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Abstract — An interactive computer system for teaching and investigating models formulated in terms
ot anerential or (stochastic) difference equations is presented. Population models are used as
examples to demonstrate the use of the system.

It is argued that (simulation) models should contain not only the dynamics of the system to be
simulated, but also default parameter values and a notion about the qualitative dissimilarity of the
parameter values. The latter notion is provided in the present system by graphical representation of
the static structure of the state space. Thus the system exploits the strong points in both man and
machine in the interaction as it relies for the generation of complex graphical display on the computer
and for complex pattern recognition on the human being.

Graphical display Isocline-planes Simulation Ecological models Population models
Eutrophication

INTRODUCTION

In this paper we present an interactive graphic computer system for the investigation of
models formulated in terms of differential - or (stochastic) difference equations. The system
was originally developed for the investigation of population models and we have used it so far
mainly in this context. Obviously it is by no means restricted to this subject matter as it can be
used for the investigation of any model of up to ten coupled differential or difference
equations. Nevertheless we present the system in the context of population models, not only
because this is the subject of our own research, but also because of the state of the art in
population modelling which demands preeminently the advantages which the system
provides. These advantages include a fast access to a variety of models and an easy grasp of
especially the qualitative properties of the models, while the representation is quantitative
enough to avoid misleading results which purely qualitative solutions may yield.

In building and debugging one’s own internal representation of the facts the best aid seems
to be, to be confronted with different representations of the facts, to match them and to
amend for wrong expectations. Computers have possibilities of communicating concepts
which most people lack, like (three dimensional) pictures, but they are, unlike humans,
relatively poor in verbal utterances. Here we present a program system for graphical
presentation of models as static and dynamic properties of the state space. The system can be
used :

1. for classroom demonstrations of ecosystem models,

2. to familiarize individual students with the properties of models, in particular relative to
the setting of parameter values (after all it is the parameter value, not the structure of
the interaction, which makes the difference between viable and non-viable circum-
stances for populations),

3. to investigate the properties of new models by research workers.

The greatest satisfaction is obtained from working with the system when one’s

expectations of the behaviour of the model are just slightly wrong.

SIMULATION

It is often argued that a severe shortcoming of simulation models is that, in contrast to
analytical solutions of the corresponding models, they do not provide “true understanding”
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of the phenomenon ; this statement is implicitly based on the fact that simulation requires full
specification of parameter values. We think that this evaluation stems from an often held, but
misleading, image of science, i.e. the image that science consists of sets of true, general
statements with as few parameter bindings as possible. A better image is that science consists
of a set of fully specified paradigm models, each demonstrating a particular aspect or
approach to a class of phenomena. Such example models include prototypes, counter
examples, borderline cases, teaching examples etc. [5,6].

ECOLOGICAL MODELS

Many housewives wipe away spiderwebs to get rid of spiders. Even the simplest ecological
models show that this merely results in an increase of mosquitos, while the spider population
remains constant. Like in this example, ecological problems have, for many people,
counterintuitive solutions.

The theoretical framework of ecology consists of “mini” models of population in-
teractions [2—4, 7-12]. These “mini” models are known to be wrong in all (or almost all)
cases, but they do provide an, heuristically useful, conceptual framework for thinking about
ecology.

These models are most often given in the form of sets of differential or difference equations.
However, they are actually not sufficiently specified that way, because the behaviour of the
model is a useful paradigm for (some aspect of) the behaviour of ecological systems for a
limited number of sets of parameter values only. For example, a population passing through
astate of e.g. 10~ % individuals and recovering to a moderate or high population size is not a
representation of an observable ecological situation. Thus we need default parameter values
in order to give the models their heuristic value for ecology. If we want to study the models in
different circumstances, we need, moreover, some sort of (dis)similarity criterion on
parameter values, otherwise the search space becomes too large. However, numerical (dis)-
similarity of the parameter values will in general not suffice for this purpose and we need
more sophisticated, model-dependent, ways. Here we will use, for example, the repre-
sentation of the structure of the state-space by means of the @-isocline planes of the
populations, i.e. the planes in which the change of one of the populations is zero, to provide
knowledge about which differences in parameter values give rise to qualitatively (dis)similar
situations in the particular model.

A scientific model should contain all the ingredients mentioned i.e. a representation of the
interactions of the variables, default parameter values, and a notion about the (dis)similarity
of sets of parameter values. If we incorporate all these ingredients in simulation implemen-
tations of the models, these implementations can provide a thorough understanding of the
models.

A TOOL FOR TEACHING AND STUDYING
(POPULATION) MODELS

The tool we present here for teaching and investigating population models is called
TRICLE, Program for tridimensional representation of trajectories and isoclines.

TRICLE can handle deterministic modelsin terms of differential and difference equations,
and stochastic models in terms of difference equations. It handles up to 10 coupled equations
and it incorporates for each model not only the structure of the interactions, but also default
parameter values and a representation to show the dissimilarity of the parameters, and it
provides the following facilities for displaying the current status of the model:

1. alphanumerical representation of the population’s interactions and the parameter
values;

2. representation of the @-isocline planes of each of the populations in the first quadrant
(only positive population numbers are meaningful) in a three-dimensional sub-state-
space of three selected populations (the display space). Qualitatively different
parameter values are shown as qualitatively different geometrical configurations of the
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isocline planes. This display therefore guides the user in selecting parameter values, in
such a way that all possible, qualitatively different, sets can be covered. This display
also guides the user in selecting initial population sizes : the outcome of the simulation
may depend on the initial state. In order to be sure to observe all qualitatively different
behaviours of the system, initial states can be chosen in each of the sections of the state-
space divided by the isocline planes.

3. representation of the trajectories in the display space, for selected initial values in this
space.

4. representation of changes in time; all populations are displayed in this case.

The @-isocline planes can be represented by:

1. their intersections with X =0, Y=0 and Z=0 planes

2. shaded planes in the first quadrant

3. their intersections with other isocline planes in the first quadrant.
A

1

TRICLE session runs as follows:

. The user selects one' of the available population models.

2. The system displays the structure of the population interactions and the current

(default) parameter values.

The user changes some parameter values.

4. The system displays the current (default) values of the drawing specification
parameters, i.e. which intersections of which isoclines—planes should be drawn, which
should be shaded, how the direction of shading is to be, whether the lines should be
dashed, on which scale it should be displayed and where the viewpoint of the user is
with regard to the projection of the three-dimensional state-space.

5. The user can change any of these.

The system draws the requested isoclines.

7. The user inspects these, and checks his own expectations about the effect of the changes
in parameter values he made.

8. The system prints NSTEP X Y Z DT, requesting the number of simulation steps and
the initial state for a simulation and the time increment (if DT = 0 variable step
integration is used).

If NSTEP < 0, the system returns to 2.

If NSTEP = 0, the system displays a trajectory it has computed in the previous
simulation phase in the current display space.

If NSTEP > 0, the trajectory is computed and displayed in the current display
space; the last coordinates in display space are printed ; the system returns to 8.

9. The system requests whether a time display is wanted by requesting first time and last
time. If last time > 1, a time plot is shown, and the system returns to 9.

If last time = — 99, the system returns to 6, i.e. the isoclines are drawn again as
specified before, but “focused” to the current values of the variables not displayed.

If, moreover, first time = — 99, the new isocolines are drawn without paging the
screen, i.e. in the current picture.

w

)

Program organisation

TRICLE was developed in FORTRAN IV on the CYBER 7328 with a TEKTRONIX
4010 graphics terminal connected through INTERCOM 4, at 300 baud. It is presently being
adapted for a PDP 11/45 configuration with the same terminal. The program is organised in
such a way that the models for population interaction are incorporated in separate modules,
which can be provided by the user, and so that several (up to 10) models can be present in the
system simultaneously. Each model is represented in two procedures :

1. POPDY Nn in which the differential (difference) equations governing the dynamics of
the model are given.
2. ISODEFn in which the @-isoclines are expressed in terms of each (or some) of the other
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Fig. 1. Chart of program organisation.

populations. These expressions will in general be in the form of a call to the
corresponding POPDY Nn procedure.
(nis a digit (p-9) to distinguish ten different simultaneously available models). A chart of the
program organisation is given in Fig. 1.

The procedure GETPAR is available to the model-specification routines for parameter
specification and default setting. GET PAR is called by the ISODEF modules, which provide
it with the dimensions of the parameter arrays, default model parameters, and default
preferences for the display parameters (i.e. shading direction and intersections). The latter are
used to generate the default parameters in accordance with the requested display space.
GETP AR accepts user requests for changes in the model parameters. The usage of GETPAR
may be omitted if the ISODEF procedure sets its own parameters.

The main program TRICLE organises the main flow through the program and does the
displaying of the state-space. For this purpose it displays the current display parameters and
accepts changes thereof, and it calls the procedure POPDEF, which provides it with the
required model definition ISODEFn. The three-dimensional display is obtained through
calling the TRIPLT routines, which are organised analogous to the two-dimensional
CALCOMP routines. After drawing the isoclines in the first quadrant of the state-space,
TRICLE requests the specification of the simulation from the user and initiates the
simulation phase by calling SIMUL. SIMUL passes the control either to the integration
routines DIFFEQ (for continuous models) or to STEP, for discrete time step models or
rectangular integration of continuous models with the appropriate model definition
(POPDYNn), and draws the trajectories in the display space. Both types of integration use
the same model specification, i.e. the POPDYNn procedure. In the discrete time step
simulation some (or all) of the model parameters may be stochastic variables. They should be
specified as such in GETPAR by specifying besides the mean value (which is used for
calculating the @-isocline) also the variance. The integration is done according to the
rational extrapolation method of Bulirsch and Stoer (1966). This method has been chosen
because of its speed and accuracy (see Bulirsch and Stoer 1966). High accuracy is necessary
for models such as ours (e.g. inaccuracy in integration of the classical Volterra models may
change its qualitative behaviour of neutral stable oscillations to oscillations with rapidly
increasing amplitude). The method uses variable timesteps, which are chosen on the basis of
computability. The rigorous minimisation of the amount of computation so acquired is
useful for obtaining an insight in the (long term) behaviour of the model. However for elegant
representation a fixed step for output purposes is to be preferred, because the system’s
response is limited by the baud rate rather than by computation. Therefore, if a fixed output
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interval is used, the speed of drawing of the trajectories corresponds to time dynamics of the
system, and therefore contains extra information above the mere form of the trajectories. This
information is very useful in applications such as ours; it demonstrates for example the
relative stability of instable equilibrium points (the population numbers may, in the
neighbourhood of such an unstable equilibrium change barely for many generations).
Therefore the system provides for the possibility of fixing the output interval (at the expense
of computation time) by coding negative timesteps in stage 8 of the typical session as
described above.

Finally the main program asks the user the time stretch to be displayed as a time plot
and/or returns to the parameter specification phase (i.e. letting the ISODEF procedure call
GETPAR).

AN EXAMPLE OF INTERACTIVE INSTRUCTION
ON POPULATION INTERACTIONS

A problem in theoretical (as well as applied) ecology is eutrophication. The issue is the
following :

A surplus of nutrients can have disastrous consequences for the prevailing ecosystems as it
can lead to e.g. algal bloom or “dead water” (in the former case an excessive large algal
population occurs, while in the latter case all populations die out). These phenomena appear
to occur, however, for varying total amounts of available nutrients: certain amounts of
nutrients will lead in some cases to such effects, while in other cases a rich ecosystem prevails
under apparently similar circumstances. Theoretical ecology has partially succeeded in
explaining these phenomena. Models of predator—prey interactions (developed inde-
pendently from the eutrophication problem), do indeed show destabilisation for a large
amount of nutrients for the prey, leading to large fluctuations in the sizes of both populations.
These large fluctuations explain the observed phenomena of algal bloom (large amounts of
prey) and dead water in nutrient-rich ecosystems.

The destabilisation of the predator—prey interactions is illustrated by TRICLE in Fig. 2.

Predator—prey interaction is modeled as:

dA/dt = pyA — p,B{1 — exp(— p3A)} — p,A>

(1)
dB/dt = — psB + p¢B{l — exp(— p7A)} — pgB?,

in which A is the prey, B is the predator and p, .. ps are positive (or zero) parameters.

Eutrophication, i.e. increase of the amount of food available to the prey, is brought into the
model by decreasing the self-limitation of the prey (i.e. decreasing p,).

Figures 2(a), (c) and (e) show the effect of eutrophication in a deterministic differential
equation model. Figures 1(b), (d) and (f) show the same in a stochastic difference equation
model, in which p; and p; are stochastic variables with a variance of 0.1 times the mean.

From the figures it can be seen that the prey isocline changes by the eutrophication with
respect to the intersection with the X-axis (i.e. the maximal number of prey in absence of the
predator) and the position of the hump, which becomes higher and moves to the right (note
the changes in scale!). In the differential equations a qualitative change in the behaviour of
the system occurs as the intersection of the isoclines changes from right to left of the hump:in
the former case the trajectories approach the equilibrium point, in the latter case they diverge
from the equilibrium point and approach a limit cycle. The approach, c.q. divergence from
the equilibrium point is the slower the nearer the intersection is to the tip of the hump;
moreover, the limit cycles increase in diameter the farther the intersection is to the left of the
hump. The behaviour of the stochastic difference-equation model is analogous to the
deterministic differential equation system: the effect of eutrophication causes ever larger
fluctuation to occur in the predator and the prey populations. The differences with the
differential equation system are that fluctuation occurs already for less eutrophication (the
intersection being still to the right of the hump), and that extinction of the predator
population or both populations can occur, which is never the case in the differential equation
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model, however large the cycles are. As was mentioned, this should, however, be considered
as an artefact of the differential equation model, and we conclude that the present system
gives a satisfactory explanation for the occurrence of “dead water” in environments with an
excessive amount of nutrients.

However, it does not explain the discrepancy observed in the effect of a certain amount of
nutrients in different cases. A hypothesis to explain this was derived by analysing models for
three populations with TRICLE. In Fig. 3 a third population is added to the system. This
third population predates on the predator of the two-species system.

For the parameters of Fig. 2(e), plus the new population the isocline planes are shown in
Fig. 3(a), the trajectory in Fig. 2(c): the system approaches a stable equilibrium point. This
could be predicted from the position of the isoclines : the B isocline is curved to the right such
that the equilibrium point is at the right of the hump of the 4 isocline ; the intersection of the
C isocline (the upper predator) and the intersection of the A and B isocline planes is also at
the right side of the hump of the latter. Further eutrophication leads eventually also to
destabilisation of this equilibrium point. In Fig. 3(d) a large limit cycle occurs ; and in Fig. 3(¢)
a double limit cycle occurs. In general the trajectories of three-species systems will converge
to a toroidal plane.

From the analysis of the three population systems, of which a more detailed account will be
presented elsewhere, the above-mentioned paradox can be solved. If the third population is
introduced in the system while the nutrient level is as in Fig. 2(c) (i.e. a stable two-species
system) and is allowed to settle before the eutrophication becomes too strong, a smooth
“straight” path will be traced up to the new stable point, while when eutrophication is too fast
(the upper predator cannot develop fast enough) the large limit cycles as in Fig. 1(e) will occur
before the stable point is reached [as is the case in Fig. 3(c)], which may lead to extinction in
the stochastic case.

Thus, we hypothesise that the unfavourable effects of eutrophication as frequently
observed in polluted areas can be caused not only by the total amount of nutrients, but
primarily by the fast rate of change in the amount of nutrients (or by the non-availability of
the upper-predator).

In this example, the use of TRICLE to illustrate well-known ecological theory as well as its
use as research tool were demonstrated.

Note that, contrary to the figures, the display includes the rate of movement along the
trajectories. The observation of these movements increases the comprehensibility of the
display significantly.

DISCUSSION

Interactive computer systems most often use one of two strategies for interaction with the
user:

1. Extensive, sequential question answering and prompting for input specification. The
user needs in this case no or very few a prioriideas about what he wants to do, and what
the system is for.

2. Few guidelines are provided by the system for input specification. The user needs a
precise and complete a priori idea about what he wants and what he can do with the
system.

Contrary to these types of interaction, the here described system TRICLE confronts the
user with the current status of the model and leaves it up to the user to adapt the system (or
his own ideas) on the basis of this information. Thus, the user is supposed to have ideas about
likely behaviour of the model, and the system helps him in debugging and expanding these
ideas.

The system tries to optimise man—-machine co-operation in analysing the model under
consideration by using the strong points of each. The computer contributes its display
generating power and the human his pattern recognition power. The display puts less
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Fig. 2. Eutrophication in a predator-prey system, state space representation as provided by
TRICLE.
A, the size of the prey population, is represented on the X-axis.
B, the size of the predator population, is represented on the Z-axis.
X, Y, Z axes as indicated in Fig. 2(a).
——————— dA/dt=0
e s dB/dt=0
-—— indicates the starting point of the trajectory
— trajectory.
The dynamics of the interaction between the predator and the prey population are given in equation
(1).
@) py=0.5, p, =10, p; =0.02, p, = 0.0045, ps = — 0.08, p, = 0.2, p; = 0.015, pg = 0.0004.
Seale: x =0.1, y =10.5.
Stable equilibrium of 39 prey and 23.4 predators.
(b) Idem 2(a), except that variance (py) = 0.05 and variance (ps) = 0.008. Small fluctuations
around the equilibrium point.
(c) Idem 2(a), except for larger eutrophication : p, = 0.00315. Stable equilibrium point, which is
approached very slowly.
(d) Idem 2(c), but variance of p, and ps as in 2(b). Oscillations around the equilibrium point.
(e) Idem 2(c), except for larger eutrophication: p, = 0.00221. Scale: x = 0.1, ¥ = 025,
Divergence from the equilibrium point to a limit cycle, which passes through a state of a very
small prey population.
(f) Idem 2(e), except for the variances of p, and ps, which are as in 2(b). Both populations die out.
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Fig. 3. Eutrophication in a three species system, state-space representation as provided by TRICLE.
The interaction between A, B and C (A is prey for B and B is prey for C) is governed by:

dA/dt = pyA — pB{1 — exp(— p3A)} — paA’
dB/dt = — psB + p,B{1 — exp(— p;A)} +
— psC{1 —exp(— p1,B)} — psB*
dC/dt = — pyC + py2C {1 — exp(— py3B)} — p1aC?

A, B, C are represented on the X, Z, Y axis respectively (see Fig. 2(a)). Dashing of lines as indicated in
Fig. 2, and

—~-— dC/dt = 0.
Intersections of @-isoclines have dashing of first population.

(a) p;-ps as in Fig. 2(e); po = 0.4, pyo = 0015, pyy = 0.04, p,, =02, p;3 =00!. p;, = 0.001.
Scale: X = 0.05, Y = 0.25, Z = 0.5. @-isocline planes of the three populations.

(b) Idem 3(a). Only intersections of isocline planes are shown.

(c) Idem 3(b). A trajectory starting near the equilibrium point of the corresponding two-species

system reaches the equilibrium point after several large oscillations.

(d) Idem 3(e), except p, = 0.0126. Divergence from equilibrium point to large limit cycle.

(e) Idem 3(d), except for p, = 0.00114. Scale: X =0.02, Y = 0.25, Z = 0.5, “double” limit cycle.

(f) Idem 3(e), but p,, = 0.1, p;; =0.04, p;; =0.035. A toroidal path giving rise to aperiodic
oscillations.
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demands on the latter than the Figs. 2 and 3 of this paper do, because the 1socline—planes and
intersections are drawn sequentially. ,

Moreover, the display contains more information than the figures, because not only the
position of the trajectories is displayed, but also the speed with which the system moves along
the trajectories. The human pattern recognition capabilities are improved by suitable prior
knowledge. Therefore, the greater satisfaction is obtained from working with the system the
better one’s expectations about the behaviour of the system are.

Simulation models play a rapidly increasing role in science. Besides the strongly fact-based
simulation models which may be of predictive value, the here discussed conceptual “mini”
models can be of considerable heuristic value.

Simulation studies of such mini-models can be even more useful than analytical studies,
not only because analytical results may be difficult to obtain, but also because the latter tend
to yield either too quantitative (analytical expressions), or too qualitative (e.g. by linear
stability theory) results.

Simulation models enforce full specification of the parameters. Search in a large parameter
space is only feasible if a model-dependent notion on the dissimilarity of sets of parameters is
incorporated in the model. In our system this notion is provided by the representation of the
isoclines. If such a notion is available in a suitable form, simulation studies are likely to yield
results of the required generality and of the required detail. :

Finally we note that the incorporation of all ingredients of (scientific) knowledge in a
simulation model almost automatically leads to an improved interaction between the user
and the machine.
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The program TRICLE is available on request from the authors.
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