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I. INTRODUCTION

Organisms show for each species characteristic, pat-
terns in which cells and regions of different types occur.
Much biological work is done on the description of
these patterns: in taxonomy and morphology the pat-
terns are described and classified, in developmental
biology sequences of patterns occurring during the de-
velopment are described, while in evolutionary bio-
logy observed patterns are ordered into sequences in
such a way that the transitions seem small. In all these
areas of research. patterns are described in terms of
“features” (subpatterns) assuming certain “states”.
Given this description, classification or ordering may
be done either intuitively, selecting a few important
features (classical taxonomy). or by cluster analysis or
multidimensional scaling techniques where selection of
features is less severe (numerical taxonomy). Neverthe-
less. in all cases the selection of features remains cru-
cial. Moreover, the recognition of these features is
sometimes difficult. and it is not clear which subpat-
terns should be compared (homology problem).

Patterns of multicellular organisms are subjected to
some obvious constraints. All are produced by
repeated cell division, via a sequence of patterns. from
a single cell. All cells contain the same genetic material.
Obviously the behaviour of the cells (division or differ-
entiation) can be controlled only by local conditions
working on the genetic material, not by the current
global form of the organism.

In this paper we try to gain insight in the relations
between global patterns and their morphological de-
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isms is mostly done in terms of features assuming cer-
ain constraints imposed on them by the fact that they
n which some of the constraints of biological develop-

between different modes of description of such patterns.

Numerical taxonomy Parallel rewriting sys-

scription in terms of subpatterns and the description of
the local transformations [controlled by local (non
morphological) conditions]. by which the patterns are
formed. These relations seem important for the metho-
dology of pattern recognition in biology: often mor-
phological similarities are interpreted as representing
similarities on the genetic level. Moreover. we try to
obtain some feeling about “small” transitions between
morphological patterns under the stated constraints;
small transitions between successive stages in develop-
ment and those caused by small changes in the rules
specifying the development (studied by developmental
biology and evolutionary theory respectively).

We do this by studying a set of generative systems,
defined on the basis of the above named characteristics
of biological systems and the sequences of patterns
generated by these systems.

Thus we obtain the following modes of description
of the set of patterns:

(1) The generative system (a set of rules specifying
local transformations).

(2) String representations of the sequences of pat-
terns generated by these rules.

(3) Pictorial representations of the strings (as three-
dimensional branching patterns).

(4) Description of the pictorial representations in
terms of morphological features and the classification
on the basis of these features.

(5) Description of the sequences of the strings and
the pictorial representations in terms of recurrence
relations.
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It should be stressed that we do not consider these
generative systems as realistic models for biological de-
velopment: they only serve to investigate pattern de-
scription and pattern recognition of patterns subjected
to some of the most obvious constraints of biological
development. Biological development may be sub-
jected to more constraints and the simplified two-state
system we used is obviously not realized in biological
systems.

Il. THE GENERATIVE SYSTEMS

We used for our experiments the generative systems
proposed by Lindenmayer''? (and later called L-sys-
tems by van Dalen®) for the description of the
sequence of developmental stages of growing filamen-
tous organisms.

The systems may be described in terms of arrays of
simultaneously operating, interacting cellular auto-
mata or in terms of growing strings of symbols. The de-
scription in terms of cellular automata suggests
strongly the analogy with cellular organisms. In this
paper we will use the linguistic terminology. The main
characteristics of these generative systems, as com-
pared to Chomsky’s generative grammars, are:

(1) The production rules are applied to all symbols
simultaneously.

(2) No terminal alphabet is defined. since the em-
phasis lies on the sequence of strings formed and not
on alternative strings developed by the same grammar.
In these systems we denote by the word “language™
all strings formed from a given axiom. by applying
the production rules any number of times and not only
those strings which contain terminal symbols only.

(3) The starting string (axiom) is contained in the
alphabet (Rozenberg and Doucet).®)

Lindenmayer!"? introduced three different types of
L-systems. characterized by the influence of the context
on the productions. In 0-L-systems the production rules
are such that each symbol is to be transformed inde-
pendently of the neighbouring symbols (context): in 1-
Land 2-Lsystems the production rules are such that
each symbol is to be transformed according to its one
or two-sided context respectively. The context is
locally defined by the neighbouring symbol(s) or. when
there is no neighbouring alphabetic symbol. it is
defined by end symbols representing the environment.
The simultaneity of the productions introduces a non
localness in the systems. Formal definitions of L-sys-
tems are given by van Dalen,® Herman'*® and
Rozenberg and Doucet.

* For a formal definition of bracketed i-L systems, see Lin-

denmayer.'*)

The systems are called propagating if the empty
string is not generated by any of the production rules.

For the description of branching structures Linden-
mayer) introduced brackets in the L-systems. In the
bracketed deterministic L-systems which we have used.
all the production rules have the forms: (1) d(x.a.y) =
blc]: (2) d(x.a.y) = bc; or (3) d(x.a.y) = b. where a. b.
¢ are symbols of the alphabet, x is the left and y is the
rightcontext (possibly unspecified asin 0-L and 1-L sys-
tems). The brackets are terminal symbols and once in-
troduced are included in all subsequent strings. The
brackets are defined as changing the context of the
symbols. In 0-L systems the presence of brackets has no
influence on the subsequent development of a string of
alphabetic symbols.

The rules that define the context in bracketed. pro-
pagating deterministic 1-L and 2-L systems (bracketed
PDi-L systems: i = 1,2) are as follows: (see Fig. 1).

(1) When the left or right neighbouring symbol is an
alphabetic symbol. this symbol defines the context (as
is the case in non-bracketed iL systems).

(2) When the left neighbouring symbol is an open-
ing bracket, the leftsided context is defined by the first
alphabetic symbol in the string towards the left. which
is separated from this opening bracket by an equal
number (possibly 0) of opening and closing brackets.

(3) When the left neighbouring symbol is a closing
bracket, the leftsided context is defined by the first al-
phabetic symbol towards the left which is separated
from the symbol by an equal number of opening and
closing brackets (including the neighbouring closing
bracket).

Moreover. in case of a 2-L system:

(4) When the right neighbouring symbol is a closing
bracket, the rightsided context is defined by the symbol
at the end of the string, which represents the environ-
ment.

(5) When the right-sided symbol is an opening
bracket, the rightsided context is defined by the first al-
phabetic symbol towards the right. which is separated
from the symbol by an equal number of opening and
closing brackets (including the neighbouring closing
bracket).* (N.b. “left” and “right™ are introduced by
convention and could be interchanged. The form of
some production rules then becomes: d(x.a.y) = [h]c)
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The effect of the above définition is that each
substring within brackets is “lifted out of the string”.
In the branching interpretation of the strings, the sym-
bols which define the context are actually neighbour-
ing symbols: the substrings between brackets are
depicted as side-branches attached to the symbol as
defined in (2), sticking out in the environment (4) and
the main branches are attached as defined in (3) and
(5).

It should be noted that this notation for branching
structures is one of many possible notations and differs
for example from the notation which Rounds” and
Tatcher® use in their “tree grammars”. They write a
pair of brackets around all symbols connected to the
same symbol: neighbouring symbols are not connected
to each other but to the same symbol. Our notation
makes it possible to code: (1) a variable number of
symbols attached to one symbol: (2) a variable number
of symbols in one branch: (3) a variable number of
orders of branches (i.e. branches on branches): (4) 2 dif-
ferent types of connections of symbols.

Type 1. Both symbols are between the same pair of
brackets, and are each other’s left and right context.

Type 2. The rightmost symbol between one more

pair of brackets then the leftmost symbols. The left
symbol serves as left-sided context for the right sym-
bol. The right symbol does not serve as context for the
left symbol.
. The difference in context only exists in 2-L systems.
since only the production rules of 2-L systems are
defined on rightsided context. The 2 types of connec-
tions are depicted as branches (straight lines) and side
branches (line under some angle) respectively.*t

Lindenmayer®>-®) used some of them for the descrip-
tion of some specific branching structures: the branch-
ing structure of the alga Calithamnion roseum and of
the moss Phascum cuspidatum (the latter not deter-
ministic). In this paper we describe a subset of brack-
eted PD2L systems. The subset under consideration is
defined as follows:

(1) The alphabet consists of 2 symbols only (0 and
1).

(2) The environmental context is provided by one of
the alphabetic symbols (in this case ~17; (the environ-
mental symbols, ie. the symbols at the end positions,
are not subjected to the production rules).

(3) The starting string (axiom) is *17.

(4) From (1) and (2) it follows that such systems are
completely specified by 2° = 8 production rules, since

* A restriction of the notation is that type 1 connection
cannot be established after (during development) a type 2
connection is established on a symbol.

+ Little work has been done on the above defined brack-
eted PD2L systems.

there are two different symbols with two different left-
and two different right-sided contexts.

(5) The production rules transform a symbol into a
string of alphabetic symbols of length one or two.
Transformation into a string of two alphabetic sym-
bols will be called “division”. The two symbols are
always the same in one system. There are two types of
division: type 1—continuation of a branch: and type
2—initiation of a sidebranch. Thus the production
rules for division are of the form d(a.b.c) = "117 or
dab.c) = “1[1]". where a,b.c. € {0.1].

(6) In the complete specification of each system both
types of division occur once and only once.

(7) The production rules for non-dividing transfor-
mations are permutated in all possible ways.

The set of languages under consideration contains
all languages generated by all possible sets of 8 produc-
tion rules under the above named constraints. There
are 7 x 8 x 64 = 3584 such languages. A computer-
program (in PL/I) was developed for generating the
sets of production rules (the generative systems) and
their languages. The main program generates the com-
plete sets of production rules when given the two divi-
sion rules. by permutation of all possibilities of the
other 6 rules. Accordingly one run produces 64 genera-
tive systems. The program calls a subroutine for gener-
ating the languages from every set of production rules.
This subroutine can accept a broad range of generative
systems and generates the corresponding language up-
to a given number of cycles (25 cycles were used for the
experiments described here). One production cycle
transforms all symbols of the string formed in the pre-
vious cycle. !

I1I. PICTORIAL REPRESENTATION

Only part of the set of systems generate strings
longer than two symbols. All strings generated after 25
production cycles which are longer than two symbols
are represented as branching patterns. The patterns are
conceived as branching patterns in three dimensions
and are plotted as projections of these in two dimen-
sions. The following conventions are used to form the
branching patterns in three dimensions from the
bracketed strings:

(1) Substrings between the same pair of brackets
form a branch.

(2) A sidebranch is attached to that symbol of
another branch which defines the left-sided context of
its left-most symbol.

(3) Branches grow straight, sidebranches leave their
main branch under a given angle.

(4) All sidebranches attached to the same symbol
are spread evenly over 360° while the direction of the
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first sidebranch at the symbol is defined according to
a “spiraling coefficient™.

(5) Alphabetic symbols are each represented by a
line of given length. ended by a dot.

A computer program (in PL/I) was written for cal-
culating the positions of the endpoints of the lines in
three-dimensional space, and plotting them in projec-
tion. Method: first the string is scanned and a count
is made of the number of branches at every alphabetic
symbol. Then the string is scanned again and the pat-
tern is plotted at the same time.

The three-dimensional positions are calculated by
conceiving the lines as being in the z-direction of a
wandering base of which the position relative to the
starting base is always known. The “wandering” is in-
itiated by the symbols in the following way:

(1) An alphabetic symbol shifts the base over a unit
length in the z-direction and rotates it around the z-
axis over the spiralling angle given by the user (all
illustrations given here are made with a spiralling
angle of 180°).

(2) An opening bracket initiates the rotating of the
base around the y-axis over a given spreading angle (in
the illustrations 45°) and stores the base position at the
point of attachment in a push down store.

(3) A closing bracket reclaims the base position at
the point of attachment of the branch by popping the
push down store, and positions the base in that point.

The program is equipped to accept a delta factor for
the unit length and the spreading angle, which is added
to them after each symbol representation line is plotted
(a paper by Honda!'® reports on an investigation on
the variability of global form of branching patterns
when varying such factors). Alternatively an array of
node lengths may be used (this option is useful when
the program is used for depicting data structures by
their spanning subtrees: a numerical value of the rela-
tionships may be depicted as node length).

The so defined branching patterns represent the
strings only as far as the sequence of the brackets is
concerned: the representations are independent of the
type of alphabetic symbols in the string. and represent
only the number of them between brackets. The repre-
sentation is not entirely unique for all the strings under
consideration: they are unique though for the lan-
guages when the sequences of strings are represented
as sequences of branching patterns.

The pictures give an easily perceived representation
of the structure and variability of the generated pat-
terns. Regularities are easily discovered by plotting the
sequences of patterns which constitute the language. or
plotting from or up to a specified order branch separ-
ately (examples of sequences of patterns are shown in
Figs. 3 and 8, separate first order branches in Fig. 5).

We have considered the branching patterns as pic-
torial representations of the strings. We may, however,
also consider the strings as string representations of
the branching patterns. The strings represent the
branching patterns as far as the relative positions of
the sidebranches and branches is concerned: neither
the angles between sidebranches and their main
branch, nor the angles between sidebranches are repre-
sented in the strings. Additional information may be
included in the strings: when they are used to represent
biological branching patterns, the type of cells may be
represented by the type of alphabetic symbols (possibly
influencing production rules which describe transfor-
mation of the patterns but not represented in the plot-
ted pictures).

Comparing the relationship between the patterns
and the transformations of the patterns (the strings and
the generative systems in our work) with this relation-
ship in related studies on heuristic pattern generation,
we note the following: the production rules here
employed are themselves not dependent on spatially
interpretable terms: the context may be defined en-
tirely in terms of descent of the symbols. This is in con-
trast to the work of, for example, Ulam''" in 2 and 3
dimensions, and the work of Cohen''? on branching
patterns.

IV. THE GENERATED PATTERNS

The set of generative systems gives rise to about
1000 patterns growing above the two-symbol stage;
many of the systems produced identical strings. The
end result consists of 150 morphologically different
patterns (see Table 1).

Examples of the pictorial representations of the pat-
terns after 25 generation cycles are given in Figs. 2-11.

The set of pictures show a remarkable amount of
gross morphological variability and different types are
easily recognized in the set. Conspicuous morphologi-
cal features of the patterns are e.g.:

(1) elongated or rosette forming (Figs. 11 and 7 res-
pectively). [This morphological feature coincides with
one specific generation rule: §(1.0.1) = 11 gives rise to
elongated patterns: 5(1.0,1) # 11 gives rise to rosettes.]

(2) Branches with straight or bended aspect (Fig.

« 4y—this aspect is caused by sidebranches on the end

symbols of the branches.

(3) Number of sidebranches which may occur on one
symbol.

(4) Maximal length of branches (e.g. limited to one
symbol, Fig. 2).

(5) Number of sidebranches which occur on a
branch.

Moreover, the sequences of patterns show some in-
teresting characteristics.

-
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Table |
§ Functions of argument triples
Recurrence description of languages (if known)

Number 000 001 010 011 100 100 110 11l description in terms of pictorial representation

1 1 S(n) = S(0)
no development

2 11 Sa(n) = Sa(n — D||Sa(n — 1)
exponentially growing straight line

3 I[1]  Sh(n) = Sh(n — DISh(n — DI]
rosette: max (I(n)) = 1 for all order
branches: max (s(n)) = n

4.1 0 0 S(n) = S(1) for all n > 1:8(1) = [0}
no development

42 1 0 S(n) = S(0) iff n = even
S(n) = S(1)iff n = odd: S(1) = [0]
no development

43 1[1] 0 Sh(n) = Sh(n — 2)||x(n), rosettes: max [s(m)] =
trunc (1/2 n) (= on top of mainbranch): all
first order sidebranches have same
development

431 1 1[1] 0 Sh(n) = Sh(n — 2)||S(0) iff n = even, sce Fig. 2(a)
1; Sh(n) = Sh(n — 2)||S(1) iff n = odd.
S(1) = [0]. first order sidebranches only:
max I(n) = 1

4321 0 [ 1[1] 0 Sh(n) = Sh(n — 2)||x(n). max [(n) = 1. see Fig. 2(b)
rate of branching on higher order
branches not equal for all branches

4322 0 0 1{1] 0 Sh(n) = Sb(n — 2)|\Sh(n — 3) 1. see Fig. 2(c). 2
max I(n) = 1:rate of branching equal for
all branches of all orders

433 11 1[1] 0 Sh(n) = Sh(n — 2)||x(n). max I(n) depends on n:
maximum length occurs in first order
branches; see Table 2

4323 0 11 1[1] 0 Sh(n) = Sh(n — 2)||x(11)
max I(n) = f(n) (max length in first order
branches) see Table 3

44 11 0 No recurrence formula known elongated
patterns (length of mainbranch depends on n)
(for exception see Table 4)

44.1 1[1] 11 0 see Table 4

442 171] 11 0 see Table 5

443 otherwise 11 0 see Table 6

11.1.0.0.0.1111. 0.0

11.0.0.1.0.1011. 0.0

Fig. 2.

11.0.0.0 011110
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Fig. 6(b). Fig. 7.
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DEVELOPMENTAL HISTORY
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0.111.1.0.011.0.0

0.1(1].1.1.0.11.1.0

Fig. 9.



173

Biomorphological description

1.1011.1.1.0.11.1.0 0.1111.1.1.011.0.0

Fig. 10.

!

0.1.0.1101).0.11.0.0 0.0.1.1[11.11.1.0

0.1.0.1017.0.11.1.0

Fig. 11.
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Table 2. Elaboration of case 4.3.3 in Table 1

¢ Functions of argument triples

Recurrence description of languages (if known)

Number 000 001 010 OIl 100 101 110 1l description in terms of pictorial representation
1 11 I[1] 0 Sh(n) = Sh(n)||x(n)

I(n.1) = f(n): elongated first order branches
1.1 1 11 1[1] 0 Sh(n) = Sh(n — 2)||x(n)|]: x(n) = x(n — 2)||1

first order branches only: max /(n) = trunc (1/2n)
1.2.1 0 11 1 1[1] 0 Clusters of sidebranches on top of the first

order branches
1.2.1.1 0 11 1 1[1] 1 0 5(25,1) = 8. on top of first order branches
1212 0 11 1 I[1] o0 0 Sh(n) = S(n — 2)||00}|x(n)

x(n) = yn)||L1]|x(n — 2)
5(25.1) = 4. on top of first order branches
(see Fig. 4a)

1213 0 11 | 1 1[1] 0 Branches of order > | may have sidebranches
on last symbols

1.2.2 0 11 0 1[1] 0 First order branches straight (i.e. no side-
branches on last symbols)

1.2.2.1 11 0 0 1[1] 0 All order branches straight (see Fig. 4a)

0
12211 0 11 0 0 0 Ifr] 0 0 Maximum branching order: 2; only 2 sidebranches
per first order branch, attached to second and
sixth symbol from the base (see Fig. 6b)

12212 0 1m0 0 1 I[1] 0 Sh(n) = Sh(n — 2)||Sb(n — 5)||Sh(n — 4)
both patterns are exactly the same
1222 0 11 1 0 0 I[1] o 0 Sh(n) = Sh(n — 2)||x(n)

x(n) = y(m)||11|x(n — 2)

y(n) = [0000[ 1100]|x(n — 9)||x(n — 7)

all odd and all even order branches have
the same development (see Fig. 5)

Table 3. Elaboration of case 4.3.2.3 of Table |

o Functions of argument triples

Recurrence description of languages (if known)

Number 000 001 010 011 100 101 110 Il description in terms of pictorial representation
1 11 1[1] 0 Sh(n) = Sh(n — 2)||x(n)

first order branches elongated
1.1 1 11 1[1] 0 Sh(n) = Sh(n — 2)|I[1]

first order sidebranches only. Number of
sidebranches = trunc (1/2n), their length = 1
(see Fig. 2a)

1.2 0 11 1[1] 0 First and higher order sidebranches present
1.2.1 0 0 11 0 1[1] 0 Length of first order branches = 2: on last

symbol they bear one sidebranch only
1.2.1.1 0 0 11 0 1] o 0 Sh(n) = Sh(n — 2)||x(n)

x(n) = x(n — )||x(n — S)||x(n — 4)
both patterns are equal; sidebranches along
branches of order higher than one occur every
second symbol. only one per symbol

1.2.1.2 0 0 11 0 17 1] 1 0 Sh(n) = Sh(n — 2)||x(n)
x(n) = y(n)||x(n — 4)
sidebranches along branches of order higher
than one occur every fourth symbol. only one
per symbol (see Fig. 6a)

1.2.2 otherwise Elaborate rosette forming branching patterns
(see Fig. 7)

A

~
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(1) The patterns of the nth cycle may be composed
of patterns of previous cycles. S, = S,,,[IS, (see Fig.
2). The symbol || indicates concatenation of strings.
In such cases we may speak of catenative systems.
Rozenberg and Lindenmayer!®) proved that all such
patterns may be generated by PDOL grammars.

(2) The patterns of the nth cycle may be composed
of subpatterns of previous cycles (see. e.g. Fig. 5, Table
2, 1.2.2.2.1.). This is a generalization of 1 together we
will refer to them as “recurrence relation”. The formal
structure of generalized recurrence relations are stud-
ied by Herman et al.!'¥

(3) Subpatterns of previous patterns occur in the nth
generation, but the nth generation cannot be described
in terms of previous patterns; e.g. the top or basal parts
of the patterns remain morphologically constant (see
Fig. 11c).

(4) Subpatterns showing the same developments
occur several times in one pattern (see, e.g. Fig. 8).

175

Tables 1-6 summarize the set of generated systems
by three modes of description:

(1) The generative systems. These systems are partly
specified in the tables. The stated descriptions apply to
all systems (within one set under consideration) in
which the specified rules occur.

(2) Gross morphological characteristics of the pic-
torial representation of the patterns.

(3) Recurrence relations in the sequences of the pat-
terns (in terms of the strings).

Notation

Generative systems. In the first three tables the o-
function of the triples specified above each column are
given in the column; when left blank, all permutation
of the é-function, within the constraints of the set of
generative systems used, may be specified. In the other
tables the d-functions of all triples are ordered accord-
ing to the number, in binary notation, formed by the

Table 4. Elaboration of case 4.4.1 of Table 1

—[1]~== 11 ==

—1[1]—==11—=
complicated patterns

—1[1]—=1.11.=0
rosettes (mainbranch 2,
higher order branches

1 symbol only) (like Fig.
3c except mainbranch-
length)

—1[1]=1.0.11-0
first order branches.

originating from top of

mainbranch. elongated

1.1[1]~1.0.11.-0

dense clusters (all branches
length = 1) occur in higher
order branches (see Fig. 10a)

formed

0.1[11~1.0.11.0.0

number of sidebranches on
top of mainbranch fixed

on 2 (see Fig. 10b)

- 1[1]—==0.11.-0
clongated patterns (length
mainbranch dependent on
cycle number) I(n) =

— M) ——=11-1
no development

Jin)

—1[17~.0.0.11.—-0
mainbranch closed off
by dense cluster (all
branches length = 1)
(see Figs. 9, 10)

0.1[1]—1.0.11.—-0
dense clusters are never

0.1[1].—1.0.11.1.0
number of sidebranches on
top of mainbranch
dependent on cycle number
(see Fig. 9b)
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Table 5. Elaboration of case 4.4.2 of Table |
ST S Py -
—=— 1] =11 -1 otherwise
-.0~1[1].0.11.-0 complicated patterns
—1.=1[1].1.11.-0

no development

- 1~1[1].0.11.1.0
number of sidebranches

on top of main branch
dependent on cycle number
(see Fig. 11b)

—1~=1[1].0.11~0 =0~ 1[1].1.11.-0
main branch closed main branch straight
off by sidebranches

-0.0.1[1].1.11.0.0 otherwise
I branch per symbol more branches per
only symbol occur

(see Fig. l1c)

— 1.=1[17.0.11.0.0
number of sidebranches
on top of main branch

fixed
0.1.—1[1].0.11.0.0 1.1~1[1].0.11.0.0
number of sidebranches number of sidebranches
on top of mainbranch = 2 on top of mainbranch = 1

(see Fig. 11a)

Table 6. Elaboration of case 4.4.3 of Table |

6.1

- 1—=1.11-0
-0-~0.11-0
no development

all grammars including the following production rules:
d(101) = 11 and one of the following:

d(000) = 1[1]. or 8(010) = I[1], or 6(100) = 1[1]. or
o(110) = 1[1]

6.2 6.3

- 1==0.11-.0 —1==1[1].11.—0
-0~-=1.11-0 [(n0) =2 In1) =1
-0 —-—=1[1].11.-0 I(n.2) = 0,5(n.0) =
elongated branching trunc (1/2n — 1)
patterns

R

6.4
—1.1[1].1.0.11.0.0
-0.1{17.0.1.11.1.0
zero order branches
only, s(n.0) =0

6.5 6.6
—1.1[17.1.0.11.1.0 otherwise
—0.1[1].0.1.11.1.0 second to fifths order
zero and first order branches occur after 25
branches only, s(n.1) = 0 generations

“

o
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triples. and are separated by a dot; non-specified é-
functions are indicated by *—.

Strings. S(n) the string formed by one generative sys-
tem, from the axiom (S(0)) after n production cycles.
For notational convenience we define: Sa(n) the string
S(n) without both outermost brackets (one opening
and one closing); Sh(n) the string S(n) without the left-
most opening bracket; x(1) denotes an arbitrary string
at generation step n.

Pictorial representation. The terms as introduced in
section III (branches, sidebranches, etc.) are used.
Moreover, we define: I(nm) = length (= number of
symbols) of branch (without sidebranches) of gener-
ation n and of order m; n = cycle number: the given
recurrence relations are given for all n> 1; max
I(n,m) = maximum length of branches in generation n
and of order m; s(n,m) = number of sidebranches per
node in branch in order m and in generation n. f(n) =
a function of the cycle number; trunc (x) = nearest
lower integer to x for any number x; the predicates
I(n,m) and s(n,m) are also used as /(1) and s(n) whenever
they apply to all order branches.

Furthermore: cluster =a node on which the
number of sidebranches increases with n; dense clus-
ter = a cluster with [ = 1 for branches of all orders;
rosette = a cluster around the main branch which
remains length 1; elongated pattern = a pattern of
which the main branch increases with n.

V. DISCUSSION

In this section we point out some aspects of the
results of our experiments with a set of generated pat-
terns which seem to us to be of interest for the descrip-
tion of biological patterns as far as they may be consi-
dered to be entirely shaped by the constraints of a de-
velopment which is local and is locally controlled. It
should be noted that the morphological patterns are
entirely defined by the generative systems and the con-
ventions used in plotting; factors like influences
through the substrate, gradients in the substrate etc.
are not present in contrast to biological developing
systems and models considered by others (Cohen‘!?)).
If we compare, metaphorically, the role of the produc-
tion rules in our systems with the role of the genetic
instructions in organisms, we may see our branching
patterns as an analogy of entirely genetically con-
trolled biological systems.

1. Morphology

The generated patterns keep growing indefinitely in
contrast to biological patterns. Also the fact that no
spatial limitations are included in the systems gives rise
to situations which are never observed in biological

systems (e.g. an unlimited number of side branches on
one cell).

Nevertheless, close scrutiny of the pattern suggests
several interesting analogies to biological systems.
Especially interesting seems to us the occurrence of
morphological stationary subpatterns. These subpat-
terns are composed of different symbols at every gener-
ation cycle but their position in the pattern is con-
stant. This phenomenon is very common in organisms:
organs are composed of a changing cell population
and retain their form. Moreover, cells transplanted
from other parts will assume the states of cells of the
location to which they are transplanted. The occur-
rence of this phenomenon in our patterns, which are
formed by very simple locally defined rule without
explicit blocking mechanisms of the generative sys-
tems, suggests that its explanation may be much
simpler than often thought.

2. Variability and classification of the set of patterns

The set of pictures show a remarkable amount of
variability. Although all possible generative systems
within the chosen set are considered, and no other con-
straints are introduced, the impression which the form
variability makes on us is discontinuous. Comparing
this with biological patterns we note that no environ-
mental constraints are necessary to produce a set of
patterns which show a “discontinuous” morphological
variability.

The amount of morphological difference (intuitively
defined) is not related to the number of differing pro-
duction rules: the patterns of Fig. 2 are formed by a
great variety of sets of production rules, while in other

‘cases (see Figs. 7-10) single changes in production

rules give rise to quite distinct patterns. The amount
of morphological difference is often taken as a measure
of the amount of genetic difference (because it is often
the only obtainable measure, see Sokal and Sneath!!*))
in this way obtaining a measure for phylogenetic rela-
tionship. A correlation between the amount of mor-
phological and “genetic” difference is not found in our
systems, in which no convergence is introduced by en-
vironmental constraints, in which case the above chain
of reasoning is generally considered to be false.*®

It is possible to obtain a monothetic, hierarchical
classification on the morphological features of sets of
our patterns. Within some subsets of the generated
patterns, one can produce such a classification in
which every fork is coincident with the specification of
one production rule (see Table 4). For other subsets it
is not possible because combinations of production
rules give rise to one morphological recognizable fea-
ture only (see Table 6). In terms of biological theory
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both monogenetic and polygenetic morphological fea-
tures appear in our, simple, systems.

The monothetic. hierarchical classification may be
used as a key. Some morphological features appear as
separating features between higher taxons, others as
separating lower taxons (compare the tables). Features,
specified as separating taxons at specific levels. are
often used in biological taxonomy. but their use is a
much debated issue.'' ™ The applicability of the con-
cepts may be due to the simplicity of our systems: only
two pattern developing rules are defined. namely the
two kinds of division rules.

The statements made above about the relation
between morphological differences between patterns
and the differences between their generative systems
are based on an intuitive classification using a few glo-
bal morphological features only. The question rises
how far our conclusions are dependent on the choice
of the features.

To investigate this question we have clustered the
patterns on the basis of a set of locally defined mor-
phological features. There were for all orderbranches
separately:

(1) The occurrence of side branches along the
branches.

(2) Maximal number of side branches on one sym-
bol.

(3) The occurrence of sidebranches on end symbols.

(4) The maximal number of these.

(5) Length of the branches.

These features were extracted automatically from
the strings. The dissimilarity of the patterns was calcu-
lated as the Euclidian distance after normalization of
the features, and the patterns were clustered agglomer-
atively using several clustering criteria (Lance and Wil-
liams).'®)

The following was found: The resulting classifica-
tion was stable under different clustering criteria and
gave rise to 15 classes which may be distinguished in
all dendrograms but which vary among each other in
variance. This classification on these local features
agrces very well with the intuitive classification given
above in the tables: all classes may be described in terms
of the earlier used global morphological features. The
conclusions stated above thus seem relatively indepen-
dent ofthe choice of the features. The fact that different
clustering criteria give the same classification confirms
the discontinuity of the morphology of the patterns.

3. Developmental sequences

As noted above some of the developmental sequences
show recurrence relations. Looking at the pictorial
representation of the sequences of patterns these
may be observed easily; in this way the morphology

of the patterns may aid the study of the generated lan-
guages. The formal structure of interactionless recur-
rence systems (their inclusion in the Chomsky hier-
archy and in the different classes of L-systems) have
been studied by Rozenberg and Lindenmayer!'* (local
catenative systems) and Herman et al'* (general
recurrence systems). Recurrence relations are observed
in several biological structures. For example the
branching patterns of inflorescences are classified on
the basis of the occurrence of recurrence relations. It
seems interesting to note that in plant morphology the
local catenative inflorescences are considered most
“primitive” while we find that the structure of their
generative systems is also the most simple. Besides the
recurrence systems. we see in our set of patterns a con-
stancy of a part of the pattern during development,
while the rest of the pattern may not be described in
terms of previous patterns. as well as patterns in which
no such regularity is observed (there is no specific
area of growth in our patterns). The non-recurrent
nature of our patterns is due to interaction among the
symbols.

The differences between successive patterns in a
sequence are quite large: the transformations may
hardly be articulated in terms of global morphological
features. Nevertheless the sequences may be easily
recognized as such and intermingled sets of patterns
can be separated in its composing sequences by human
observers.

SUMMARY

Description of the morphology of organisms is
mostly done in terms of features assuming certain
states. Biological patterns are subjected to certain con-
straints imposed on them by the fact that they all are
developed from a single cell. Using a type of parallel
rewriting systems which incorporates some of the con-
straints of biological development. we generated a set
of patterns. Of these patterns the following modes of
description were compared:

(1) The generative system.

(2) The (sequences of) strings generated by these sys-
tems.

(3) The (sequences of) pictorial representations of
these strings (as 3-dimensional branching patterns).

(4) The description of the pictorial representations
in terms of morphological features and the classifica-
tion of the patterns on the bases of these features.

(5) The recurrence relations occurring in the
sequences of patterns. The relevance of the results for
the methodology of pattern description and classifica-
tion in biology are discussed.
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