduction on trees of the late species
is evident. Low Pr results in a forest dominated by
early trees [Fig. 10(b)], whereas high reproduction
results in a forest dominated by late trees [Fig. 10(c)].
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6.2.  

The results of all three models clearly demonstrate
that high insect density means a competitive advantage
for the late tree. We further investigate this interesting
phenomenon by introducing a rare mutant of the late
tree with properties that lead to higher reproduction of
the insects that feed on it. In Section 4 we argued that
once the system is in equilibrium, introduction of such
a mutant would never change the outcome. Here, we
study the fate of a mutant if local interactions are
present in the model. We will do this in a setting slightly
different from the one used in Section 6.1. By adding
one extra property to ourmodel forest, i.e. by assuming
a gradient of a factor influencing the global mortality
of the early tree (Mg (1)), we can see gradual changes
in tree composition in one cellular automaton. Near
the left edge of the cellular automaton early trees have
a lower global mortality than late trees, and vice versa
near the right edge. Figure 11(a) shows a forest on such
a gradient. After the introduction of the insects the
pattern of gradual change in tree abundances changes
to a pattern of two distinct regions [Fig. 11(b)]. In the
left part of the forest trees of the early species are
dominant, whereas in the right part of the forest the
late tree is the dominant species. The qualitative
properties of the spatial pattern, i.e. two different types
of forest divided by a sharp boundary, have been
observed by Futuyma & Wasserman (1980) in their
study of oak forests in Suffolk County.

The above result of our CA model can be explained
by further analysis of the DDS model. Figure 12 shows
a bifurcation plot of the DDS model using the

F. 13. Distribution of trees on a gradient with dispersed insect
reproduction (white=empty patch; light grey=early; dark
grey=late; black=mutant). Figure (a) shows the situation without
insects (t=0), (b) shows the situation with insects at t=1000, and (c)
shows the situation at t=2500 (after the introduction of mutants of
the late tree at t=1000). Parameters: Mg (1)=gradient from 0.02 to
0.04; Mg (2)=Mg (m)=0.03; Ml (1)=Ml (2)=Ml (m)=0.05;
Mi (1)=0.35; Mi (2)=Mi (m)=1.0; Pr (2)=0.5; Pr (m)=0.95;
I=0.001.

F. 12. Stability of equilibria of the DDS model as a function of
a1. The dashed straight line is the continuation of the symmetric
(X=Y; Z=0) equilibrium, the curved line is the continuation of the
3-D equilibria. At the bold line section equilibria are stable, unstable
equilibrium otherwise. Parameters: a2=1; b1=b2=0.005; g=0.75;
d=1; c1=0.05; c2=0.00075; e1=0.00005; e2=0.3.

parameter a1 as a bifurcation parameter. With Z=0
(no insects) the equilibrium (dashed line) changes
gradually from a dominant late forest to a dominant
early forest with increasing a1 (decreasing mortality).
With Zq0 the continuation of a 3-D equilibrium
results in a catastrophe fold with two stable equilibria
for either a late-tree dominated system or for an
early-tree dominated system. Starting without insects
(i.e. starting on the dashed line) the equilibrium
with the late tree dominant will be attained at low
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a1, whereas the system will settle into the other
equilibrium at high a1.

Into this system of ‘‘dominated’’ forest regions, i.e.
in the system of Fig. 11(b), we introduce a mutant of
the late tree species. The tree dynamics of mutant and
wild-type tree are exactly the same. The only difference
between mutant and wild-type trees is their effect upon
the insects: insects which feed on mutant trees produce
more offspring (Pr (m)qPr (2)). After a small fraction
of the late trees is changed into a mutant tree the spatial
structure of the forest changes significantly [Fig. 11(c)].
The mutant becomes the dominant tree in a large
region of the forest, which used to be dominated by the
early species. Therefore, it is possible for a mutant to
invade the spatial system. In the region initially
dominated by late trees mutants can survive, but they
are not able to replace the wild type.

6.3.     



The mutant in the previous simulation is more
successful than in the non-spatial DDS model because
the mutant benefits relatively more from the positive
effect of more insects than does the wild-type late tree.
The difference in benefits is entirely a result of the local
character of the important processes. In order to
investigate this hypothesis we simulated a forest with
dispersed reproduction instead of local reproduction
of the insects. The amount of colonized trees will be the
same as in the previous simulation, but instead of
reproduction into the 5×5 tree neighbourhood, new
insects will be distributed randomly over the whole
forest. The effect of this new reproduction scheme can
be seen in Fig. 13. Mutants can survive in this system,
but their abundance relative to wild-type late trees
remains approximately the same throughout the
simulation.

7. Discussion

All three models provide evidence about the effect of
sequential predation on the competition between two
prey species. The original coexistence of both prey
species becomes destabilized when their common
predator is present. Depending on initial conditions or
model parameters the system will attain one of the two
possible asymmetric equilibria with one prey species
dominant. Furthermore, we have shown that due to
the asymmetry in the two predator-prey relations there
is an indirect positive effect of predator density on the
late prey species. This asymmetry was first assumed in
order to implement the sequentiality of the system in
the DDS model. Results of the two other model
formalisms not only verify this assumption, but

indicate that this asymmetry might be stronger than
previously expected. The results of the individual-ori-
ented model in particular show that the presence of
foliage-feeding insects gives a definite competitive
advantage to the late tree. Due to this effect it might
be a good strategy for the late species to be ‘‘attractive’’
to the predator. In the context of plant chemistry, this
means that it would be a good strategy to invest in
nutrients instead of toxins. This counterintuitive result
can be understood if one realizes that such an
adaptation can only be beneficial for a plant species if
the direct disadvantage is compensated in some way by
an indirect advantage. This is the case in a system of
sequential predation: the first and principal victim of
an increased number of predators will be the early prey
species. The late prey species will also suffer more from
increased predation pressure but this negative effect
will be compensated by improved competition
interaction with the early species. Therefore, if there
are more predators, the late prey species will be more
successful in its competition with the early prey species.

This phenomenon has strong similarities with the
phenomenon of spiteful behaviour as described in
the context of animal behaviour. An animal
behaves spitefully when it harms itself in order to harm
another individual more (Hamilton, 1970). It has been
argued that spite may evolve only if it is expressed
between individuals of less than average relatedness
(Hamilton, 1970; Trivers, 1985). Hurst (1991) recently
described the evolution of cytoplasmic incompatibility
as another system in which spite can evolve. With the
CA model (Section 6) we showed that a rare mutant
with ‘‘spiteful’’ characteristics is indeed able to invade
provided that the principal ecological processes are
localized.

The basic asymmetry in our ecological system,which
leads to a higher predation pressure upon the early
prey, is closely related to the fact that there is only one
generation of insects within each season. For species
with a faster generation turnover (aphids), the
asymmetric impact on the sequentially available prey
species may be reversed (higher damage to the late
prey).

We think that the main properties of this simple
system of two prey species and one predator species
will also be present in a multi-prey–multi-predator
system. Thus, the demonstrated effect of sequential
predation on the competition between prey species, the
effect of spatial structure on population dynamics and
the possibility for ‘‘spiteful’’ mutants to evolve in a
spatial context can be expected to occur in other, more
complex, ecosystems. However, since a sequential
predator is able to change the outcome of the
competition between prey species from coexistence to
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competitive exclusion, as demonstrated in this study,
multi-prey systems may not be stable if common,
sequential predators exist.

The effect of spatial structure of an ecosystem on
both the ecological and evolutionary dynamics has
been demonstrated in various parts of this model
study. In Section 5.1 it is shown how the population
dynamics of the larvae structures their own
environment, which results in a ‘‘firewall’’ of defoliated
trees around an island of late trees. This spatial
structuring causes characteristic oscillatory dynamics,
as can be seen clearly in Figs 3 and 4. We believe that
this feedback loop between population dynamics and
spatial structuring is an important factor for our
understanding of ecosystems (see e.g. Hogeweg &
Hesper, 1990). In Section 5.2 we extend our study
along these lines by using spatial patterns with a
different scale of patchiness (size of regions dominated
by one tree species) as initial configurations. Again
the spatial structure appears to be an important
factor influencing the population dynamics. The total
length of the borderline between all areas occupied by
early and late trees determines the speed of the
competition process. A simulation with dispersed
insect reproduction leads to a different outcome:
extinction of larvae. The above three results clearly
demonstrate the effect of spatial structure and
localization of interactions on population dynamics on
an ecological time scale. In Section 6.2 it is shown that
localization of population dynamic interactions can
have evolutionary consequences. The successful
invasion by mutant trees of the late species can be
explained by the fact that their effect remains localized.
This results in a relatively higher share of the benefits
for these mutant trees. We conclude that our study
shows an alternative setting for the evolution of
spiteful behaviour: a system with spatial structure.

The use of different model formalisms enables us
to look at the system in different ways and highlight
different aspects of the problem. The effect of
sequential predation on the equilibria of the system can
be investigated relatively simply with the DDS model.
Bifurcation analysis using different parameters showed
a clear difference in the effect of increased predation on
the two prey species. Interpretation of these results is
relatively easy given the simplicity of the model. A
weakness of this model is of course the averaging over
both space and time which is necessary to define the
model.

The individual-oriented (Hobo) model as well as the
cellular automaton are characterized by their explicit
use of space, which appears to be an important aspect
of this system. Both model formalisms also enable us
to unravel the different processes in time and deal with

processes on different time scales. A clear distinction
has been made between yearly processes such as insect
and tree reproduction and processes that occur within
one season such as insect migration and feeding. In the
CA model this distinction between processes on
different time scales has been made in a qualitative
way. In the Hobo model each process operates on its
own appropriate scale.

The Hobo model generates quite a number of
falsifiable hypotheses. Even though it is evident that
the tree dynamics is too fast for oaks, it is nevertheless
interesting to compare the simulation results to those
obtained by Futuyma & Wasserman (1980). In
particular, all our simulations converged to the
ultimate exclusion of early trees, so we never
attained forest with sustained dominance of early
trees, whereas Futuyma & Wasserman (1980)
observed both types of forest. Because most of the
algorithms and parameters used in the Hobo
model have a direct biological interpretation, it
should be possible to find out the reason for this
discrepancy. One possible explanation is suggested by
the CA model (spatial gradient of external conditions).
Also, the Hobo model can be easily modified or
extended, given enough computer power (which seems
to be the major limiting factor for this kind of
modelling).

The CA model uses far fewer computer resources,
yet preserves many of the important features of the
Hobo model. Therefore, it can be useful for doing
simulation experiments on a longer—evolutionary—
time scale.

Each of the modelling formalisms thus has some
advantages. However, we feel the greatest advantage is
to be gained by using all three together and switching
them iteratively. Then the results of one model
formalism can provide a search image which can be
pursued by means of another formalism.
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APPENDIX A

Derivation of the DDS Model

Our model is based on a simple Lotka–Volterra
predator–prey model, with self-limitation for prey
and a linear response curve for the predator–prey
interaction. There is interspecific competition between
the two prey species. So, if both prey species
were simultaneously available the model would look
like:

Xt+1=Xt+a1Xt−b1Xt (Xt+gYt )−c1XtZt

Yt+1=Yt+a2Yt−b2Yt (Yt+gXt )−c2YtZt

Zt+1=Zt−dZt+e2c2YtZt+e1c1XtZt . (A.1)

Here, Xt , Yt and Zt are population densities of
the two prey species and the predator, respectively, at
time t.

In order to introduce sequentiality into the
predator-prey interactions we now decompose the
processes within one season. With respect to the
predator dynamics we distinguish four important
moments within one season:

, t0 is the beginning of the season.
, t1 is the moment when the predators switch from

early prey to late prey.
, t2 is the moment, at the end of a season, at which

predators start reproduction.
, t3:=t0+1 is the end of a season (=beginning of the

next season).

In the intervals between these four points of the
season the following processes occur:

From t0 to t1: predators feed on early prey. The
consumption per unit predator density is c1X. Survival
during this period is assumed to be completely
dependent on the amount of early prey consumed. So
the number of predators entering the second part of the
season is

Z(t1)=Z(t0)c1Xs1.

Since we interpret the term s1c1X as a survival rate, it
should be smaller than 1 for all feasible values of X:
s1c1XmaxE1, with Xmax=a1/b1 (carrying capacity of X)

From t1 to t2: predators feed on late prey. The
consumption per unit predator density is c2Y. Survival
during this second half of the season is assumed to be
largely dependent on the amount of late prey
consumed, but we also assume that a small fraction can
survive independently of late prey:

Z(t2)=Z(t1)c2Ys2+Z(t1)s3

with s2c2Ymax+s3E1.
From t2 to t3: reproduction of the predators. With

respect to reproduction we distinguish between
predators which have been feeding on both early and
late prey, and predators which have been feeding only
on early prey (during the first half of the season):

Z(t3)=e2(Z(t1)c2Ys2)+e1(Z(t1)s3).

Combination of the previous three equations gives:

Z(t3)=e2Z(t1)c2Ys2+e1Z(t1)s3

=e2s1s2c1c2Z(t0)XY+e1s1s3c1Z(t0)X.
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The decrease in prey density due to predation then
becomes c1XZ(t0) for early prey, and c2YZ(t1)=
s1c2c1XYZ(t0) for late prey.

Using the above assumptions we modify the
eqns (A.1) in the following way:

Xt+1=Xt+a1Xt−b1Xt (Xt+gYt )−c1XtZt

Yt+1=Yt+a2Yt−b2Yt (Yt+gXt )−s1c2c1YtZtXt

Zt+1=Zt−dZt+e2s1s2c1c2YtZtXt+e1s1s3c1XtZt .

(A.2)

Definition of the parameters is as follows:

a1, a2: natural rate of increase of prey X and Y,
respectively.

b1, b2: competition coefficient of prey X and Y,
respectively.

g: ratio between interspecific and intraspecific
competition.

c1, c2: coefficient of functional response of prey X
and Y, respectively.

s1, s2: survival rate of the predators when feeding
on prey X and Y, respectively.

s3: survival rate of the predators who do not
feed during the second half of the season.

e1: reproduction rate of the predators which
have been feeding on prey X only.

e2: reproduction rate of the predators which
have been feeding on both species of prey.

We used the following default parameter setting:

a1=a2=1; b1=b2=0.005; g=0.75; d=1;

c1=0.05; c2=0.15;

s1=0.1; s2=0.03; s3=0.01;

e1=0.01; e2=10.

To simplify the model we lump some parameters in
the following way:

c'2=s1c2c1=0.00075;

e'1=e1s1s3=0.00005;

e'2=e2s2=0.3;

This gives the simplified model, where we again
dropped the primes of the three lumped parameters

Xt+1=Xt+a1Xt−b1Xt (Xt+gYt )−c1XtZt

Yt+1=Yt+a2Yt−b2Yt (Yt+gXt )−c2YtZtXt

Zt+1=Zt−dZt+e2c2YtZtXt+e1c1XtZt . (A.3)

APPENDIX B

Implementation of the Hobo Model

In this appendix we describe the standard version
of the Hobo model. The parameters, functions and
algorithms described here are used in all simulations
unless otherwise specified.

The simulated forest is formed by a rectangular
grid of patches. Every patch contains normally
exactly one tree; exceptionally a patch can also be
empty.

For both types of trees we distinguish 10 age classes.
A new tree that takes over an empty patch is assigned
the age a:=1. For all surviving trees this parameter is
increased by 1 at the end of each season until a=10 is
reached. From the age of 10 the trees are considered to
be mature and they do not grow any more.

Every patch stores values of six parameters: t-tree
species inhabiting the patch (1=early, 2=late),
f-foliage (number of leaves), a-age, g-eggs (see below)
and two values h1 and h2 representing the concept
of a seedling bank. Both h1 and h2 are assigned zero
values at the beginning of the simulation. Near the end
of each season, a certain number of new seedlings of
early and late trees are allocated to the patch, as
described below. These numbers of new seedlings are
added to h1 and h2, respectively. Then h1 and h2 are
multiplied by a seedling survival rate—we used 0.3
throughout the simulations. The resulting values are
used as h1 and h2 in the next season. In this way,
the seedling bank keeps an account of the outcomes of
previous years, with a minimum overhead of
additional data structures.

Duration of a season was set for convenience at 100
simulation time units. The seasonal dynamics of trees
consist of the following events (all times are given
relative to the start of a particular season, i.e. on
modulo 100);

(i) Budbreak. Budbreak of the early trees marks
the beginning of each season, i.e. occurs at time
b1=0 days. Late trees break bud at b2=10 days.
After breaking bud the trees get fresh foliage.
The initial number of leaves for a tree p of
species i, i=1, 2, as a function of its age a(p) is

f0(p):=f(p, bi ):=1400.a(p)+1000. (B.1)

(ii) Reproduction. At time s=40, i.e. after the
larvae pupate, both tree species produce seeds
which are locally dispersed and eventually
make a contribution to the seedling banks of the
corresponding patches. The number of viable
seedlings produced by a tree p depends on the
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species, age a(p) and actual foliage f(p, s) of the
tree p:

s(p):=
a(p) f(p, s)u(p)

100
.

The coefficient u(p) depends on the species
of tree p: it is 1.1 for early trees and 1 for
late trees. Increased production of seedlings for
early trees is due to the fact that they start
photosynthetic assimilation earlier.

Of the above mentioned number of seedlings,
20% are supposed to stay in the patch of the
parent tree and the eight immediate neighbours
get 10% each.

(iii) Forest update. Each season is closed at time v

(we set arbitrarily v:=50). At this moment,
some of the trees die and are immediately
replaced by new young trees. The probability of
inter-seasonal survival again depends on the
species of tree p, via the coefficient u(p):

Ps (p):=01−
Pa (p)
u(p) 1u(p)Pf (p).

Age-dependent mortality has the probability
Pa (p):=0.05/a(p), i.e. young trees are more
vulnerable. Survival is also less likely for
defoliated trees, as expressed in the term

Pf (p):=min61,
f(p, v)+3000

f0(p) 7,

where f0(p) is the initial (full) foliage given
by (B.1). Note that even completely defoliated
trees have a non-zero probability of survival.

An early tree replaces a dead tree in a patch
p with probability

Pe (p):=h1(p)/(h1(p)+h2(p))

for the early species and symmetrically for
late tree. These probabilities reflect the species’
relative abundance in the seedling bank.

Another seasonally varying property of trees is
important for the dynamics of larvae—the leaf
palatability q(p). Leaf palatability depends on the leaf
maturation t(p) (number of days since budbreak of the
tree p) in the following way:

qi (t):=61, if tE8;

(28−t)/20, otherwise.

Larvae are implemented as Hobo populations, see
Lhotka (1994), which can be thought of as sets
of equivalent individuals. In the present model this

equivalence relation is based on weight. Weight w(l) of
a larval population l increases continuously in
the range 0–22. A weight class (or population in the
terminology of the Hobo system) contains all larvae in
a given patch whose weight gives the same value when
rounded to the nearest integer. Thus, more weight
classes may coexist in a single patch.

The development of larvae in the model is divided
into four simulated instars. At times of 8, 16, 24 and 32
days after hatching the larvae face ‘‘deadlines’’:
populations with weights of less than 3, 8, 13 and
18, respectively, are killed. On the other hand,
whenever a population reaches the weight of 22, it
immediately finishes the larval stage. The idea of
instars was used mainly for improving the efficiency of
computer simulation since populations with bad
performance are eradicated in earlier stages of the
simulation run.

The life cycle of larvae consists of alternating feeding
and migration. For a larval population l on a tree p,
the decision about what to do next is made as follows:
If the tree p is highly defoliated, or its leaves
unpalatable, the entire population l splits up and
moves to neighbouring patches. Otherwise, each
individual of all larval populations on p is allocated a
fair share of the available foliage. If this share is not
enough to satiate the population l, part of l migrates,
in proportion to the ratio of available and desired
amount of food. The remaining larvae then eat their
share of leaves and grow accordingly. In precise terms,
the criteria are as follows:

(i) If foliage f(p) is less than 100, or leaf
palatability q(p) is less than 0.05, the entire
population migrates (the algorithm for strong
migration is used, see below).

(ii) Otherwise, the amount of food available for
each individual larva of the population is
determined thus:

e(p, l):=min6 f(p)
N(p)

, E(l)7,

where f(p) is the actual foliage and N(p) is the
total number of larvae on the tree p, that is, the
sum of population sizes of all populations on
the tree p, including l. The term E(l) represents
food demand of an individual larva of the
population l which grows exponentially with
the larval weight: E(l):=3 exp(0.08w(l)).

(iii) Weight of population l is increased by
e(p, l)q(p)/7, and population l then waits for
e(p, l) days. Duration of feeding and digestion
is equal to d(p, l):=e(p, l)/E(l), i.e. the
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population l is inactive for 1 day if its food
demand is completely satisfied.

(iv) Foliage of tree p is decreased by e(p, l)n(l)
where n(l) is the size of population l.

(v) If the relative satiation d(p, l) is less than
0.1, the entire population l leaves the tree
p— the algorithm for strong migration is
used again. Otherwise, only a part of
population l migrates, using another way of
migration, called weak migration (see below).
The fraction of larvae that migrate is
1–0.9d(p, l)q(p).

Two migration algorithms have been mentioned:
Weak migration is assumed to take place via
overlapping branches of neighbouring trees. There-
fore, the migrants move, with equal likelihood, to one
of four direct neighbours in horizontal and vertical
directions.

Strong migration, on the other hand, means that
the larvae use all possible ways to reach neighbouring
trees, including dangerous ones like descending to the
ground and looking for another tree. Hence we assume
in this case that 20% of the population do not survive
this action. The remainder are distributed over all eight
surrounding patches. Each of the horizontal and
vertical neighbours gets, on average, 15% of the
population, whereas the diagonal neighbours get 10%
each, on average. Populations that migrate in this way
can resume activities (on other trees) after 0.3 days
(migration period).

Care has been taken not to make dispersal of
larvae too isotropic. On the other hand, this frequent
operation has been made as computer-efficient as
possible. So for small populations (typically of size less
than 100) a random sample of the corresponding
multinomial distribution is generated, where the
percentages attached to the neighbouring patches are
used as probabilities. Larger populations are divided
exactly according to the percentages.

The model-independent mortality rate of larvae was
set at 0.05 day−1. For large populations this amount is
simply discounted from their population size, while for
smaller populations probabilistic mortality is applied
on the individual-by-individual basis.

In this model we do not follow the life history of the
insect after it completes the larval stage. All we need
to know is the distribution of eggs at the beginning of
the next season. To this end, we assumed that the sex
ratio in the adult population is 1:1. Each larva of
population l which later becomes female yields the
following number of viable eggs for the next season:
g(l):=25·(wf (l)+18)+50, where wf (l) is the weight of
l at the end of the larval development. Hence, for the

minimum weight of 18, g(l) is 50, and for maximum
wf (l)=22 the number of eggs is 150.

Even more important than the number of eggs is the
way in which these eggs are distributed over the space.
In the standard variant females are assumed to be
wingless. An individual female is assumed to lay eggs
in the patch where it completed larval development
with probability 0.2, and in each of the eight im-
mediately neighbouring patches with probability 0.1.

Boundary conditions are specific for different spatial
processes: The boundary is open with respect to the
dispersion of seeds and eggs and strong migration,
whereas it is closed for weak migration.

The Smalltalk source code of the Hobo model
can be obtained from anonymous FTP server
baloun.entu.cas.cz, directory/pub/hobo/seqpred.

APPENDIX C

Implementation of the CA Model

The cellular automaton consists of 240×120 cells.
The variables of a cell are tree and insect. A cell can
be either empty or occupied with respect to each
of these two variables. We distinguish three different
tree types: early species, late species and a mutant of
late species.

Periodic boundary conditions have been used in the
simulation of Section 6.1 in the main text; we therefore
assume a forest on a torus. In the forest with a gradient
(Section 6.2 and 6.3) periodic boundary conditions
have been used for the vertical direction (top and
bottom boundary), whereas open boundaries are used
for the left and right boundary.

 

, Local (density-dependent) reproduction: if a cell is
empty, it chooses one of the eight surrounding
neighbours at random. The empty cell will change its
state to the state of the chosen neighbour. If this
neighbour happens to be empty as well, the cell will
remain empty.

, Global mortality (Mg ): a tree can die each year
with probability Mg . In the simulations of Section 6.1
this parameter has value Mg=0.03 for all tree species.
In Section 6.2 and 6.3 the global mortality of early
species is dependent on the position of a tree on a
(left-to-right) gradient. On the far left side of the forest
Mg (1)=0.02, whereas on the far right side of the forest
Mg (1)=0.04. The global mortality for trees of late
species and mutant species is the same all along the
gradient: Mg (2)=Mg (m)=0.03.

, Local (density-dependent) mortality (Ml ): if a
cell is occupied by a tree of a certain species, its
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probability of becoming empty is proportional to the
number of surrounding trees of the same species. Every
cell chooses one of its eight surrounding cells at
random. If the chosen neighbouring cell is occupied by
the same species, the probability of dying is 5%
(Ml=0.05).

 

, Local reproduction (Pr ): At the end of a season
insectswill reproduce and spread to a subset of the trees
in the neighbourhood. Insects which have been feeding
on a tree of late species during the second part of the
season will reproduce and spread to 50% (randomly
chosen) of the 5×5 surrounding neighbourhood
(Pr (2)=0.5). Insects on a tree of mutant species will
reproduce and spread to 95% of this neighbourhood
(Pr (m)=0.95).

, Influx (I): At the beginning of every season a small
fraction (I=0.001) of the trees will receive insects. We
added this property to the CA-model in order to
guarantee the presence of insects during the whole
simulation.

, Migration: insects migrate by diffusion. We here
use the cellular automaton diffusion model of Toffoli
& Margolus (1987) with particle conservation. The
migration is simulated by performing five consecutive
diffusion steps. This implies that insects can move no
further than a maximum of five trees away.

    

There is no interaction between insects and trees
during the migration of the insects.

, Survival: During the first part of the season insects
can only live on trees of early species. So, if they are
in a cell without a tree or with a tree of late species (or
its mutant), they will die. During the second part of the
season this situation changes: insects in empty cells or
on early species will die, insects on late species (or its
mutant) will survive.

, Damage (Mi ): If a tree is occupied by an insect
its probability of dying increases. In the first part of
a season, when insects live only on early species,
the probability that a cell will become empty is
35% (Mi (1)=0.35). In the second part of the season,
when insects live only on late species (or its mutant),
this probability is higher Mi (2)=Mi (m)=1.0. In
this way we take into account the fact that insects
grow larger during the first part of the season and, as
a result, will eat more during the second part of the
season.

  

We model the different processes within one year
subsequently:

(1) local (density-dependent) mortality of trees
(2) global mortality of trees
(3) global influx of insects
(4) mortality of insects which are not on early

trees
(5) damage to trees (early)
(6) migration of insects
(7) mortality of insects which are not on late trees

(or mutant)
(8) damage to trees (late and mutant)
(9) reproduction of trees

(10) reproduction of insects.



Asimulation startswith an initializationof the forest
with 50% early and 50% late, randomly distributed.
The model then runs for 300 time steps without insects,
in order to produce a mixed forest. The situation after
these 300 years is then taken as the initial distribution
of trees for the simulationwith insects.Mutant trees are
introduced by changing 5% of the trees of the late
species to the mutant species.


