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Spiral breakup in a modified FitzZHugh—-Nagumo model
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In a modified FitzHugh-Nagumo model for excitable tissue a spiral wave is found to break up into an irregular spatial pattern.
The main difference between our equations and the standard FitzHugh-Nagumo model is that we use two different time con-
stants: one for the relative refractory period and another for the absolute refractory period. Breakup occurs when the relative
refractory period is short. The effect is numerically stable at least for a five-fold decrease in the space integration step.

1. Introduction

Spiral waves in excitable media provide an im-
portant example of self-organization phenomena in
spatially distributed biological, physical and chem-
ical systems [1]. Usually, spiral waves occur either
because of inherent heterogeneity in the excitable
tissue, or because of some special initial conditions
[2]. However, in some cases, spirals can be gener-
ated even in homogeneous systems. Recent studies
have demonstrated that a spiral can break up, and
spontaneously generate complicated spatio-temporal
patterns [3-10]. This process of spiral breakup has
been observed in some sophisticated equations for
cardiac tissue [4-7] and in several cellular automata
models [3,8-10]. However, the mechanism in-
volved is unknown, but the breakup is believed to be
associated with the discrete nature of the model [8],
or in some cases to be connected with the presence
of two inward ionic currents [7]. One way of study-
ing the mechanism underlying this effect is to re-
produce it in simple minimal partial differential
equation models of excitable tissue, which allow us
to study the influence of discrete effects, pulse shape,
dispersion relation, etc., on the process of spiral
breakup. However, recent computations by Winfree
show that this effect is unlikely to exist in classical
FitzHugh-Nagumo equations [11]. Here we show
that it is possible to obtain the spiral breakup in a
simple two-component model of excitable tissue by

modifying the dynamics of the recovery variable.

2. Mathematical model and method of computation

For numerical computation we use FitzHugh-
Nagumo-type equations with piecewise linear
“Pushchino kinetics™ [12,13],

de/dt=Vie—fle)—g,
dg/dt=€(e, g) (ke—g) , (1)

with f(e)=C,e when e<e;; fle)=—C,e+a when
e <e<e,; f(e)=Cs(e—1) when e>e,, and €(e, g)
=¢€, when e<e,; €(e, g) =€, when e>e,, and e(e, g)
=¢; when e<e; and g<g,. The parameters deter-
mining the shape of the function f(e) are ¢, =0.0026,
e,=0.837, C,=20, C,=3, C5=15,a=0.06 and k=3.
With these parameter values the function f(e) is
continuous. The shape of the function f(¢e) specifies
fast processes such as the initiation of the action po-
tential. The dynamics of the recovery variable g in
(1) is determined by the function €(e, g). In (e, g)
the parameter €3 ! specifies the recovery time con-
stant for small values of ¢ and g. This region ap-
proximately corresponds to the relative refractory
period. Similarly, ¢! specifies the recovery time
constant for relatively large values of g and inter-
mediate values of e. This region approximately cor-
responds to the wave front, wave back and to the ab-
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solute refractory period. The main difference between
model (1) and the previous model [ 13] is that model
(1) uses two independent constants ;' and ¢; ' for
the refractory state. The values of these parameters
were fixed at €7'=75, ¢5'=1, g,=1.8. and 0.5<
e <10,

For numerical computations we used the explicit
Euler method with Neumann boundary conditions.
and the rectangular grid measured from 100x 100
elements up to 1000X 700 clements. To initiate the
first spiral we used initial data corresponding to a
2D broken wave front, the break being located in the
middle of the excitable tissue.

3. Results and discussion

We found that the spiral breakup occurred spon-
taneously in the excitable media that have a short-
ened relative refractory period. In our computations
we fixed the time constant for the absolute refractory
period at ;' =75, and we varied the value of the
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time constant for the relative refractory period ¢; '
We found that spiral breakup occurred if €5 ' was less
than 5.5. Figure 1 shows the c¢volution of a spatial
pattern in a medium with ¢; ' =2.8. In this case the
wave makes several rotations with pronounced
meandering and begins to fragment close to the centre
of the spiral (fig. 1c). However, at this moment 1n
time, there is not enough recovered space and the
wave breaks disappear. Later. at time 7= [ 1 1. a larger
fragment of the wave breaks away (fig. lc). init-
ating two new spirals. This process continues, and at
(=183 we see five interacting rotating spatial waves
(fig. If).

In a large excitable medium, the behaviour of the
system becomes more complicated. Figure 2 shows
the same computation as in fig. 1, but on a grid of
1000 x 700 elements. The final structure comprises
many wave breaks of various sizes and a compli-
cated spatial distribution of the recovery variable.
This picture evolves in time, new breaks occur con-
tinuously and disappear; generically, however, the
picture remains similar. Note that in this case the

d

Fig. 1. The spiral breakup in model (1). The pictures are at time (a) (=27, (b) 67. (c¢) 82, (d) 107, (e) 111, (f) 183. Numerical
integration with space step h,=0.5 and time step 4, =0.0222 on the grid of 120 120 elements. The black area represents the excited state
of the tissue (> 0.6), dark grey shows the region where g> 1.8 (close to the absolute refractory state) and intermediate shading from
grey to white shows different levels of g, 0 < g< 1.8 (estimate for the relative refractory period).
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Fig. 2. The spatial pattern that occurred spontaneously due to the spiral breakup in the excitable medium measuring 1000 X 700 elements

at the time ¢=1554. All other settings are the same as in fig. 1.

process of spiral breakup also started close to the
centre of the initial spiral, and spread out over the
entire medium.

We studied the stability of spiral breakup at var-
ious spatial and time integration steps. Figure 3a
shows the same computation as fig. 1 but with the
space step decreased five-fold and the time step de-
creased 25-fold. In both cases the picture of the first
major breakup is similar. (Compare fig. 3a and fig.
le.) The error in these computations, estimated us-
ing the difference between the computed and the sat-
urated value for the velocity of plane wave propa-
gation, is less than 0.2% for space step 4,=0.1 and
less than 5% for A,=0.5.

Because the difference in the time constants of the
absolute and relative refractory periods is important
for the effect studied in this paper, we looked for a
possible source of numerical instability: the region of
abrupt change from ¢; and ¢,. We made a compu-
tation in which we used linear interpolation from the
value of €7 ! =75 to the value of €5 ' =2.8. In this case
the excitable tissue spends about 30% of time at the
region where €5! changes to ¢;'. Figure 3b shows
that this modification of recovery did not affect the

results of our computation. The first major breakup
appeared in the same way as in figs. 3a and le.

For the breakup of spirals, it is not necessary for
the two nullclines in eq. (1) to be parallel to each
other (k=C,=3); however, the slope of the null-
cline for the slow variabie affects the process of spi-
ral breakup. We found the effect of breakup at k=4.5
and C,=3, but it was less pronounced. The first ma-
jor breakup in this situation occurred at time 7= 305,
whereas in fig. | it occurred at t=111. The threshold
of the excitable medium (the parameter a) was also
important for the process of spiral breakup. We did
observe the breakup when the threshold was in-
creased three-fold (a=0.18); however, the first ma-
jor breakup in this situation occurred later, at 1= 360.
Another parameter that is important for spiral
breakup is relative refractoriness (dependence of ¢
on the variables e and g). As we mentioned above,
increasing the time constant for the relative refrac-
tory period makes the breakup impossible at €5! >
5.5.

The effect of spiral breakup is not a unique prop-
erty of model (1) with particular piecewise linear
“Pushchino kinetics”. Modifying the dynamics of the
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Fig. 3. The first major breakup of a spiral wave at various inte-
gration steps (a) and recovery Kinetics (b). (a) Computation of
eqgs. (1) with A,=0.1, ~,=0.000888, grid 600X 600 clements. (b)

Computation with linear interpolation from the value of ¢;' =

75 to the value of ¢7'=2.8: «(¢.g) " '=¢;' when ¢« ¢, and
g<2 0 ele. gy T =ei ey "= (g—1.5)/0.6 when oo
and |.5<g<2l:e(e.g) '=¢7' whene<e,andg< 1.5 A =05

h.=0.0222, grid 120 120 elements; both pictures are at time
=111

208

recovery variable (using two independent constants
for relative and absolute refractory periods ), we were
able to observe the cffect of spiral breakup in the
FitzHugh-Nagumo model, with the standard tunc-
tion f(¢) in the form of a cubic parabola (/(¢)=
20e¢(e—0.1)(e—1)). We can see (fig. 4) that the
picture which occurs in this situation is similar to
figs. 1 and 2.

The mechanism underlying spiral breakup s not
quite clear; however, in our case it is connected with
functional heterogeneity of the tissue with respect 1o
the refractory period, the heterogencity being in-
duced by the spiral itself. The patch in the refractory
period (fig. 1d) at which the wave later breaks up
can be seen clearly. We presume that this kind of het-
erogeneity is associated with some kind of biturca-
tion in the pulse propagation during high frequency
forcing. Figure 5 shows the time—space course of one-
dimensional wave propagation during forcing with
period f,=24.5. The length of the forcing period is
within the range of periods of a meandering spiral at
these parameter values. We sec (fig. 5) small oscil-
lations in the velocity and duration of the excited

Fig. 4. The spatial pattern that occurred spontaneously duce to the
spiral breakup in the excitable medium measuring 500 % 500 ¢le-
ments at the time /=2266. Numerical integration with the func-
ton f{e)=20e(c—-0.13 (e~ 1): the other parameters are: A =45
) =0.049. ¢:=0.685. ¢, ' = 1.5 Al other settings arc the same as
in fig. 1.
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Fig. 5. Pulse propagation during periodic forcing with period z,=24.5. A,=0.1, h,=0.000888; gray scale coding is the same as in fig. 1.
Space and time are measured in nondimensional units. The dotted line corresponds to moment =1038 in time.

state of the puise, and large oscillations in the re-
fractory period. The important feature of these os-
cillations is the nonmonotonic dependence on space
of the edge of the absolute refractory period. In fig.
5 we can see clearly the maxima and minima in the
absolute refractory period profile and the excitation
propagating steadily upward and to the right. This
means that if we consider the spatial state of this one-
dimensional excitable medium at some moment of
time t=1038, we will find a refractory patch behind
the propagating pulse. So, the patch can be consid-
ered as a heterogeneity with respect to refractoriness
at this moment in time. We think that such hetero-
geneities break up the two-dimensional spiral. The
other important feature of this “patch heterogene-
ity” is that it disappears quickly, providing re-
covered space in which the new breaks can survive.

Note that the spiral breakup observed here is sim-
ilar to the onset of the complicated spatio-temporal
patterns observed in cellular automata models for a
process of evolution [9] and for spread of excitation
in cardiac tissue [8]. Studies of the models [8,9]
have also revealed that relative refractory period
plays an important role in the process of spiral
breakup.
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