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Preface

Evolved organisms can be characterized by their traits, whose synergy and organisation
make up the whole living being. For instance, an elephant has a trunk, tusks, eyes,
a tail... We can understand the functional significance of these traits - e.g. what are
the eyes of the elephant good for. We can also grasp their adaptive significance, in the
sense that elephants with no eyes are worse off than elephants with eyes, and conclude
that vision confers a reproductive advantage over blindness. We can, finally, reconstruct
the evolutionary history of these traits by tracing how they came about event by event.
Nevertheless, we can ask functional, adaptive and historical questions about these traits
only after they emerged. In other words, these questions assume the traits, either a priori,
as is the case for functional and adaptive questions, or a posteriori in the case of the
historical one. Then, the answers to these questions can only be, respectively, ad hoc or
post hoc.

These questions apply to virtually every evolved trait, given that evolution has been an
inventive process for the past four billion years, and many of the answers have been of
great value to understand evolution. Yet, a deeper question is: how do novel functions
come about?

Let us re-state the problem in more general terms. Individual entities at one level
of biological organisation (e.g. the cells) self-organise to generate a higher level of or-
ganisation (the organism). The information processed locally (that which orchestrates
interactions) is integrated at the higher level. This information is functional at a higher
organisational level because novel behaviours (patterns) can be observed and ascribed
at that level. As a consequence, the evolution of lower levels cannot be fully under-
stood without considerations of the higher ones (individual cells are neither functional
nor evolutionary independent from the whole organism).

The questions of this thesis are: When does information integrated at one level of organ-
isation acquire novel functional significance due to the feedback from emergent, higher-
order organisations? And, what are the evolutionary consequences of this?

In this thesis we show that evolutionary inventivity readily arises in simple model sys-
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tems.

Because we are studying the evolution of novel functions in an emergent context, it is
impossible to preconceive what the novel functions are. We make several computational
and mathematical models and endow evolution with sufficiently many degrees of free-
dom, but we can only recognise results after they appear. However, we keep our models
within the boundaries of biological feasibility, so that the principles on which our results
stand can be comprehended in depth, and can provide a useful frame of reference for
understanding the evolution of living systems.
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1
Introduction

1.1 General considerations

1.1.1 Evolution as a multilevel process

Spatio-temporal complexity of biological systems From single electron manipula-
tions to trans-continental migrations, biological processes span a breathtakingly vast and
continuous range of spatial scales. In order to grasp the enormity of this range, we com-
monly describe living systems as a hierarchical set of levels of organisation. For instance,
the collectivity of macromolecular processes and their interactions define the behaviour
of a cell, many cells organise into tissues and organs (in multicellular organisms), and so
on progressing to ever larger spatial scales, all the way to populations of different species
interacting with each other in ecosystems.

This is a simplification: it is far from being universally true (one may find a complete
ecosystem under a pebble, which is smaller than the eye that is observing it), and bound-
aries between levels of organisation are often blurred (e.g. the gut - an organ, deals with
the microbiome - an ecosystem).

Because each single level of organisation is itself of staggering complexity (think of gene
regulatory networks, ant nests, ecosystems), it is common modelling practice to focus on
few elements within a level and study their interplay at the level in which they belong.
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Chapter 1. Introduction

This interplay may generate higher levels of organisation, which were not explicitly in-
corporated in the model, and are therefore emergent. For instance, a group of identical
bird-like objects display several features of the dynamics of a flock by introducing simple
rules about the interactions of each individual with its neighbours (Hildenbrandt et al.,
2010, Reynolds, 1987). Moreover, emergent patterns can be functional because they in-
tegrate information at a larger scale than the individual: the slug stage of Dictyostelium
discoideum can migrate coherently and with precise directionality by integrating signals
that are not observable at the level of the individual cells (Maree et al., 1999). Similarly,
a school of fish-like individuals swimming in turbulent waters can trace a food source
when a fish alone cannot (Torney et al., 2009). Thus, emergent levels of organisation in-
fluence the dynamics of the composing individuals. In “Chance and necessity”, Monod
wrote (Monod, 1970):

The elementary interactions upon which everything hinges, these, thanks to
their “mechanical” character, are relatively easy to grasp. Much less readily
come by is an intuitive global picture of living systems whose phenomenal
complexity defies assimilation.

Considerations of multilevel information processing seem necessary to understand the
complexity of biological systems.

Evolution The very fact that we can appreciate the complexity of biological systems
means that these systems are dynamically stable at some spatio-temporal scale: they
are able to preserve and re-generate themselves. A natural question is how does this
complexity come about? In other words, how do biological systems behave in time?
Palaeontological record (and, recently, experiments) show that changes accumulate along
the line of descent of all biological entities. By studying the chronological progression
of these changes, e.g. by comparing the genomes of different species, we may recognise
patterns and trajectories, and we may wish to construct an explanation about the order of
these changes.

Darwin’s theory states that biological systems evolve because some heritable changes
make individuals more adapted to the environment where they live, which allows them
to have more offspring than those who have not changed (or have changed in a way that
makes them less adapted). Because the offspring also carries the adaptive change which
allows a competitive advantage, the original population will eventually be replaced by
the progeny of the original mutated individual (Darwin, 1872).

Darwin did not know as much as we do about biological complexity and, by his own
admission, spoke of “chance variation” in the lack of a better explanation on the cause of
the differences between parents and offspring. Nevertheless, Darwin’s theory works be-
cause the directionality in the changes (a particular way in which mutations accumulate)
is not a property of the changes themselves, but a property of the effect of these changes
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1.1 General considerations

- mediated by the environment - on the number of offspring the mutant has relative to the
rest of the population (it is a teleonomy).

There is something atypical in the definition of this theory. First, it says nothing about
how or which mutations make an individual fitter. Second, it says nothing about the level
at which the mutation has an effect, and what the effect is. Third, despite the two points
above, evolution at many levels of organisation can be understood in the light of this
theory (whether a mutation speeds up the rate of an enzyme, or it makes the neck of the
giraffe longer).

Unlike Darwin, we can glimpse this complexity. We know that most of heritable variab-
ility is caused by genetic mutations. Yet, to a large extent we do not know how genetic
mutations generate variability in a certain trait. This is because we know little about the
map between the genotype - the level at which information is stored and mutations occur,
and the phenotype - where the effect of these mutations are visible.

Thus, attempting to understand the multilevel complexity of this map can bring about a
clearer understanding of evolution.

Multilevel evolution and long-term information integration After appreciating both
the multilevel nature of biological organisation, and the evolution of biological systems
by mutation and selection, the next step is to understand the interplay between them.
Mutations occur in a genome and alter its information content, but understanding at
which scale they produce an effect, if any at all, is far from obvious. Moreover, because
different levels of organisation impose different selection pressures, it is often difficult to
understand the origin of mutational trends in genomes. The general picture that emerges
from the study of multilevel evolutionary dynamics, is that multilevel systems integrate
information in the long-term evolution (Hogeweg, 2012). A striking consequence of this
is, for instance, that random mutations may have non-random effects, and can be be-
neficial more frequently than expected (Crombach and Hogeweg, 2008). This happens
because the map between genotype and phenotype is itself a product of evolution, and in-
formation about the environment can be integrated in the genome during the evolutionary
process to shape such map. Another consequence is that ecosystems can process inform-
ation beyond the capabilities of individuals, as a side effect of self-organised spatial pat-
terns (Hogeweg, 2007). Finally, the methodological advantage of studying evolution as
a multilevel process is that much of what happens is not preconceived, nor is the explicit
target of evolution, but simply emerges.

We will show in this thesis that multilevel evolution allows for novel functions to arise as
well.
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Chapter 1. Introduction

1.1.2 The RNA world

Many evolutionary insights described in this Introduction, as well as part of the results
in this thesis, hinge on the concept of an RNA world (Gilbert, 1986). The RNA world
is a hypothetical stage in evolution that occurred before cellular life and the division of
labour between information and function in DNA and proteins.

Although information mostly flows from DNA to RNA to proteins in present-day cells
(Crick, 1958), the central tenet of the RNA world hypothesis is that information storage
and catalytic functions can co-occur on RNA molecules. RNA stores information in the
succession of four nucleotides, much like DNA does, and catalyses chemical reactions by
bringing in close proximity different functional groups, i.e. by folding, thus performing
protein-like functions (Ward et al., 2014). It is worth of notice that the catalytic core of
the ribosome is a ribozyme (an RNA enzyme), and that steady progress has been made
to synthesise a general template-dependent polymerase ribozyme (Attwater et al., 2013,
Horning and Joyce, 2016). Moreover, RNAs are commonly employed for regulation
(Serganov and Nudler, 2013, Sherwood and Henkin, 2016, Wilson and Doudna, 2013) in
present day cellular context, and transmembrane RNAs can be synthesised (Janas et al.,
2006). Thus RNA is capable of information storage, functional activity and regulation.
Finally, because RNAs can be mutated and selected for different functions, they can
undergo Darwinian evolution (Joyce, 2007). All this provides strong evidence for the
evolutionary independence of RNA from DNA and proteins, and weak evidence for an
RNA world.

From a theoretical viewpoint, however, the fact that RNA molecules are capable of evol-
ution makes the RNA world hypothesis an excellent framework in which fundamental
evolutionary dynamics can be studied. This is because the RNA world is the period in
Earth history in which evolution - as we understand it today - was at its simplest stage.
As we will see below, “simplest” does not quite mean “simple” at all, as complex evol-
utionary dynamics can be observed considering RNAs alone. And yet, compared to the
complexity of present-day organisms, RNA world models can only be toy models (The
RNA world is the playground of theoretical biologists). But as it comes often with play-
ing, we learnt a great deal about what we were playing with, and certainly more than if
we studied the whole “phenomenal complexity” of living organisms.

As a side note, assuming an RNA world sets aside the question of the “chemical” (or
kinetic) origin of evolution itself, which is instead being explored in (theoretical) models
where adaptation can occur without an explicit information storage medium (Hordijk
et al., 2010, Vasas et al., 2012). Moreover, severe problems arise at all stages of RNA
monomers and polymers synthesis in (experimental) prebiotic model conditions, even
though both novel pathways (Powner et al., 2009) and novel environmental conditions
(Mast et al., 2013) that ameliorate these difficulties are being discovered (Higgs and
Lehman, 2014). Because of these difficulties, it has been proposed that RNA may not
be the original molecule dedicated to information storage and could be a later invention,
product of evolution itself (Hud et al., 2013, Robertson and Joyce, 2012).
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1.2 The problem of information integration in evolution

In conclusion, whether an RNA world actually existed is an important question. Never-
theless, the amount of "evolutionary understanding" the RNA world has brought to us is
profound, and therefore it is worthwhile studying it even if it never existed.

1.1.3 This introduction

The rest of this introduction describes previous work relevant for the other chapters. We
first review the evolutionary dynamics of information maintenance and integration in
genomes when some global target must be reached by the evolutionary process. Then we
consider information processing in ecosystems, where different trophic levels co-evolve
by being selected on the basis of local information. Next, we focus on the evolutionary
effects of self-organisation, i.e. how they integrate the information of their components
in models where selection is context dependent. Finally, we introduce and discuss the
results of the following chapters, focusing on 1) their contribution to the topics mentioned
in this Introduction and 2) their common feature, i.e. the evolution of novel functions as
a result of the feedback between levels of organisation.

Notice that although we mention the word “information” repeatedly, we never define it
explicitly. Previous attempts at defining information (or complexity) (Adami et al., 2000,
Hazen et al., 2007, Lindgren et al., 2004) do not measure ecosystem-based information
processing properly, or do not measure genome complexity properly. Despite the lack
of a formal definition, we try to keep the discourse pragmatic and bound to the results
(without indulging in speculations). After all, “biological information” may well be an-
other one of those biological concepts that escapes definition despite being self-evident,
such as gene or species.

1.2 The problem of information integration in evolution

1.2.1 Quasispecies and mutation rates

As mentioned above, Darwin’s theory of evolution rests on two notions: 1) mutations
generate variability in a population, and 2) the better mutants are adapted to the environ-
ment in which they live, the more offspring they make. Therefore, we should expect that
fitter individuals arise from less fit populations by mutations and wins the competition in
that population, i.e. it is selected, if the environment does not change.

It turns out that this expectations is not unconditionally true, despite its seemingly tauto-
logical nature. A very simple model of Darwinian evolution (arguably, the simplest) is
sufficient to show this.
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Chapter 1. Introduction

Consider a population of RNA-like molecular species that self-replicate and mutate.
For instance, we can imagine sequences of nucleotides that autonomously undergo
template-dependent polymerisation with a certain degree of accuracy (strictly speak-
ing, RNAs do not easily undergo enzyme-free template-dependent polymerisation, but
certain modified nucleotides do (Zhang et al., 2013)) but the mathematical formulation
does not depend on these particular assumptions. Each molecular species is character-
ised by a genotype, in this case a bit string of length ν (one could imagine Purines and
Pyrimidines). The genotype determines the rate A at which the species replicate, i.e.
there is one-to-one relation in the map between genotypes and phenotypes (the pheno-
type being replication rate, in this case). Replication involves the possibly inaccurate
copying of a genotype: given a per-base accuracy q, perfect replication occurs with rate
Q = qν . Inaccurate copying of the genotype leads to point mutations - bit flips of the
genotype, so that the replication of a species i can result into the generation of another
species j. The system is constrained by introducing a term for chemostat φ, which keeps
the total concentration of molecules constant.

Let us consider the “best case” scenario of a very large and well-mixed population, so
that stochastic fluctuations are avoided and global competition ensues. We can write a
system of Ordinary Differential Equations (ODE) in which the variable xi represents the
concentration of species i as follows:

ẋi = AiQxi +
∑
j

AjQijxj − φxi (1.1)

where φ =
∑
iAixi is the mean excess production (obtained by setting the total con-

centration to one and its derivative to zero). This is the quasispecies equation (Eigen,
1971).

Effectively, the term φ introduces selection; this is clearer if we look at the system in
the absence of mutations, where Eq. 1.1 becomes

ẋi = (Ai − φ)xi (1.2)

and we can see that the chemostat washes out molecules that at any moment replicate
slower than the population average (i.e where Ai < φ), to the advantage of those that
replicate faster than average (results do not differ if we considered the molar fraction
of the species instead of introducing the chemostat (Schuster and Stadler, 2008, Tejero
et al., 2010): the fastest growing species “dilutes” all the others even if their growth is
unconstrained, due to exponential expansion). Thus, if the system is initialised with a
diverse set of species only the fastest replicating ones survive in the absence of mutations
when Q = 1. Hence, survival of the fittest.

Eq. 1.1 can be rewritten in matrix form as Ẋ = AQX − φX , where X is the vector
of concentration (x0, x1, ...), A is the vector of replication rates (A0, A1, ...) and Q

6



1.2 The problem of information integration in evolution

is the mutational matrix that encapsulates the frequency of mutational interconversion
among sequences. AQ is a so called fitness landscape, and gives a representation of
the interplay of fitness and mutations. Because of the mutational process, the system
does not converge to a single species. If all genotypes can be reached by the mutational
process, however, evolution is guaranteed to converge to the distribution of species of the
dominant eigenvector ofAQ (i.e. the one with the largest eigenvalue). Such distribution
is a quasispecies.

Given the formalism introduced above, we can now study the dynamics of the fit-
test replicator. To do this, we simplify Eq. 1.1 by collapsing all but the fittest species
of Eq. 1.1 into a single class, effectively leaving two species: x0 the fittest (or master
sequence), and “the rest” xr. Genotype class xr contains the vast majority of possible
sequences. Because most of these will be mutationally far from the master sequence, we
can at first neglect mutations from xr to x0 (and drop the subscripts for the quality of
replication Qij). The ODE system becomes:

ẋ0 = A0Qx0 − φx0

ẋr = Arxr +A0(1−Q)x0 − φxr
(1.3)

Asking whether the fittest species is selected and survives in an evolutionary context,
amounts to find if a rare x0 mutant can invade a steady state population of xr (i.e. ẋ0 > 0
with x0, xr evaluated at 0, x̄r). This yields the condition:

A0Q > Ar (1.4)

which states that fitness (a larger replication rate) is not the sole requirement for survival
and replication accuracy must be taken into account as well. This condition is the so
called Error Threshold. Crossing this bifurcation point, the system undergoes a phase
transition where the fittest genotype is lost due to mutational meltdown. Unpacking
the fitness classes from xr shows that crossing the Error Threshold leads to a steady
state distribution where each genotype is present proportionally to its replication rate
Ai. Because the number of less fit genotypes is much larger than fit ones (in our case in
particular there is only one master sequence class), the concentration of master sequences
reduces to an insignificant fraction (and in a discrete population system goes extinct)
(Eigen, 1971).

The same condition can be viewed in terms of evolutionary information integration by
calculating the longest “informative” genome that can be maintained by selection in the
face of the mutational process (assuming that selective advantage and information are
directly related). Recalling that Q = qν and defining the relative selective advantage of
the master sequence as σ = A0/Ar, the Information Threshold is

ν < − lnσ

ln q
≈ lnσ

1− q
. (1.5)
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Chapter 1. Introduction

The Information Threshold states that the maximum “amount of information” that can
be maintained in a genome depends on the relative fitness advantage it confers as well
as, more importantly, on mutation rates. When the mutation rate is beyond the Error
Threshold, information is diluted and eventually lost in the system, despite its selective
superiority.

The system presented so far allows only for mutations that turn the fit replicator into
a less fit one, and we have resorted to an invasion experiment to introduce the fittest
genotype class. Including a small back-flow of mutations ε, so that 1− ε� Q:

ẋ0 = A0Qx0 +Arεxr − φx0

ẋr = Ar(1− ε)xr +A0(1−Q)x0 − φxr
(1.6)

does not change the biological significance of these results. Even though the bifurcation
disappears, x0 becomes vanishingly small for approximately the same values of Q (the
state space does not change dramatically as long as ε is not too large).

From a different perspective, the characteristic time for the fittest sequence to appear and
reach steady state increases both with Q approaching Ar/A0 and with 1− ε approaching
1 (the characteristic time is the average time to steady state along an orbit). When Q
approaches Ar/A0 mutations occur frequently, which allows for a faster exploration of
the fitness landscape and consequently a faster generation of fitter mutants; however,
Q = Ar/A0 is also the value at which fitter mutants have no competitive advantage over
less fit sequence classes. In this simplified fitness landscape there is no optimal Q to
balance these two effects (Marín et al., 2012). Such optimum exists instead when the
general model (with multiple sequence classes) is considered instead (Marín et al., 2012,
Stich and Manrubia, 2011), typically at the value where the sequence classes with highest
fitness are marginally stable (Van Nimwegen and Crutchfield, 2001).

Much of the theory on optimal exploration overlooks the important factor that changes in
sequence length (which depends on mutation rate via the Information Threshold) change
the volume of genotype space that can be explored. We will see how this conflict is
resolved below. Here, we add two more points. First, the Error Threshold does not ap-
pear as a bifurcation but as a first-order (continuous) phase transition, when all sequence
classes are considered and a sharp fitness landscape is introduced, i.e. A0 > Ai and Ai
constant and independent of distance from the master sequence; in fact, it may be that no
Error Threshold (no phase transition) exists at all, e.g. under assumption of a multiplicat-
ive fitness landscape (Ai = s−d, where i > 0, s > 1 and d the mutational distance from
the master sequence). Second, both Error Threshold (or lack thereof) and characteristic
time should be weighed against finite population sizes. Small population sizes translate
to extinction for all fitness landscapes, and long characteristic times must be compared
with the time scale of genetic drift: high mutation rates lead to the recurrent extinction of
the fittest sequence class as the population delocalises from the fitness peak. Before the
Error Threshold, instead, evolution optimises the genotypes in a population, as shown by
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1.2 The problem of information integration in evolution

the fact that after sufficiently long time the ancestor’s distribution is independent of ini-
tial conditions and can be almost always traced back to the fittest individual (Hermisson
et al., 2002).

Having established that the size of an informative genome is limited by mutation rates,
we are left with a dilemma. If a replicator has evolved to the maximum complexity given
a certain mutation rate, how can it further increase in complexity? In other words, how
can it decrease its mutation rate? To do so, it should evolve a more complex machinery
(e.g. proof reading activity), i.e. it should encode more complexity in its genome, which
is impossible given that the system is at its maximal complexity. Because replication
accuracy was likely weakest at the origin of life, it is quite paradoxical that evolution has
achieved the degree of complexity we see today. This is Eigen’s paradox (Eigen, 1971),
and typifies the problem of integrating information through evolution.

Later in this Introduction we show some classical attempts to solve the problem (and
the problems these attempts generate in turn). Moreover, we show how evolution can
exploit the very existence of Eigen’s Paradox to maintain, integrate and generate (new)
information (Chapter 4). A few more concepts must be introduced before delving into it.

The effect of neutrality 1 - Survival of the flattest So far, we have considered a
steep fitness landscape, where fitness drops in the close mutational neighbourhood of the
master sequence. However, while some mutations drastically decrease fitness, others may
have no effect at all on a phenotype, i.e. they are neutral. As a first step to incorporate the
effect of neutral mutations, we extend the fitness landscape by including a flat region, i.e.
a mutational network of selectively indistinguishable species, all with the same growth
rate A1. As we have done for Eq. 1.3, we can now cluster all species into three classes:
1) the fittest sequence, with growth rate A0, 2) all sequences with growth A1, which
form a single phenotype ξ1, 3) all others belonging to a lower fitness class ξr, with
growth rate Ar. The effect of neutrality can be modelled by assuming that a fraction Λ
of the mutations occurring to sequences in phenotype class ξ1 retain the same phenotype.
Disregarding back-mutations, we can write:

ẋ0 = A0Qx0 − φx0

ξ̇1 = A1Qξ1 +A1Λ(1−Q)ξ1 − φξ1
ξ̇r = Arξr +A0(1−Q)x0 +A1(1− Λ)(1−Q)ξ1 − φξr.

(1.7)

The similarity with Eq. 1.3 allows to write immediately the condition for the survival of
ξ1 in the absence of x0 as

A1(Q+ Λ(1−Q)) > Ar. (1.8)

Comparing the survival conditions for x0 and ξ1 (Eq. 1.4 and Eq. 1.8) reveals that a pop-
ulation evolving on this landscape at high mutation rates may distribute on the flat region
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Chapter 1. Introduction

even if growth rate there is lower than in the steep part of the landscape, i.e. if A1 < A0.
This is because a single genotype x0 must be maintained against mutations in a steep
region of the fitness landscape, whereas a distribution of mutationally interconverting
equireplicative genotypes ξ0 are maintained in a flat part of the fitness landscape. There-
fore, the beneficial effect of neutral mutations can overcompensate for a lower growth
rate. This highlights that the target of selection is the quasispecies with the largest aver-
age growth rate, and the fitness of a single genotype is important insofar it is reachable by
the mutational process (Schuster and Swetina, 1988). This effect was dubbed “Survival
of the flattest” (Wilke et al., 2001).

The effect of neutrality 2 - Phenotypic Error Threshold We have seen that a quas-
ispecies evolving on a flat fitness landscape tolerates better the deleterious effect of muta-
tions (this is the reason for outcompeting a quasispecies on a steep landscape). Should
we then expect a beneficial effect on the Error Threshold? The answer turns out to be
(partially) negative: the effect of neutral mutations is limited close to the Error Threshold
for all reasonable degrees of neutrality.

This can be shown directly from Eq. 1.7 by disregarding the steep part of the fitness
landscape. We remain with only two fitness classes (as in Eq. 1.3): ξ0 is the master
phenotype and ξr the collection of all other less fit ones. As above, a proportion Λ of the
mutations occurring to genotypes in the class ξ0 generate another member of the same
class and we exclude back-mutations that turn genotype of phenotype class ξr into ξ0.
With these assumptions, we can write (Takeuchi et al., 2005, Van Nimwegen et al., 1999)

ξ̇0 = A0Q0ξ0 +A0Λ(1−Q0)ξ0 − φξ0
ξ̇r = Arξr +A0(1− Λ)(1−Q0)ξ0 − φξr,

(1.9)

and the condition for survival of ξ0 is obviously Eq. 1.8.

The assumption of a simple, low-dimensional fitness landscape (with peaks, plateaus
and valleys) used so far can be misleading in the context of large neutrality and high
mutation rates. This is because it does not provide any intuition about how to model
multiple mutations occurring in a single replication event, with many of them leading to
viable sequences. To characterise Phenotypic Error and Information Threshold we must
therefore model a neutral network of mutationally connected equireplicative sequences
in a little more details. To do so, we can assume an additive effect of mutations and that
the per-base probability of neutral mutation is λ, uniform over a genome (so that neutral
mutations are binomially distributed). Then, the per base effective replication accuracy is
Qe = (q + (1− q)λ)

ν , with ν the size of the genome. The Phenotypic Error Threshold
can be derived from A0Qe > Ar, and the relative Information Threshold is

ν < − lnσ

ln(q + (1− q)λ)
≈ lnσ

(1− q)(1− λ)
. (1.10)

Eq. 1.10 states that although a population evolving on a neutral network can maintain
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1.2 The problem of information integration in evolution

a larger genome than one evolving on a steep region of a fitness landscape (the extra
term 1 − λ, comparing Eq. 1.5 and Eq. 1.10), the gain in genome size is still severely
limited by mutations. Importantly, maintaining a larger genome size despite frequent
mutations does not entail a larger information content. On the contrary, we can only
expect genomes to be able to accommodate some randomness. Moreover, the benefit of
neutrality is limited by the actual value of λ (which rarely exceeds 0.5, as obtained by
counting the number of neutral substitutions RNA molecules tolerate, see next section).

An experimental “enzymatic activity landscape” can be constructed by mutagenic ana-
lysis of present-day ribozymes (Kun et al., 2005). Because many close mutants of these
ribozymes show little to none activity, the resulting Error Threshold can be much lar-
ger than what is expected from Eq. 1.4. Surprisingly, combining this observation with
the (experimentally determined) value of λ (via Eq. 1.10) indicates that a hypothetical
ribo-organism could sustain a functionally rich and diverse genome.

The effect of neutrality 3 - Neutral evolution of robustness In order to show that
mutational robustness can evolve to the detriment of replication rate (hence information
content), we considered the evolutionary dynamics on a fitness landscape with one flat
region and one peak, separated by a “deleterious” valley. We can take this one step fur-
ther and include a neutral network. Essentially, we consider that several somewhat flat
regions exist in the fitness landscape. Importantly, if we consider only two fitness classes
(as above), the probability of deleterious mutations also varies locally in the fitness land-
scape.

Much like before, we expect evolution to maximise the average growth rate of a pop-
ulation. Here, however, larger average growth rate will be determined entirely by the
shape of the neutral network (because replication rate is constant), and we expect to find
an evolving population on the region of the neutral network that has larger than average
connectivity (i.e. a larger Λ).

That is to say, evolution neutrally maximises mutational robustness (Van Nimwegen
et al., 1999). This argument, derived with infinitely large populations, applies to fi-
nite populations as well provided that mutation rate and population sizes are both large
enough to sustain sufficient variability, so to avoid that an entire population converges on
a single genotype (in which case evolution would approximate a diffusive process, and
the population distribution would not reflect the heterogeneity in the neutral network)
(Van Nimwegen et al., 1999).

At the beginning of the section we have asked whether evolutionary optimisation is
able to generate the fittest individual. In hindsight, a more precise (a better nuanced)
question could have been whether evolution can integrate an arbitrary amount of inform-
ation. Despite the answer turns out to be negative, we have not done this for nothing.
Allowing one to better formulate questions (to see a problem in a clearer light) seems to
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us an important purpose of theoretical models. Furthermore, we have seen that popula-
tions, and not single genomes, are the target of evolution, and that the particular fitness
landscape on which a population lives is of great importance in determining the evol-
utionary outcome of the system. Moreover, by considering neutrality (λ) rather than
steepness or flatness we have began to move away from simple fitness landscapes. In the
following paragraph we caution against other shortcomings of this concept.

Some remarks on fitness landscapes In this section, we have extensively used the
metaphor of fitness landscapes (Wright, 1932), because it is intuitive (almost pictorial)
and simplifies much of the description of evolutionary processes. There is danger in the
abuse of this notion, however.

First, we tend to think in few dimensions, whereas biological landscapes have enormous
dimensionality: if a genome of length ν is a point in genotype space, the dimension of
the space is ν, and the combination of all possible nucleotides that generate genomes of
such length is 4ν ≈ 100.6ν . Thus a fitness landscape would assign fitness to each of these
points, as well as connecting them by mutations. Neglecting the high dimensionality of a
fitness landscape can lead to results that are difficult to defend on biological ground (e.g.
(Wagner and Krall, 1993), and (Takeuchi and Hogeweg, 2007a) for its resolution).

A second problem is that we considered static fitness landscapes. This implies that gen-
omes are of constant length, and that mutations preserve genome size (we have con-
sidered substitutions). Clearly, biological genomes are not subject to either of these
constraints, which alter the dimensionality of the landscape and affect its connectivity,
thereby altering the effect mutations themselves have on genomes. In Chapter 5 we
show that larger (and biased) mutation rates can have a beneficial effect on mutational
load (hence adaptation) in a cellular context, when genome size and content evolve in
response to a co-evolving transcriptional load.

Finally, the evolutionary dynamics on fitness landscapes considered so far amount to a
mere competition between independent individuals with different growth rates. Although
this improves mathematical tractability and ease of interpretation, it may be an excessive
simplification. For instance, population-dependent selection pressures and environmental
variations (including the “internal environment” of an organism) can change the height
of the fitness peaks and the depths of fitness valleys during the process of adaptation. In
Chapter 4 we show that a population evolves to a steep region of (a biologically more
sound) fitness landscape as a side effect of the interactions between replicators.

One may conclude that a fitness sea-scape of variable dimensionality would make a better
image for understanding evolutionary dynamics. Except that, instead, the image has not
become clearer at all, suggesting that we drop the metaphor altogether in favour of greater
biological realism.

This notwithstanding, the insights of quasispecies models are useful in the research on
origin of life (Kun et al., 2005, Takeuchi and Hogeweg, 2012) and virus evolution,
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1.2 The problem of information integration in evolution

(Domingo et al., 1985, Más et al., 2010) and can be extended by incorporating mo-
lecular details of polymerisation (Rajamani et al., 2010) or other biological processes
(Boerlijst et al., 1996, de Aguiar et al., 2015, Takeuchi and Hogeweg, 2007b). Building
on the isomorphism between the original quasispecies model (Eigen, 1971) and a spin
glass model in Statistical Mechanics (Leuthäusser, 1986), an interesting connection can
be made between quasispecies dynamics and quantum mechanical phenomena (Baake
et al., 1997, Bianconi and Rahmede, 2011). This connection may make possible that
tools used in a highly mathematical field such as quantum mechanics be used in under-
standing more complex evolutionary dynamics (or the other way around).

1.2.2 Individual based solutions to evolutionary information integ-
ration

Coding and Genotype to phenotype maps In its simplest interpretation, the Informa-
tion Threshold poses a limit on the amount of complexity a single genotype can evolve.
In the quasispecies models we presented, however, there was no complexity at all to be
incorporated in genomes: replicators did not encode anything because mutations affected
replication rate directly. This one-to-one map between genomes and their fitness is dif-
ferent from that of biological systems, where the order of nucleotides in a genome (a
genotype) is informative only in the light of the translation machinery, which makes this
information functional (a phenotype). Conceptually, we seek for a map that unambigu-
ously determines a phenotype given a genotype, and in which the genotype is informative
only in the context of the map itself, the rules for which are also in the genome and are
therefore evolvable (a symbolic information processing system (Maynard Smith, 2000)).
As we have mentioned before, the functional similarity of RNA with common cellular
information processing systems, as well as the theoretical simplicity of conceiving an
RNA world, makes RNA a perfect candidate to study biological evolutionary dynamics
in these terms.

The most common approach is to consider the minimum free energy secondary structure
as the phenotype of an RNA sequence (Fig. 1.1). The a priori reason for this choice is that
fast folding algorithms exist, e.g. (Lorenz et al., 2011) (unlike for proteins), and that the
map is both redundant and frustrated.1 Although the tertiary structure is ultimately ne-
cessary for the functional properties of RNAs, it is often disregarded because its folding
is directed by secondary structure elements (and because no fast 3D folding algorithms
exist). RNA sequences fold into a stable secondary structure by forming internal hydro-
gen bonds with both Watson-Crick base pairs (A-U and C-G) and wobble pairs (most
importantly U-G). Two subsequences with complementary nucleotides form stem, with
free energies depending on the length of the matching strands and on the strength of the
matching pairs of nucleotides (C-G bonds are stronger than A-U ones, which in turn are
stronger than G-U). However, it is often that case that a subsequence can form a match

1“Frustration” occurs because several competing interactions generate a rugged energy landscape with many
globally different low-energy structures.
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with multiple others. Frustration in RNA folding arises because not all possible inter-
actions can be realised. The folding algorithm minimises free energy on a smaller scale
first by assigning energies to all the possible stacks of nucleotides, and then globally by
selecting the collection of non-overlapping stacks that minimise the total energy (exclud-
ing pseudo-knots) (Hofacker et al., 1994). On the one hand, far apart subsequences can
be brought close to each other in the folding process, but few mutations can disrupt the
fold (due to frustration) and lead to a very different one. Hence, the landscape is rugged.
On the other hand, given a stack of matching nucleotides, several pairs in the stack can
be changed without altering the fold. In other words, several sequences fold in the same
secondary structure. Thus RNA folding is also redundant.
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Figure 1.1. Different representations of the minimum free energy folding of an RNA se-
quence. a: Sequence and “dots and brackets” representation, b: coarse grained “Shapiro”
representation (H: hairpin loop; S: stem; M: multi-loop connector; R: unfolded remainder of
the sequence), c: graphical representation, d: mountain plot representation. Corresponding
substructures in different representations are indicated with the same colour. Sequence folded
with Vienna Package (Hofacker et al., 1994).

Ruggedness and redundancy interplay in a peculiar way, and lead to several surprising
properties of this map:

• Extensive random sampling of the genotype space reveals that most sequences fold
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1.2 The problem of information integration in evolution

into one of few common secondary structures (Grüner et al., 1996). The longer the
sequences, however, the more structures become available (although the rate at
which the number of structures increases with sequence length depends on the
exact level at which secondary structure is coarse grained).

• Given a sequence that folds into a common structure, few mutations (much fewer
than sequence length) are sufficient to find most other common structures (Schuster
et al., 1994).

• Yet, it is possible to traverse the entire genotype space by mutating one or two
nucleotides at a time (Schuster et al., 1994).

• Novel structures can be found at constant rate in the mutational neighbourhood
along a path in the neutral network of a structure, no matter the distance trav-
elled. On the same path, structures similar to the one of interest are repeatedly re-
discovered (phenotypes bring their own shadow along in a neutral walk) (Huynen,
1996).

Evolutionary dynamics with complex genotype-to-phenotype maps The introduc-
tion of genotype-to-phenotype maps shifts the problem of evolutionary optimisation from
attaining a target genotype to a target phenotype. To this end, we can follow the evolu-
tionary dynamics of a population of RNA-like replicators, selected on the bases of their
similarity with a predefined target secondary structure (Huynen et al., 1996). Starting
from a random sequence with low fitness, the evolution of phenotypes proceeds by long
periods of stasis where no phenotypic differences are visible, interrupted by sudden fit-
ness “jumps”, where one or more phenotypic mutations make the population fitter. In
contrast, mutations are accumulated in sequences somewhat more continuously.

In the long periods of phenotypic stasis, sequences explore the part of the genotype space
connected by neutral mutations. As seen above, neutral exploration does not sample the
network homogeneously, but favours the regions that are more connected. Fitness jumps,
i.e. beneficial mutations, typically occur as transitions between different neutral networks
rather than through crossing a fitness valley (Van Nimwegen and Crutchfield, 2000) (the
latter process is called stochastic tunnelling in simplified fitness landscapes (Iwasa et al.,
2004, Komarova et al., 2003)).

After a beneficial mutation occurred, selection concentrates the population on the fit-
ter genotype, which is likely not located on a highly connected part of the new neutral
network. Then, neutral exploration can restart until the target structure is found.

A different outcome of the evolution of RNA-like replicators can be obtained by con-
sidering all the stable structures within a certain energy range, rather than only the min-
imum free energy fold. Assuming that a single RNA lives long enough to switch between
these conformations (and energy barriers between them do not affect the switching), the
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proportion of time spent in each fold is equal to the probability of the configuration (i.e.
its energy Ei, via Boltzmann relation exp(−Ei/kT )/Z, where Z is the partition func-
tion, i.e. the normalising sum of the probability of each configuration). Then, overall
fitness can be calculated as an average of the fitness contributions of different structures
(Ancel and Fontana, 2000).

Despite the fact that a larger portion of the phenotype space can be “seen” at any mo-
ment, a population of replicators evolving with this criterion does not converge to the
target phenotype and gets trapped in a local optimum. This happens because at any
point selection minimises the time spent in less favourable conformations and increases
the time spent in the most favourable ones. Because of plastogenetic congruence (the
similarity of phenotypes between the energetic neighbourhood and the mutational neigh-
bourhood), selection effectively increases mutational robustness to the point that adapt-
ive steps (which are accompanied by a large reduction of robustness) become selected
against.

Altogether, evolution reaches a dead end when selection acts on the energy neighbour-
hood, because of implicit selection for robustness (due to plastogenetic congruence). In
contrast, selection for minimum free energy structure leads to mutational robustness as
an evolutionary side effect. We hypothesise that this leads to a more stable energy neigh-
bourhood due to plastogenetic congruence.

Multiple coding and the evolution of coding structure In the previous paragraphs we
showed that replicators heavily exploit the complexity of RNA folding as a genotype-to-
phenotype map to integrate information. This map is similar to that of complex biological
systems because it allows for a large freedom of coding the information for a phenotype.
However, it differs from biological systems in one important feature, namely the abil-
ity to evolve itself. For example, the genetic code in present day organisms is arbitrary
(in the sense that there is no a priori reason for a certain codon to translate to a certain
aminoacid), has undergone a certain degree of evolutionary optimisation (Freeland et al.,
2000, Woese, 1965), while being still evolvable (Isaacs et al., 2011). Moreover mul-
tiple open reading frames can overlap (Huvet and Stumpf, 2014) (and references therein,
also see (Hogeweg and Hesper, 1992) for an evolutionary model) and some genes can
be spliced in different ways to obtain functionally distinct proteins (Barash et al., 2010).
Finally, proteins can fold in multiple functionally different states depending on environ-
mental signals (Tokuriki and Tawfik, 2009).

These examples point out that biological genotype-to-phenotype maps are versatile: they
change the “meaning” of the information stored in the genome depending on context (as
emphasised in (Trifonov, 2011)), as well as modify the map itself (a form of evolvability).
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Examples of RNAs that are active in different conformations abound: (Marek et al.,
2011, Schultes and Bartel, 2000, Serganov and Nudler, 2013). Hence, the results showed
in the previous section do not exhaust the evolutionary potential of RNAs.

In the previous paragraph we have included the observation that RNAs can fold into dif-
ferent structures, all contributing to the same fitness target. This needs not be so: different
phenotypes can be achieved by one sequence as suboptimal folds (within a certain energy
range from the minimum free energy structure). We consider that a single replicator con-
sists of an ensemble of sequences evolving towards a set of target phenotypes (de Boer
and Hogeweg, 2014). A population of such replicators -we can imagine RNAs enclosed
in membrane, and call them protocells- could use different sequences for different target
structures.

A general observation is that several sequences code for more than one phenotype at
evolutionary steady state. Moreover, increasing mutation rates increases the frequency
of multiple coding. This is because higher mutation rates decrease the total genome
size that can be maintained against mutations, which forces the evolution of “smarter”
alternatives, in this case multiple coding. As a result high fitness is maintained at high
mutation rates.

The occurrence of multiple coding under high mutation rates reveals a conceptual differ-
ence between the models discussed before and the last one. In the former cases, large
mutation rates improves the rate of evolutionary exploration but threaten the maintenance
of the information contained in the fittest sequence. Neutral networks can buffer against
the deleterious effect of mutations to some extent, by coding for more robust solutions.
In this last case, however, mutation rates should be though of as having a novel role:
they tune which “coding regime” the system adopts. Clearly, this is possible because the
genotype-to-phenotype map itself can evolve.

Evolution of symbolic information The previous experiment shows that the ability
of RNA to store information is limited by what the genotype-to-phenotype map can do
with it, rather than by mutation rates. This result can be taken one step further by a
simple modification of the same model. We assume that RNAs can fold into differ-
ent structures by binding adapters (short RNA sequences) that mask the complementary
residues (de Boer and Hogeweg, 2012). Because sequences and adapters co-evolve, pro-
tocells evolve at high mutation rates to code for multiple functions by having few long
sequences whose folding is guided by several short adapters.

This system shares several similarities with the genetic code:

• it is arbitrary and can modify itself, i.e. it is evolvable,

• it makes information stored in a genotype explicit in a context-dependent manner,

• the machinery that “translates” this code is also encoded in the genome.
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Hence the evolution of a symbolic information processing system.

In conclusion, we have transitioned from Quasispecies models evolving on simple
fitness landscapes, passing by the introduction of RNA as a genotype-to-phenotype map,
to models where replicators have larger freedom to chose the coding structure for solving
the evolutionary problem of information integration. At the same time, our focus has
shifted from the idea of an Error Threshold, where mutations pose a limit to information,
to evolvable maps in which mutation rate is a degree of freedom (a “tunable” parameter)
for code structuring.

In Chapter 4 we show that multiple coding arises naturally in an evolutionary system
even though it is not selected for, as an ecological strategy against competing replicators
and parasites.

Alternatives to RNA folding as genotype-to-phenotype map In the previous section
we made large use of RNA folding as a genotype to phenotype map. We chose RNA
folding because it is chemically well-grounded, fast, (fairly) accurate and of clear Bio-
logical significance, and we concluded that evolution exploits heavily its properties (e.g.
its peculiar combination of ruggedness and redundancy). Despite its apparent specificity,
many of the concepts developed by adopting such specific genotype-to-phenotype map
generalise to biological systems. For instance, evidence of the synergy between muta-
tional robustness and evolvability has been found in Eukaryotic gene regulatory networks
(Payne and Wagner, 2014) (the network of regulators, such as transcription factors, that
controls gene expression) as well as metabolic networks in bacteria (Samal et al., 2011,
Wagner et al., 2014). In the latter case, the large modularity in metabolic network can be
understood as a form of neutrality in metabolic space, and seems to be a by-product of
the selection pressure for metabolising multiple carbon sources (Samal et al., 2011). Fur-
thermore, experimental addition of edges to gene networks in bacteria are often neutral,
and occasionally cause mutants to outgrow the wild-type (Isalan et al., 2008), indicating
that bacteria are both robust and evolvable.

From a theoretical view point, RNA has proved useful for clarifying the mechanisms that
evolution adopts to increase (or maintain) fitness. However, while more complex models
may not allow such deep characterisation of the processes studied, they can show novel
concepts and novel evolutionary mechanisms. 2 Cell-based models, for instance, have
been used to clarify the interplay among genome length, evolvability and selection pres-
sures on coding and non-coding genome (Knibbe et al., 2007), to explain the long term
effects on fitness of genome expansion (Cuypers and Hogeweg, 2012, 2014), to show
the relation between adaptation to target metabolites and exaptation to metabolise other
compounds (Barve and Wagner, 2013), as well as a proof of principle that an evolution-
ary process can increase its own capacity to evolve, the so called evolution of evolvability
(Crombach and Hogeweg, 2008, Draghi and Wagner, 2008).

2Somewhat humorously, we could say that evolution has not departed from the RNA world for nothing!
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In the next section, we introduce a particular genotype-to-phenotype map to explicitly
address information integration and processing in evolving systems.

1.3 Ecosystem-based information processing and spatial
pattern formation

In the previous section we considered the evolution of a single population at a time,
and we analysed how information was integrated in genomes. However, we neglected
the functional properties of the interactions between individuals because of the global
fitness criterion we introduced. In biological systems, evolving entities are never con-
fronted with a full problem (e.g. there is no selection for a full, functional eye before
its simpler components are evolved). Models can reflect this when fitness is based on
interactions and information becomes context dependent. However, once we have this
in mind, the question “how can a system integrate information over evolutionary time
scales” becomes less clear, because now we may not always have an explicit search im-
age any more, and we have to recognise what emerges from the system. This is by no
means a weakness of the following models. On the contrary, this allows to move from
the “artificial” dynamics of a system as imposed by an arbitrary fitness function, to its
“natural”, i.e. the non-predetermined, properties (Hogeweg, 1993), while still using the
concepts developed in the previous section for a comparative search image.

1.3.1 Eco-evolutionary dynamics of simple predator-prey models

A possible way to introduce a “local” fitness criterion consists of considering the fitness
of an individual as dependent on both itself and those it is interacting with. A clear
biological example of this are trophic interactions, where the fitness of a predator depends
on the specific preys it eats.

A simple implementation of this idea consists of modelling the co-evolving interactions
between two trophic levels, predators and preys.

Predators and prey are both characterised by a (one dimensional) trait value. As predat-
ors feed on preys with similar values, predators’ fitness increases when a one dimensional
continuous trait-value approximate the corresponding value of a prey and, vice-versa, the
prey gains by not being matched by the predator (Van Der Laan and Hogeweg, 1995).
A simple expectation for the evolutionary dynamics of this system is that predators’ trait
chases that of preys forever, making evolutionary stability impossible (a form of Red
Queen dynamics (Van Valen, 1973)). In contrast, we observe that the two species sta-
bilise (and Red Queen dynamics are avoided) because mutations dampen the oscillatory
ecological dynamics of the species, thus stabilising them. This model shows that the
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interplay between ecological interactions and population diversity is important for the
evolutionary stability of an ecosystem. But what about information?

Analogously to the previous section, we can introduce a genotype-to-phenotype map,
rather than dealing with phenotypic parameters. Let predators and prey have genotype
and phenotype, with the map between them determined by RNA folding. Predators’ fit-
ness depends on the similarity of their secondary structure with the prey, whereas the
prey survives if its secondary structure is sufficiently different from that of the predator
(Huynen, 1993). Unsurprisingly, Red Queen Dynamics ensues, whereby preys endlessly
mutate away from predators and predators mutate closer to preys. The long-term evolu-
tionary effect of the short-term selection for diversity is that the prey is driven to a more
rugged region of the phenotype space, where mutations have the largest effects. This ef-
fect is stronger when predator’s mutation rate is larger (notice that prey’s mutation rates
remain constant in these experiments).

While in the previous paragraph we have shown that introducing mutations affects the
dynamics of an ecosystem, here we have shown that introducing ecological dynamics
change the way organisms evolve.

1.3.2 Spatial pattern formation and ecosystem-based evolutionary
info integration

Having seen that interactions between populations does affect the evolutionary capacity
of a species, we next ask how an ecosystem integrates information. This question can
be tackled explicitly by evolving a population in order to solve a certain problem by
exposing individuals only to parts of the problem itself. Such sparse fitness evaluation
also suggests that problems and problem-solvers should co-localise. Thus, we can study
both the well-mixed system and the spatially extended one (embedded in a two dimen-
sional grid). Here we focus on the spatial system (see (de Boer, 2012) for the complete
exposition).

With an ecosystem in mind we consider three co-evolving trophic levels: preys, pred-
ators scavengers (de Boer and Hogeweg, 2010). The problem itself consists of approx-
imating a target function through evolution (within a predefined domain and up to some
precision). Preys are numerical instances of the problem, while predators and scavengers
are evolvable solving functions (represented in LISP notation as a tree of operations).
Predators and scavengers’ fitness depends on producing the correct value of the target
function for the problem instance provided by the prey (competition between species is
excluded by fixing eating order). Preys are more successful the worse predators perform.

Predators evolve full solutions at low mutation rates by generalising based on the small
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subset of problems encountered by the lineage. After the first solution is found, long-term
evolution shortens the coding length so that individuals are less affected by mutations.
The initial expansion of the genome is functional because it makes individuals more
evolvable (cfr. (Cuypers and Hogeweg, 2012) where initial genome inflation makes vir-
tual cells more evolvable in the long evolutionary term). Increasing mutation rates limits
the genome size that can be maintained by evolution, thereby limiting the total volume
of genome space that can be explored.

Individual-based solutions are never found above a threshold mutation rate. While an
individual predator alone cannot reach a global solution, sub-populations can specialise
on different parts of the problem, speciation occurs, and two lineages co-exist. Because
a large part of the problem is left unsolved at any moment, scavengers can specialise as
well, speciating to complement predators’ solutions. The alternation of the two pairs of
predators and scavengers in the spatially embedded system generates a pattern of mu-
tually invading waves (de Boer and Hogeweg, 2010). Due to spatial pattern formation,
cooperation between predators and scavengers the problem can be fully solved.

In the previous section, we showed a system evolving towards a global fitness tar-
get selects the most suitable coding structure given the constraints imposed by mutation
rates, e.g. multiple coding evolved at high mutation rates. Here we see that an ecosystem
evolves a suitable coding structure to solve a problem depending on mutation rates. Di-
vision of labour within and between species arises at high mutation rates. In other words,
ecosystems process and integrate information when individuals cannot. In Chapter 4 we
present a different coding structure that allows large information integration and pro-
cessing at high mutation rates.

1.3.3 The problem of cooperation at the origin of life

In the previous section we studied the evolution of information integration by confront-
ing replicators with local sub-problems. This localised (and sparse) fitness evaluation al-
lowed for co-evolution of different species and the emergence of coding structure. How-
ever, the overall target fitness was still pre-defined.

In this section we present models where no fitness target is predefined (there is no evol-
utionary problem), and fitness depends solely on interactions with other individuals. A
common theme will be that interactions allow for self-organisation in spatial models,
which often result in recognisable spatial patterns. As we will see, spatial pattern form-
ation constitute a novel level of selection that can modify the outcome of evolutionary
dynamics in a counterintuitive way.

Hypercycles and the evolution of parasites The earliest attempt to solve Eigen’s Para-
dox in this terms (in fact, the earliest proposed solution) (Eigen and Schuster, 1978) stems
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from the idea that an ecosystem of several short sequences may be able to maintain in-
formation at high mutation rates where a single sequence cannot. Because every master
sequence must win the competition within its own quasispecies, competitive exclusion
applies also between quasispecies. In other words, because different quasispecies cannot
coexist independently, an interaction structure must be introduced for all sequences to
survive. Assuming that different sequences are mutationally distant and do not intercon-
vert by few mutations, and that mutation rate is sufficiently low to guarantee the survival
of each sequence, we can neglect mutations entirely and write (in analogy with Eq. 1.1)
the kinetic equations for the concentrations of the species:

ẋi =
∑
j

Ajixixj − φxi (1.11)

where the quadratic term Ajixixj introduces an interaction network between species
pairs (and φ =

∑
j Ajixixj). To visualise this, we can imagine that a molecular spe-

cies i specifically catalyses the replication of the species j, even though the mathemat-
ical formulation glosses over the details of enzymatic polymerisation (and hypercyclic
structures may be common in present day ecosystems (Maynard Smith and Szathmary,
1995)). A hypercycle is a cyclic interaction structure where replicator i catalyses replic-
ator i + 1 (the last replicator n replicates the first 0). This is the simplest arrangement
that maintains all species, whereas any strictly non-cyclic arrangement quickly faces ex-
tinction (for an extensive discussion which includes first order terms as well see (Stadler
and Stadler, 2003, Stadler, 1991)). Due to second order interactions between different
species, an unbounded hypercycle grows hyperbolically (whereas quasispecies grows ex-
ponentially). Although infinite growth (in finite time!) is not reasonable, its consequence
is that the competition between different hypercycles always favours the most abundant,
i.e. the one that established first (this effect is called “once-forever” selection (Eigen and
Schuster, 1977), see also (Szathmáry, 1991)). Steady state dynamics are stable for small
hypercycles (less than 4 members), and oscillatory (on a limit cycle) for larger ones.

Although conceptually appealing, the hypercycle is both ecologically and evolution-
ary unstable. Ecological instability is due to large oscillations in the concentrations of
species when hypercycles have many members, which take each species close to extinc-
tion every cycle. Evolutionary instability is due to mutations that make replicators better
target for replication. These selfish mutants are selected because of their faster growth
and, symmetrically, altruistic mutations that increase the replicating efficiency to the next
member in the cycle are counterselected (Bresch et al., 1980). At the extreme end of the
spectrum of selfish mutations are those that maximise the probability of being a target
of replication and minimise those of replicating others. These parasitic mutants interrupt
the cycle altogether, and lead to the extinction of the system.

Spatial pattern formation and its evolutionary consequences Both ecological and
evolutionary instability are a consequence of assuming a stirred system without popu-
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lation structure. We can construct the same model as Eq. 1.11 in a discrete, spatially
extended setting. To do so, replication of a sequence of type i occurs if in its neigh-
bourhood there is 1) a sequence of type i − 1, i.e. its replicator and 2) empty space in
which the product of replication is placed. A chemostat assumption is unnecessary in
this case, as the finiteness of space prohibits unbounded growth. A probability of death
is introduced for empty space to be regenerated, so that the system does not to get stuck
in its initial configuration.

In this system, the cyclic succession of species in a hypercycle with more than four mem-
bers organise into a concentric succession of rotating spirals (Boerlijst and Hogeweg,
1991b). The overall ecological stability is greatly ameliorated because several spirals
can establish at the same time (each with its dynamics), and the total population sizes do
not oscillate widely. The spatial system display several novel eco-evolutionary proper-
ties:

• It is resistant to parasites. Parasite invasion is spatially limited to one arm of the
spiral (their target), but cannot spread to all target replicators in the system because
successive spiral arms of the same type are spatially disconnected. As the spirals
are generated from the core, the local invasion of parasites is of little consequence
for the rest of the spiral. If parasites happen to reach the core of a spiral, instead,
they are likely to destroy the whole spiral. Yet, as long as other spirals are present,
the overall stability of the system is not compromised.

• Competition between hypercycles, i.e. selection, is automatically re-introduced. If
some variability is present in the system, self-organised spirals can be formed from
different original sets of replicators. Competition occurs at the level of spirals: the
one that rotates faster erodes the space occupied by the other, until the core is
reached and the slower spiral goes extinct (Boerlijst and Hogeweg, 1991b). A
counterintuitive consequence of the competition between spirals is, for instance,
selection for early death. Larger death rates increase the rate at which a type of
replicators is replaced by the next, thus making rotation faster. In this sense, spirals
“enslave” the evolution of its composing elements.

• Automatic reproductive differentiation between core and periphery. Due to the
sequential nature of replication, replicators in the arms of a spiral move outward
from the core generation after generation (independently from diffusion). The
replicators that remain in the core, instead, re-generate the arms of the spiral. In
fact, tracing the ancestor of all replicators shows that all individuals descend from
the core of the spirals. That is, once spirals have formed, the long term fitness of
replicators depends only on their location.

Despite its surprising properties, the spatially self-organised hypercycle does not solve
Eigen’s paradox. Shortcutting mutants that reduce the number of species needed to com-
plete one cycle are selected because they make spirals rotate faster, i.e. a cycle is com-
pleted in shorter time. Hence, hypercycle cannot integrate information in evolution, and
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is actually prone to losing it. Moreover, hypercycles do not multiply because the centre
of the spiral cannot escape, thus variability does not accumulate.

Nevertheless, it does highlight the importance of self-organisation for the evolutionary
dynamics of the system. In particular, the feedback of spatial patterns on the evolution-
ary dynamics of its composing elements is not a peculiarity of the hypercycle, and is
instead much more general (see below and e.g. (Savill et al., 1997, van Ballegooijen and
Boerlijst, 2004)).

1.3.4 Spatial cooperation and travelling waves

The hypercycle model shows that cooperation - and its relation to parasites - is an evolu-
tionary problem since the RNA world. In this context, the simplest view on the problem
is to consider a single species of replicators which catalyses its own replication, i.e. it
acts both as replicase and as template. For instance, assume that a replicator x1 replicates
others with rate k1, and that template behaviour is controlled by a parameter β1. We can
ask whether a mutant x2 (with replication and template behaviour controlled by, respect-
ively, k2 and β2) can invade when its template behaviour is different, i.e. β1 6= β2. The
dynamics of a well-mixed system read:

ẋ1 = k1β1x
2
1 + k2β1x1x2 − φx1

ẋ2 = k2β2x
2
2 + k1β2x1x2 − φx2,

(1.12)

where φ is the total growth rate, as before. The invasion condition for x2 is β2 > β1,
that is: a mutant can invade when it is a better template than the original replicator.3

This results mirrors the well-known problem of cooperation in sociobiology: the lack of
population structure in a cooperative system leads to selection for “selfish” replicators.

Clearly, parasites that do not give replication and are better templates than replicators,
should be able to invade too. To see the effect of parasites we must first abandon the
chemostat, as it forces the total population size to 1 even when almost no replication
occurs in the system. This awkward effect can be avoided by assuming that replication
rates are scaled by the availability of some resources θ = 1−x1−x2. Because parasites
do not replicate other species, we can set k2 = 0 and re-name variables as κ1 = k1β1

and κ2 = k1β2 (in the absence of a chemostat that washes away excess production, we
must also introduce a decay term d for all species). The new system reads (Takeuchi and
Hogeweg, 2012):

ẋ1 = κ1θx
2
1 − dx1

ẋ2 = κ2θx1x2 − dx2.
(1.13)

Parasites outcompete replicators when κ1 < κ2, i.e. when the former are better template
than the latter. As a consequence of this, replicators go extinct and parasites quickly

3Results do not change assuming that replicators spend a fraction of time τ in active (catalytic) state, and
the rest of the time in a state of template, so that k = τ and β = 1− τ .
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follow, as they are unable of self-maintenance.

Spatial selection for cooperation As in the case of the spatially extended version of
the hypercycle, a discrete, spatially extended model of the dynamics between cooperative
replicators can reverse the selective trend to selfishness. When replicators are embedded
on a surface, local replication clusters similar replicators, which together can grow faster
than (cluster of) mutants (Szabó et al., 2002). Moreover, limited dispersion does not
permit selfish molecules to spread efficiently and outcompete the cooperative replicators.
The larger the rate at which molecules diffuse (approaching a well mixed system), the
more likely it becomes that selfish mutants end up in the centre of a cluster of cooperative
replicators, destroying it.

However, there is a caveat for these results to hold, namely that cooperation cannot be too
costly. In this system, this is (presumably) achieved by 1) the possibility of an increase
in replicase activity along with with template quality and 2) assuming that replicators do
not spend much time replicating others.

Complex formation strengthens selection for parasites With trans-acting replicators,
template dependent polymerisation takes a certain amount of time, in which the replicator
itself is not being replicated. Parasites do not suffer from this problem instead, as they
spend their entire life-time being replicated. As a result, replication is more costly for
replicators than we have assumed so far. This can be incorporated in the replicator-
parasite system presented above by introducing complex formation as follows:

Xi + Xj

kai−−⇀↽−−
kdiss

CXj◦Xi

ρ,θ−−→ 2 Xj + Xi

Xi + P
β·kai−−−−⇀↽−−−
kdiss

CP◦X
ρ,θ−−→ 2 P + Xi

where Xi and Xi are replicators that form complexes with rate ka, P is parasite and has
an advantage β > 1 at complex formation, C stands for complex (with subscripts indic-
ating the composing members; complexes dissociate with rate kdiss), which generates a
novel replicator or parasite with rate ρ if resources θ are present.

In a well mixed system, this strengthens the selection for selfishness and, consequently,
for parasites (Takeuchi and Hogeweg, 2007b). In a spatial system as well, increased
costs of replication overturn the emergent selection for active replicators. The spatial
system does not go extinct, however. Replicators survive at the minimum rate of com-
plex formation even though mutations that further decrease replicators’ activity are still
selected. Survival is possible because of the heterogeneity in the system: local extinction
ensues when replicators cannot sustain themselves, but the remaining empty space can
be re-colonised by neighbouring replicators (see Chapter 2 and (Takeuchi et al., 2011)).
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Despite this, in Chapter 3 we will see that cooperation in a replicator system can evolve
also when costs are large. The evolutionary mechanism for this depends on the emergent
evolutionary properties of self-organised spatial patterns, which we present in the next
section.

Travelling waves dynamics and evolution Parasites do not lead to global extinction
in a spatially extended system, contrary to the results obtained from Eq. 1.13. Instead,
replicators and parasites coexist for a large range of parameters (provided that κ2 >
κ1). Coexistence is mediated by the self-organised arrangement of the two populations
into travelling waves, as shown in Fig. 1.2. The origin of these spatial patterns is quite
simple. A small population of replicators inoculated on a surface grows by expanding
in all directions. Introducing parasites next to replicators prohibits the expansion of the
latter in that direction. Parasites, in turn, do not grow autonomously and must be in
close contact with replicators. Limited dispersal hinders parasites because they locally
cause the extinction of replicators (due to superior template quality). When replicators
are locally extinct, only those parasites that are adjacent to other replicators can replicate
further. Hence a travelling wave, where replicators - the wave front - expand in the
direction opposite to parasites, and parasites - the back of the wave - replicate in the
direction of replicators and leave empty space behind.

Time [AUT]
0 100 200 300

Figure 1.2. Travelling waves formed by replicators (grey) and parasites (black). The two
snapshots are taken from the simulations described in Chapter 2 at 300 time steps (Arbitrary
Units of Time) from each other. Below, the “birth” and “development” of a wave.
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Multiple waves occur simultaneously on a sufficiently large surface. This leads to fre-
quent collisions between waves, which in turn can result in the partial or complete an-
nihilation of the two waves, as well to the generation of new waves. Additionally, new
waves can establish when replicators creep through the back of a pre-existing wave if
parasites are sufficiently weak. Thus waves are capable of multiplication (unlike hyper-
cycles).

In a well-mixed system parasites are selected to become stronger when their affinity
for replicators is free to evolve (Takeuchi and Hogeweg, 2009). In the spatial system,
instead, weaker parasites permit replicators to escape from the back of the waves more
frequently, thereby establishing new waves. Waves with weaker parasites tend to be more
turbulent and cannot be invaded by waves with stronger parasites, which are more stable.
Thus wave-level selection acts on the evolution of parasites to make waves more “fertile”.
Hence, selection at the level of waves reverses the individual-based selection pressure for
stronger parasites (waves enslave their components, similarly to hypercycles). Moreover,
new waves inherit the parasites of the waves they come from. Thus, waves display com-
positional inheritance.

Altogether, waves display variability and inheritance, and can multiply as well as respond
to selection pressures. In other words, we can describe the evolution of travelling waves
in terms of mutation and selection independently from the evolution of its composing
elements. In this sense, waves are units of evolution (Takeuchi and Hogeweg, 2009).

In Chapter 2 we extend these results by studying the effect of wave-level evolution on
replicators, and on the the co-evolution of replicators and parasites.

Replicators with sequence, structure and interactions The replicator-parasite model
discussed so far is clearly a simplified description of an RNA world. This simplicity
allows to pin-point the effects of the interplay between evolution and self-organisation.
However, we have also seen that complex genotype-to-phenotype maps deeply affect the
evolutionary dynamics of replicators.

The two approaches can be combined straightforwardly by considering trans-acting rep-
licators with genotype-to-phenotype map determined by RNA folding, in a spatially ex-
tended system (Takeuchi and Hogeweg, 2008). Replicators form complexes with a prob-
ability that depends on the degree of complementarity between the unfolded 5’ and 3’
end subsequences. Replication occurs if a replicator folds into a predefined secondary
structure and binds with its 5’ dangling end another sequence (by the 3’ end). The com-
plementary sequence is generated upon replication.

The long-term evolutionary stability of the system depends on mutation rates in a coun-
terintuitive way. A single quasispecies evolves and persists at the highest viable mutation
rates, the sequence variability in the system is minimal and a clear master sequence can
be found. The quasispecies maximises the probability of complex formation by increas-
ing the frequency of C and G nucleotides in their 5’ and 3’ end (exploiting the larger
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free energy of C-G bonds over A-U bonds). The reason for the stability of a compact
quasispecies hinges on the interplay between coding structure and spatial process, and is
the object of Chapter 4 (see below).

Decreasing mutation rates, parasites readily evolve and organise with replicators in trav-
elling waves. Parasites exploit sequence homogeneity and large association rates of the
replicators’ quasispecies. Even though parasites can evolve by a few mutations, it takes
them several more to optimise their affinity to the replicators. Thus parasites form a
separate lineage which co-exists with replicators.

Further decreasing mutation rates, a new species of replicator evolve which specialises
on A and U nucleotides to mediate complex formation. The new quasispecies is selected
because it is not affect by the parasites, due to its different sequence specificity. A new
parasite can evolve which exploits the second quasispecies, if mutation rate is decreased
once more.

Altogether, the model shows how the interplay between genotype, phenotype and spatial
pattern formation generates an eco-evolutionary process of niche-creation and speciation.

Replicators in compartments Spatial pattern formation imposes a new level of selec-
tion that stabilise the dynamics of replicators and parasites. For the sake of completeness
(although outside the scope of this thesis), we briefly mention that parasites can also be
stabilised by explicit compartmentalisation. If compartments host replicators and para-
sites in small numbers, and assuming that both are needed for optimal growth rate, an
overall stable steady state can be achieved because of the stochastic repartition of the two
species upon division (Szathmáry and Demeter, 1987). Moreover, protocell-level dynam-
ics impose a higher level of selection, which affects the evolution of parasites (Takeuchi
and Hogeweg, 2009). Finally, complex evolutionary dynamics can be observed also
when protocells contain only replicators, as a result of the conflicts between levels of
selection. For instance, the conflict between individual-based selection for selfishness
(which lowers the rate of complex formation), and selection for protocell growth (which
relies on replicators with larger growth rates) can cause evolutionary cycling in differ-
ent lineages of replicators, even though the overall population seems to have reached an
evolutionary stable steady state (Takeuchi et al., 2016).

1.4 This thesis: Multilevel evolution of novel functions

In this thesis we extend and connect the concepts presented above by studying the beha-
viour of several evolutionary models. In the next paragraphs we introduce the following
chapters by focusing on the emergence of functions in a multilevel evolutionary context.
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1.4.1 Replicator-parasite systems

In Chapter 2 we extend the analysis on the spatial evolutionary dynamics of replicator-
parasite systems by 1) fixing parasite strength and letting replicators evolve and 2) allow-
ing the two species to co-evolve. We complement the results presented in the previous
section [REF TH09] from the “perspective” of replicators’ evolution, and we character-
ise the phase space of the system in terms of wave-level properties. We also find a novel
evolutionary regime in which wave-level dynamics allow replicators to become more co-
operative when parasites are stronger. Finally, we explore the co-evolutionary dynamics
of replicators and parasites by tuning the duration of replication (i.e. the amount of time
a replicator spends before completing replication). We show that spatial pattern forma-
tion directs the co-evolutionary trajectories of replicators and parasites, which in turn can
reverse the wave-level evolutionary dynamics.

A novel function for parasites The increase of association rates in replicators depends
(once again) on wave-level dynamics. Selection pressure for chaotic waves (fecundity) is
reduced when strong parasites do not allow replicators to escape frequently from the back
of a wave. Because of this, empty space is more abundant behind parasites, and waves
are more stable and live longer. The abundance of uninterrupted empty space sets the
conditions for replicators to increase association rate: on the wave front, the replicators
the invade space first (by increasing association rate) are those whose progeny survives,
the others remain behind and are outcompeted by parasites. Stronger replicators further
strengthen parasites, establishing a feedback mechanism that selects for the increase of
cooperation. Hence, strong parasite are beneficial to the evolution of replicators, because
they set the spatial conditions in which replicators become more cooperative.

1.4.2 The evolution of cooperation at high costs

Increasing the timespan of replication increases its cost further for a replicator, because
it steepens the trade-off between replicating others and being replicated. As a side effect,
even weak parasites are likely to kill all replicators in a wave, which in the long run se-
lects for parasites that are worse templates than replicators and may go extinct (Chapter
2). Treating replicators and parasites as different species is reasonable if one assumes that
a long evolutionary history is necessary for parasites to be optimised templates (evidence
for this is presented in the next section). The principle on which replicators increase their
cooperative traits, however, does not depend strictly on this separation. Because replic-
ators act in trans, longer time-spans for replication strengthens selection for selfishness,
and parasite-like replicators evolve. Selfish and cooperative replicators then self-organise
in travelling waves, which re-inforce both selfish and cooperative replicators, with the
two populations forming separate lineages. Hence, selfish and cooperative behaviour
coexist, co-evolve and enhance each other by means of travelling waves dynamics.
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To show this point more clearly, in Chapter 3 we reformulate the system in the classical
terms of sociobiology, i.e. in terms of costs and benefits of cooperation. Drawing from
microbiology, we model a population in which individuals can evolve the rate at which
they produce a diffusible substance, i.e. a public good. An individual benefits from the
total public good it comes in contacts with, but pays a cost when producing it. Thus
public good production is a cooperative trait. In a well-mixed system, selfish mutants
that produce less public good can always invade a resident population of cooperative
individuals as long as benefits are larger then costs (the dynamics analogous to Eq. 1.12
and the calculation is straightforward). This is according to intuition: when the benefits
of producing costly public good are shared, any selfish mutant the produces less than
average will experience a direct competitive advantage, because a slight decrease in the
shared benefits is overcompensated by a large decrease in the individuals’ production
cost.

When a population of cooperators is embedded in a grid (or a network), instead, results
can be different because groups of cooperators have collectively an advantage over selfish
individuals (we have seen an example of this above). This form of spatial selection in
“viscous populations” holds as long as costs are sufficiently low (or benefits sufficiently
high) (Van Baalen and Rand, 1998, Wilson et al., 1992). As a simple heuristic rule, if b is
the benefit per cooperator in a neighbourhood, and c is the cost, individuals can invade in
a grid (or a network) of connectivity k as long as b > ck (Ohtsuki et al., 2006). Indeed,
we observe that public good production evolves to large values in the entire population
for low costs, but decreases to the minimum viable when costs approach b/k.

What happens when costs are increased further? Strikingly, public good production
evolves to larger values again. The initial selection for lower public good produc-
tion leads to the evolution of selfish individuals which rely on cooperators for survival,
thereby forming travelling waves. The invasion dynamics of travelling waves increases
public good production on the wave front (Van Dyken et al., 2013), and provides sup-
port for selfish individuals, which are further selected to decrease their production rate.
Thus, cooperation evolves at high costs due to the mutual feedback between evolution
and self-organisation.

This result enriches the point about emergence of novel functions due to multi-level
evolution in two ways: 1) The results obtained with the RP system assumed replicators
and parasites as separate lineages; here we have shown that parasites are not a neces-
sary assumption, but automatically evolve from cooperators; 2) The fact that the same
principle can be applied in both the replicator-parasite system and the public good model
highlights its generality (the public good model is an extremely simple and general model
for the evolution of cooperation).
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1.4.3 Mutational division of labour in evolved quasispecies

In Chapter 4 we return to the RNA-like replicator system, and we study the effect RNA
folding as a genotype-to-phenotype map on the eco-evolutionary dynamics of the system
at high mutation rate. We have mentioned before that a single quasispecies evolves in
this parameter regime and that the system displays little variability both sequence-wise
and spatially (for instance, no parasitic lineage evolves). We show that a master sequence
evolves to a steep region of the fitness landscape (very few of its mutants are neutral) with
a stable distribution of closely related mutants descending from it. The master sequence
exploits an evolved coding structure that prevents both a survival of the flattest effect and
exploitation by selfish replicators and parasites while being the genotype that replicates
the fastest. The analysis of the mutational neighbourhood of the master sequence allows
the identification of novel functions as phenotypes of non-viable sequences (that do not
replicate). Because mutations occur frequently, the unusual mutational neighbourhood of
the master sequence translates into a spatial distribution of these novel phenotypes. This
stabilises the master sequence and prevents the invasion of competitors (with “worse”
mutational neighbourhoods) as well as parasites.

In the previous section we have seen that a coding structure can evolve at high mutation
rates so that a single sequence codes for multiple phenotypes. These individual-based
solutions to the problem of evolutionary information integration were obtained by select-
ing for a global fitness target. However, we explicitly included the capacity to evolve the
genotype-to-phenotype map itself in the system (by suboptimal foldings or adapters),
because the properties of single-sequence, minimum free energy folding are immut-
able. Here this effect is purely emergent, and comes about because evolution exploits
the fact that mutations occur “reliably”. Moreover, we have seen that population-based
(or ecosystem-based) solutions can integrate and process information at high mutation
rates (when individuals cannot), provided that the fitness function is local. Here, there
is no explicit fitness function (fitness is based on interactions), and yet we observe that
information processing is mediated by the properties of the emergent functional ecosys-
tem.

In conclusion, there needs not be a rigid distinction between individual-based and
population-based solutions to evolutionary problems, in the sense that evolution is not
bound to one of them if it is given enough degrees of freedom.

1.4.4 Evolution of mutational biases

The approach we have taken so far allowed us to identify the emergence of innovation in
(relatively) simple multilevel model system. In Chapter 5 we take a different approach:
we focus on an experimental observation that exemplifies such emergence in a cellular
context and we build a model to identify the evolutionary and functional significance of
this behaviour.
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It was found that S. cerevisiae can increase its ribosomal DNA copy number in response
to nutrient availability (Jack et al., 2015) (ribosomal DNA is organised in a cluster of
about 150 to 180 copies of the ribosomal RNA gene on chromosome XII). A larger
number of rDNA genes does not lead to growth differences (French et al., 2003), thus
the increase in copy number is not directly under selection. It is known, however, that
damage accumulates quickly in yeast’s DNA if there are less than about 30 copies of the
gene (see e.g. (Ide et al., 2010)).

We hypothesise that the evolution of these “regulated mutations” is a form of evolution
of evolution (Hindré et al., 2012). A typical hallmark of the evolution of evolvability
is the long-term evolutionary integration of environmental information to modify the
genotype-to-phenotype map, which can be “bent” so that random mutations have non-
random effects (Hogeweg, 2012). In the case of regulated mutations in the rDNA gene,
the evolved genotype-to-phenotype map biases mutations by means of an intricate inter-
play among the signalling pathway, transcription regulation and DNA replication. The
outcome is that non-homologous recombination leads to frequent duplications of rDNA
genes when rDNA copy number is low.

In Chapter 5 we begin the exploration of this system by studying the evolution of a popu-
lation of cells with (a phenomenological) metabolism, regulation and a beads-on-a-string
model of genes in a genome. Mutations can be caused by large transcriptional load (see
(Helmrich et al., 2013) for review) as well as random mistakes during replication, and
cause gene duplications, deletions or inactivations. We find that the the size of the cod-
ing genome is severely limited by the ratio between different mutations. At evolutionary
steady state, the amount of non coding genes is large, and cells have low overall fitness
when the three types of mutations are equiprobable. In contrast, when we increase the
overall mutation rate but we bias mutations towards duplications and deletions, evolu-
tion reaches a much fitter steady state, characterised by a large coding part, and very
few inactive genes. Furthermore, the relative frequency of transcription-induced muta-
tions evolves to increase duplications and deletions, and reduce inactivating mutations.
We also find that cells’ growth rate is hardly diminished when we artificially remove a
considerable fraction of rDNA gene copies from evolved cells, as is the case in yeast.

Altogether, our results suggest that there exists a selection pressure in yeast to bias tran-
scriptional mutations towards duplications and deletions, which results, as a side effect,
in a large copy number of ribosomal genes.
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Chapter 2. Parasites enhance replicators

Abstract

In a prebiotic RNA world, parasitic behaviour may be favoured because template de-
pendent replication happens in trans, thus being altruistic. Spatially extended systems
are known to reduce harmful effects of parasites.

Here we present a spatial system to show that evolution of replication is (indirectly)
enhanced by strong parasites, and we characterise the phase transition that leads to this
mode of evolution. Building on the insights of this analysis, we identify two scenarios,
namely periodic disruptions and longer replication time-span, in which speciation occurs
and an evolved parasite-like lineage enables the evolutionary increase of replication rates
in replicators. Finally, we show that parasites co-evolving with replicators are selected to
become weaker, i.e. worse templates for replication when the duration of replication is
increased.

We conclude that parasites may not be considered a problem for evolution in a prebi-
otic system, but a degree of freedom that can be exploited by evolution to enhance the
evolvability of replicators, by means of emergent levels of selection.
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2.1 Author Summary

The RNA world is a stage of evolution that preceded cellular life. In this world, RNA
molecules would both replicate other RNAs and behave as templates for replication. A
known evolutionary problem of this world is that selection should favour parasitic tem-
plates that do not replicate others, because they would be replicated the most. A pos-
sible solution to this problem comes from spatial self-organisation: local accumulation
of parasites lead to their own local extinction, which leaves empty space for replicat-
ors to invade. We show that the spatial organisation generated by interacting replicat-
ors and parasites sets the (spatial) conditions that enhance replicase activity when para-
sites are stronger. Moreover, we find that the co-evolution of replicators and parasites is
severely constrained by the type of spatial patterns they form, and we explore this feed-
back between evolution and self-organisation. We conclude that spatial self-organisation
may have played a prominent role in prebiotic evolution.

2.2 Introduction

According to the RNA world hypothesis, RNA self-replication preceded the current
DNA-RNA-protein replication mechanism (Gilbert, 1986). RNA molecules can store
information much like DNA as well as catalyse reactions (Guerrier-Takada et al., 1983,
Kruger et al., 1982, Nissen et al., 2000), including self-replication (Draper et al., 2008,
Paul and Joyce, 2002), and are capable of undergoing Darwinian evolution (Lincoln and
Joyce, 2009, Martin et al., 2015, Mills et al., 1967). From a theoretical view point, one of
the simplest evolutionary systems consists of ribozymes that perform template dependent
polymerization, even though such ribozymes are not fully functional yet experimentally
(Attwater et al., 2013, Wochner et al., 2011).

Replication in trans requires a catalytic molecule to bind and copy a template, and
is thus prone to exploitation by molecules that behave more often as templates than as
catalysts. At the extreme end of the spectrum lie parasites: RNAs that never replicate
others and may be better templates than replicators (Bresch et al., 1980, Maynard Smith,
1979). A well-mixed pre-biotic soup is indeed evolutionarily unstable because selection
for better templates progresses until replicators cannot sustain themselves. Clearly, the
evolutionary instability of this system is aggravated by parasitism. Some form of higher-
level organisation is therefore necessary for the persistence of self-replicating RNAs.

We focus on the emergent levels of selection introduced by spatial self-organisation (a
viable alternative is explicit compartmentalisation, such as vesicles (Hogeweg and Takeu-
chi, 2003, Niesert et al., 1981, Szathmáry and Demeter, 1987)). The problem of parasites
is alleviated in spatially extended systems due to spatial pattern formation (Boerlijst and
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Hogeweg, 1991c, Hogeweg and Takeuchi, 2003, Könnyű et al., 2008, Szabó et al., 2002,
Takeuchi et al., 2011), because parasites automatically segregate from replicators due to
limited diffusion, and their accumulation leads to local, but not global, extinction (see
also Chapter 3). Furthermore, spatial patterns can constrain the evolutionary dynamics
of parasites and select for weaker ones (Könnyű et al., 2008, Takeuchi and Hogeweg,
2009, van Ballegooijen and Boerlijst, 2004).

Here we show that parasites may not be a “problem” for the evolution of RNA-like
self-replication in spatially extended system, but are actually beneficial, in that they sus-
tain and enhance replication through higher levels of selection. This effect was briefly
mentioned in (Takeuchi et al., 2011). Here we characterise it in terms of how the strength
of parasites affects the selection pressures generated by spatial patterns. Building on this,
we identify a phase transition-like behaviour, where the selection regime changes ab-
ruptly and we analyse the selection pressures at the replicators’ levels. Then, we explore
the co-evolutionary dynamics of replicators and parasites.

2.3 Methods

With an RNA-world in mind, we model the dynamics of a population of replicators
and parasites in an individual based, spatially extended, stochastic simulation system.
Individuals are located on a two-dimensional square lattice with eight neighbours and
wrapped boundaries (based on CASH, (de Boer and Staritsky, 2000)). Each node of the
lattice can be empty or occupied by one individual. Replicators form complexes with
other replicators at rate ka, and with parasites at rate ka · β in order to replicate them
(i.e. the replicator behaves as replicase). Assuming that replicators behave as templates
with rate set to one, β ≥ 1 represents the relative advantage a parasite experiences as a
template over replicators. Complexes occupy always two adjacent nodes. Complex dis-
sociation happens with constant rate kdiss. Upon successful complex formation between
two adjacent individuals, and in the presence of empty space in the neighbourhood, the
template is copied with rate ρ. After replication the complex breaks and the molecules
return to an unbound state. Assume Xi is a replicator attempting to form a complex
either with a replicator Xj or with a parasite P , the reaction scheme reads:

Xi + Xj

kai−−−⇀↽−−−
kdiss

CXj◦Xi

ρ,θ−−→ 2 Xj + Xi

Xi + P
β·kai−−−−⇀↽−−−
kdiss

CP◦X
ρ,θ−−→ 2 P + Xi

where C is a complex and θ represents empty space. Mutations happen with probability
µ and affect the complex formation rate ka of the newly generated individual by adding
a small random number (drawn from a uniform distribution [− δµ2 ,

δµ
2 ]). Individuals de-
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grade with rate d, leaving empty space (also when in complex, in which case the other
molecule survives and returns to an unbound state). Diffusion is modelled by swapping
node contents between neighbouring nodes, it happens with rate D and may involve
single individuals as well as complexes. See Supporting Information, Section 2.6.1 for
more details.

Several important assumptions are made in order to simplify our model. First, we
do not take into account that replication yields the complementary strand of a template.
Second, we assume that replication rate ρ is the same for all replicators and parasites, and
does not evolve in this study. Third, we assume that replicators behave as templates with
rate set to one, which does not evolve, and parasites have are relatively more available for
complex formation, i.e. β > 1. Notice that we let parasites’ relative advantage β evolve
(where specified). Fourth, parasites are modelled as a different class of molecules, in line
with the results of a previous study (Takeuchi and Hogeweg, 2008). There, RNA-like rep-
licators were modelled with sequences and secondary structures, and it was found that
although few mutations could turn a replicator into a parasite, several mutations were ne-
cessary for parasites to optimise and establish themselves, thereby forming a new lineage.
Furthermore, replicators evolved so that no close mutants of theirs was strongly parasitic
(Chapter 4). Fifth, parasites do not form complexes with each other. In fact, complex
formation was determined by sequence-complementarity in the above-mentioned study
(Takeuchi and Hogeweg, 2008), and parasites evolved to minimise interactions with each
other.

2.4 Results

2.4.1 Individual-based selection decreases replication

When we let the association rate (ka) mutate in a replicators’ system without parasites,
ka decreases (Fig. 2.1a) because replicators with lower-than-average ka behave more as
templates than as replicators, thus being replicated the most. Eventually, the minimum
association rate needed for survival is reached (ka ≈ 0.05, just above death rate, d =
0.03). There, the system persists indefinitely because mutations that further decrease the
probability of complex formation lead to local extinction, followed by the invasion of
neighbouring replicators. Mixing the system, as well as a large increase in the diffusion
rate, leads to global extinction as ka becomes too low to sustain replication in the system
(Supporting Information, Section 2.6.2).
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Figure 2.1. Evolutionary dynamics of replicators’ association rate without and with para-
sites: ka decreases in the absence of parasites, and evolves to higher values the stronger the
parasites. a: Only replicators are present in the system; b: Parasite advantage β = 1.40; c:
Parasite advantage β = 1.70. Other parameters: ka ∈ [0, 2], kdiss = 0.25, ρ = 1, ∆tr = 0,
µ = 0.005, δµ = 0.05, d = 0.03, D = 0.1. Results are robust to moderate changes in
diffusion rate (Supporting Information, Section 2.6.2.

2.4.2 A phase transition to high association rates for larger parasite
strength

We now introduce parasites and let the evolutionary dynamics of the association rate ka
unfold in response to a large constant parasite advantage (β ∈ [1.0, 1.99]).

Importantly, parasites are at advantage over replicators because 1) complex formation
automatically shifts replication towards parasites by introducing a replicase/template im-
plicit trade-off for replicators (Takeuchi and Hogeweg, 2007b), 2) they form complexes
more frequently than replicators (β > 1) and 3) when in complex they do not replicate
others, but are exclusively replicated. Yet, the deleterious effect of parasites is limited in
spatial systems because local replication prevents them from becoming a global stability
threat. The processes of spatial pattern formation in discrete replicators-parasites sys-
tems often results in travelling waves (Hogeweg and Takeuchi, 2003, Takeuchi and Ho-
geweg, 2009), where replicators expanding into empty space constitute the wave-front,
and parasites outcompeting those replicators make up the back. Parasites leave empty
space behind themselves due to local extinction. Notice that, because β is a multiplic-
ative term, larger ka and larger β contribute synergistically to parasite replication. One
could expect that lower rates of complex formation are selected in the face of stronger
parasites until the system collapses and goes extinct.

Contrary to this expectation, replicators evolve to larger association rates in response to
stronger parasites (Fig. 2.1b and c). The increase in ka is limited for lower parasite ad-
vantage (1.1 ≤ β ≤ 1.4), while for higher parasite advantage (β ≥ 1.7), ka is maximised
(Fig. 2.2a). The system is bistable for intermediate values of β (1.5 ≤ β ≤ 1.6).
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Figure 2.2. Stronger parasites lead to a phase transition in the eco-evolutionary dynamics.
a: distribution of the association rate ka at evolutionary steady state in a population of rep-
licators, for different values of parasite advantage β. b: chaotic waves at evolutionary steady
state when β = 1.40 (lattice size 5122, for clarity 1/4 of the lattice is displayed). c: stable
waves at evolutionary steady state when β = 1.70 (lattice size 20482, 1/4 of the lattice is
displayed). All other parameters are as Fig. 2.1.
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Parasites cannot be sustained in the system when they are too weak (β ≤ 1.0, Sup-
porting Information Section 2.6.3). For low values of both β and ka, the replication of
parasites is comparable to that of replicators, while local accumulation of parasites leads
to their extinction. After parasites disappear, ka decreases to the minimum needed for
survival (Fig. 2.2aI).

For increasing β (1.1 ≤ β ≤ 1.4, Fig. 2.2aII), parasites persist and replicators reach an
evolutionary steady state. Replicators and parasites organise in small and chaotic travel-
ling waves, while the lattice looks overall patchy (Fig. 2.2b). Observations of the spatial
dynamics suggest that new waves are often established by replicators escaping from the
back of an existing wave (Supplementary video S1)1. Starting from large values of ka,
replicators evolve to decrease it because those with smaller ka generate new waves more
frequently (Supporting Information Section 2.6.4). ka does not decrease without bound.
Selection is stabilising because too low replication rates cannot support the persistence of
both replicators and parasites. Surprisingly, the population size of replicators increases
with parasite advantage (provided that β ≥ 1.3, Fig. 2.3a). Notice that although para-
sites outnumber replicators at lower β, increasing parasite advantage steadily decreases
the population of parasites (Fig. 2.3b).

For 1.5 ≤ β ≤ 1.6 the system exhibits bi-stability, reaching either the lower or the higher
(see below) final value of ka depending on initial conditions (Fig. 2.2aIII).

When parasite advantage is large, β ≥ 1.7, ka is maximised over evolutionary time-
scales (Fig. 2.2aIV) and travelling waves become larger and stable (Fig. 2.2c, Supple-
mentary video S2), provided that the lattice is large enough to contain them (Supporting
Information Section 2.6.5). As the value of ka increases, parasites become stronger and
it becomes progressively less likely that new waves establish by escaping from the back
of an existing one. When waves with different replicators compete side by side, those
where replicators have higher ka win because they invade space faster than the others
(Supporting Information Section 2.6.6). Fig. 2.3 shows that the population size of replic-
ators is much larger than that of parasites, and that population sizes do not change much
with increasing parasite strength.

In summary, weaker parasites lead to small and chaotic waves. Replicators evolve low
association rates and establish new waves by escaping from the back of older waves (cf.
(Takeuchi and Hogeweg, 2009)). In contrast, limited escape is possible from stronger
parasites. Replicators respond by evolving higher association rates, and organise with
parasites into larger and more stable travelling waves. The transition from one behaviour
to the other is akin to a first order phase transition, even though the system is far from
equilibrium.

1The videos are available from the publisher’s web site (dx.doi.org/10.1371/journal.pcbi.
1004902)
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Figure 2.3. Fractions of a replicators and b parasites at evolutionary steady state. Full/empty
distributions for replicators and parasites with the same β correspond in the two figures.

2.4.3 Strong parasites induce high ka by generating empty space

Since the two regimes differ in the way replicators and parasites organise in space (re-
spectively chaotic vs. stable waves), we characterise the phase transition in terms of the
amount of uninterrupted empty space experienced by the expanding fronts of travelling
waves. To this end, we run several ecological experiment (i.e. without mutations) with
different values of ka and β, and (qualitatively) measure the amount of empty space ex-
perienced by replicators on the front of travelling waves (Supporting Information Section
2.6.7). In Fig. 2.4, the results from the ecological experiments and those from the evolu-
tionary dynamics (Fig. 2.2) are overlaid (the measure of the available empty space from
the ecological system is represented as a heat-map for the different values of ka and β).

For lower parasite advantage (β ≤ 1.60), the evolutionary outcome matches the values of
ka obtained from the ecological experiments where the amount of uninterrupted empty
space is minimal (but not the total empty space, see Fig. 2.4a), i.e. where wave birth
is maximal. Thus, both wave-level selection (for higher wave birth) and replicator-level
selection (for replication) lead to decreased ka when it is large. When ka is small, wave-
level selection opposes individual-level selection, and ka increases. A side effect of
smaller steady state value of ka is that replicators’ population size at evolutionary steady
state is minimal (Fig. 2.4b).

In contrast, for stronger parasites (β ≥ 1.70), replicators evolution maximises ka, and
parasite population is smaller (Fig. 2.4c). Fig. 2.4 shows that uninterrupted empty space

41



Chapter 2. Parasites enhance replicators

is abundant in this parameter region regardless of the values of ka. Because parasites are
strong, replicators do not escape frequently from the back of the waves and do not form
new waves, hence the large amount of uninterrupted empty space behind waves.

The availability of uninterrupted empty space drives the evolution of higher association
rate, because sub-populations with higher ka invade empty space faster and eventually
dominate the expansion front.

We confirmed that ka increases when empty space is available in two ways: by letting a
population of replicators expand into unlimited empty space (Fig. 2.5a), and by period-
ically disrupting a resident population of replicators with large scale ablations (Fig. 2.5b,
see Supporting Information Section 2.6.8 for more details).

Altogether, we find that a positive feedback loop establishes: as populations of rep-
licators evolve to higher ka to colonise space faster, parasites benefit from increased
complex formation, becoming stronger. As parasite strength increases, invadable space
is increasingly perceived as limitless by replicators, which enables the further increase of
ka. Thus, this process reverses the selection for becoming better templates.

In conclusion, strong parasitism leads to the formation of stable travelling waves, which
in turn generate the selection pressure for increasing association rates in replicators.

2.4.4 Speciation as a consequence of spatial dynamics

So far we have shown that depending on the strength of the parasites, replicators evolve
to moderate or high ka through spatial self-organisation. Here we study replicator-only
systems and show that in fact parasites arise automatically either as a consequence of
disruptions or due to an increased cost of replication.

Periodic disruptions can select for higher association rates and lead to the speciation
of parasites Replicators evolve to large association rates with large scale disruptions
(Fig. 2.5b). In contrast, the evolutionary dynamics become richer due to speciation when
a large number of patches with intermediate size are ablated: ka increases in one lineage,
while it decreases in the other, which behaves as a parasite (Fig. 2.6a). Empty space
allows for increasing ka at the population’s expansion front, while selection for becoming
parasitic occurs behind it (i.e. ka decreases). Because the two selection pressures are
spatially segregated, they can both be maintained and do not balance, hence speciation
occurs. Parasite-like replicators survive when ablations are of intermediate size because
they can expand to an area larger than the size of the ablation itself between two disruptive
events (whereas they could not with larger ablations).

The persistence of the two lineages is dependent on the occurrence of disruptions, and
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Figure 2.4. The amount of available empty space for waves predicts the phase transition
in eco-evolutionary regimes better than other population statistics. a: Bifurcation diagram:
Overlay of the median ka (at the end point of the evolutionary dynamics) and the amount of
uninterrupted empty space (from the ecological simulations). Cyan diamonds: median of the
distributions of ka after evolution, as taken from Fig. 2.2; dotted line: tentative sketch of the
separatrix between the two regimes; tiled β vs. ka surface: colours are according to an index
(see colour bar) that measures the amount of empty space in front of a wave, calculated from
ecological simulations for a combination of β and ka (see Supporting Information Section
2.6.7 for details). b: Average fraction of lattice sites that are empty, c: occupied by replicat-
ors, d occupied by parasites, in the same ecological simulations used in a. All parameters as
in Fig. 2.1. For the ecological simulations µ = 0.
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a minimum ablation size exists for ka to increase: microscopic perturbations, achieved
by increasing decay rates, do not introduce sufficient continuous space for speciation to
occur (Supporting Information Section 2.6.8).

Longer replication times induce speciation Besides externally imposed disruptions,
larger scale heterogeneities can be autonomously generated in the system if replicators
spend more time replicating another individual. The reaction scheme presented in Meth-

ods is modified so that CXj◦Xi

ρ,θ,∆trepl−−−−−−→ 2 Xj + Xi and similarly for parasites.

So far, we have assumed that after a replicator and a template form a complex, replication
is only limited by finding empty space before the complex breaks apart. With template-
dependent polymerization in mind (e.g RNA replication), it is reasonable to assume that
a complex spends time before replication is complete, e.g. undergoing conformational
changes to activate the replication machinery, as well as spending time actually copying
the template. Notice that longer replication times make replication more costly, because
replicators spend a larger fraction of their life-time replicating others. This strengthens
the selection pressure to decrease ka (we assume that if a complex breaks before the
replication time has passed, no product is formed).

When replication time is sufficiently long (∆trepl ≥ 3.5 AUT, Supporting Information
Section 2.6.9), a population of replicators undergoes speciation and two lineages form:
in one ka increases, in the other it decreases and these replicators behave as parasites
(Fig. 2.6c). The two species organise in travelling waves (Fig. 2.6d) and establish an
evolutionary feedback: parasite-like replicators cannot persist autonomously and exploit
replicators with higher ka for replication; the empty space they leave behind can be re-
colonised by other replicators, which leads to increased ka.

Thus, longer replication times intensify the selection pressure to decrease ka. While in
the previous paragraph empty space was imposed on the system, here large patches of
empty space are generated when ka becomes too low and replicators go extinct. The res-
ulting invasion dynamics trigger the selection pressure for increasing ka on the expanding
front, which triggers the individual-based pressure to decrease ka behind it and leads to
parasite-like replicators. We conclude that the long term evolutionary consequence of
longer replication time is that an emergent feedback establishes between evolution and
spatial organisation. This feedback destabilises the evolutionary steady state presented
in Fig. 2.1a and two evolutionarily codependent species arise (cf. Chapter 3).

Notice however that parasite-like replicators experience no relative advantage as tem-
plates (β is fixed to 1 in their case). The next question is, then, whether the co-evolution
of replicators and parasites under a regime of more costly replication leads to stronger or
weaker parasites, i.e. better or worse templates.
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Figure 2.5. Association rate increases on the front of an expanding population, as well as
when large scale disruptions occur. a: A population expands into an infinite space (Only the
data about the front is plotted). Inset: a snapshot of the expansion dynamics (direction indic-
ated by the arrow) b: evolutionary dynamics of ka with large scale disruptions. Disruptions
are as follows: every 50 AUT, 4 square patches (2002) of the lattice are turned to empty at
random positions. Lattice size 10242. Inset: a snapshot of the spatial dynamics.

Figure 2.6. Smaller disruptions and increased cost of replication lead to speciation a: Time
plot of the distribution of ka in a simulation with smaller disruptions. Disruptions are as
follows: every 50 time steps, 16 square (1002) patches of the lattice are turned to empty at
random positions. Lattice size 10242, other parameters as in Fig. 2.1. b: A snapshot of the
simulation with disruptions (an area of 4002 is displayed). c: Time plot of the distribution
of ka in a simulation where duration of replication is ∆trepl = 4 AUT. All other parameters
are the same as above, except for kdiss = 0.1. d: A snapshot of the simulation with longer
replication time (lattice size 10242, displayed: 4002).
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2.4.5 Longer replication time selects for weaker parasites in replicator-
parasite co-evolution

We extend the replicator-parasite system presented above by letting the parasite advant-
age β co-evolve with the replicators’ association rate (ka), and we vary the duration of a
replication event (∆trepl).

Co-evolutionary dynamics In Fig. 2.7 the co-evolutionary steady state values of β and
ka are plotted for different replication times.

The replication rates of both replicators and parasites is maximised in the long term co-
evolutionary dynamics when replication time ∆trepl is set to zero (Fig. 2.7a), i.e. the
setting used for the replicators-parasites system analysed above. While parasites are se-
lected to constantly increase β, the evolutionary trajectory of ka depends on initial condi-
tions (Fig. 2.8): when ka and β are initialised at lower values, ka first remains stationary
around a (meta)stable equilibrium line (cf. Fig. 2.4), and reaches larger values only when
β is large enough. Taken together, the evolutionary trajectory of ka and observation of
the spatial dynamics show that the system autonomously (dynamically) undergoes the
phase transition between chaotic and stable waves described in Fig. 2.2.

The evolutionary maximisation of both β and ka occurs for replication times up to
∆trepl = 2.0.

However, a second steady state emerges for ∆trepl > 0 for which β and ka are not
maximised, but rather they stabilise at lower values (Fig. 2.7a). Following this steady
state to larger ∆trepl, we observe that β decreases and ka increases, i.e. weaker parasites
and stronger replicators evolve. When ∆trepl ≥ 4.0 the median value of β is less than
one, i.e. parasites become worse templates than replicators. For ∆trepl = 4.5 para-
sites evolve to extinction, and replicators may speciate into two lineages, one of which
becomes parasite-like (ka approaches zero, see previous paragraph).

Spatial population dynamics The spatial co-evolutionary dynamics that lead to these
steady states are straightforward.

For β and ka sufficiently large, and lower ∆trepl, replicators and parasites organise
into stable travelling waves (Fig. 2.7b, ∆trepl = 0 and the higher steady state of
∆trepl = 1.5). There, parasites with larger β outcompete those with lower β because
the former form more complexes with replicators, and therefore invade faster. The empty
space generated behind parasites is then occupied faster by replicators with larger ka.
Meanwhile, parasites with larger β profit the most from replicators with larger values of
ka. This leads to maximise both replicators and parasites’ replication rates (Fig. 2.8).

In contrast, for longer replication times (Fig. 2.8, ∆trepl > 1.5) or with smaller initial

46



2.4 Results

Pa
ra

si
te

s,
 

Mean

ka,�
0.0 0.5 1.0 1.5 2.0

�trepl Repl. ka Par. �

0

1.5
higher
e.s.s.

2.5

4.5

1.5
lower
e.s.s.

a b

R
ep

lic
at

o
rs

, 
k a

�trepl

Figure 2.7. Bistability in the co-evolutionary steady states of replicators (ka) and parasites
(β), in response to longer replication times. a: A full/empty distribution in the parasite pane
corresponds to the full/empty distribution for replicators at the same ∆trepl. All parameters
as above, β ∈ [0, 2]. b: Snapshots of the lattice from simulations with different ∆trepl.
Left snapshot: spatial distribution of replicators (parasites in grey); right snapshot: parasites
(replicators in grey). Lattice size from top to bottom: 20482, 10242,10242,5122,5122 (1/4
of the lattice is displayed for clarity).
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Figure 2.8. Bistability in the co-evolutionary steady states of replicators and parasites, in
response to longer replication time. Pictures show the co-evolutionary trajectories of β and
ka for different values of ∆trepl and different initial conditions.

values of ka relative to β (Fig. 2.8 ∆trepl = 2.5, lower pane), the spatial dynamics of
this steady state are characterised by chaotic travelling waves. New waves are established
by replicators creeping through the back of older waves (Fig. 2.7b,∆trepl = 1.5-lower
steady state, ∆trepl = 2.5 and 4.5). Chaotic waves cause the co-evolutionary stabilisa-
tion of the replication rates of both parasites (cf. (Takeuchi and Hogeweg, 2009)) and
replicators (see above). This effect is striking because a larger ∆trepl leads to both a
stronger selection pressure on replicators for decreasing ka, and a larger intrinsic advant-
age to parasites (because they do not pay any cost for replication). Yet, increasing ∆trepl
leads to co-evolutionary steady states where replicators’ association rate is larger and
parasites’ advantage as templates is smaller.

Spatial pattern formation causes directional changes in the evolutionary trajectories
of replicators The selection pressure on replicators can change direction during the co-
evolutionary dynamics, making the evolutionary trajectory of ka non monotonic (Fig. 2.8
upper row). This happens because spatial patterns themselves change over the course of
evolution (cf. (Boerlijst and Van Ballegooijen, 2010)).

Although the evolutionary steady state with low ka is not stable for ∆trepl = 0, its
“ghost” (cf. (Sardanyés and Solé, 2006)) can be observed in the trajectory of the co-
evolutionary dynamics (Fig. 2.8). It can take repeated “evolutionary attempts” for the
system to transition completely to the phase with stable waves and replicators with higher
ka (Supporting Information Section 2.6.10), because smaller waves locally outcompete
larger ones (cf. (Takeuchi and Hogeweg, 2009)).
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For ∆trepl = 1.5 a similar effect can be seen, where replicators initially decrease their
ka in response to weak parasites, but then increase ka when parasites have evolved to
sufficiently high β (Fig. 2.8). Interestingly, parasites are initialised at the same value
in the two panes of Fig. 2.8 for ∆trepl = 1.5. Their evolution is dependent on the
kinds of replicators they form waves with. Because in both cases replicators face “weak”
parasites, they respond by decreasing ka. However, in one case replicators start with high
ka so parasites increase β, in the other replicators have low initial ka and parasites do not
maximise β.

The opposite situation may also happen for longer replication times (Fig. 2.8, ∆trepl >
1.5), replicators initially respond to strong parasites by increasing ka. Later, when β
is sufficiently small, replicators are selected to decrease ka (notice that although β’s
trajectories are non monotonic, parasites evolve a monotonically decreasing complex
formation rate β ∗ ka). When replication time is long enough and the initial value of
ka is low relative to β, travelling waves destabilise because parasites invade replicators
faster than replicators expand into empty space (the expansion front becomes narrower).
In these limit conditions (if parasites were any stronger the system would go extinct)
replicators cannot escape from the back of older waves and initially evolve to larger ka,
while the parasitic erosion of the invasion front often isolates small groups of replicators
from the rest of the wave (Supporting Information Section 2.6.11), which survive longer
if the associated parasites are weaker.

Finally, the limit viable replication time is ∆trepl = 4.5, for which parasites drive them-
selves to extinction (global extinction quickly ensued for ∆trepl = 4.7 and larger). When
parasites are extinct, replicators cannot benefit from the selection pressure that sustained
higher ka (deriving from spatial pattern formation) and may themselves face extinction
(Fig. 2.8, ∆trepl = 4.5 upper pane). If parasites are not allowed to evolve β below 1, in-
stead, both replicators and parasites persist indefinitely (Supporting Information Section
2.6.12). Replicators can persist in the absence of parasites if they succeed at evolving
a parasite-like lineage and re-organise in spatial pattern (Fig. 2.8, ∆trepl = 4.5 lower
pane).

In conclusion, the emergent selection pressures originating from self-organised spatial
patterns locks the evolution of replicators to the evolution of parasites. This either leads
to stable travelling waves that allow for the evolutionary increase in replication rates
of both replicators and parasites, or to chaotic travelling waves that bring the system
to an evolutionary pressure that selects for weaker parasites and stronger replicators,
when the cost of replicating others becomes higher. We stress that results are due to the
co-evolution of replicators and parasites, which allows a larger degree of complexity to
unfold. In fact, these results are lost when only replicators can evolve at longer replication
times, and instead we obtain results qualitatively similar to Fig. 2.2, namely that stronger
parasites lead to higher association rates in replicators (Supporting Information Section
2.6.13).
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2.5 Discussion

In this study we analysed the eco-evolutionary dynamics of minimal replicator-parasite
systems. Replicators copy templates after forming complexes with them, and parasites
may be better templates than replicators.

An earlier study on a similar system (Takeuchi and Hogeweg, 2009) showed that when
only parasites could mutate, selection for wave-level fertility (i.e. small and chaotic
waves) resulted in the evolution of weaker parasites. Here we have paralleled that result
when replicators mutate: replicators evolve to smaller association rates when parasites
advantage is weak by escaping more frequently from the back of their waves, which
forms more (smaller and chaotic) waves. Whether parasites or replicators mutate, waves
evolve so that new waves are generated more easily. Hence there is selection for wave-
fertility.

However, we have also identified a novel mode of evolution when parasites are stronger,
which produces stable and long-lived travelling waves composed of replicators with lar-
ger association rates. Therefore, waves can also experience selection for longevity.

A phase transition separates these two spatial patterns and their evolutionary regimes.
This phase transition can be studied by measuring the amount of empty space generated
by parasites, and invaded by replicators at the front of a travelling wave (cf. Cwynar and
MacDonald (1987), Korolev (2013), Shine et al. (2011), Travis and Dytham (2002) and
Chapter 3).

We conclude that although replicators are prone to decrease association rates (to spend
more time as templates), introducing parasites allows replicators to sustain a higher as-
sociation rate.

Notice that 1) we recover both evolutionary regimes when we set ka to constant and let
only parasites mutate (Supporting Information Section 2.6.14) and 2) longer replication
time-spans ∆trepl > 0 do not qualitatively change these results.

Finally, we analysed the co-evolution of replicators and parasites when the time-span
needed for replication is prolonged. For smaller ∆trepl both evolutionary strategies are
attainable, and the system shows evolutionary bi-stability. For larger ∆trepl, only the
co-evolutionary steady states with relatively lower ka and β is reachable.

We introduced the term ∆trepl to study the evolutionary dynamics of the system when
replication rates do not depend solely on the availability of empty space. However, we did
not let ∆trepl evolve because we did not specify any molecular detail of RNA replication
(for instance, the evolution of larger or smaller ∆trepl should be functionally related
to that of β and ka), which instead could be better targeted by sequence-based models
(Szabó et al. (2002), Takeuchi and Hogeweg (2008) and Chapter 4).
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Nevertheless, let us assume that ∆trepl scaled with template length, i.e. ∆trepl > 0, and
that ka and β evolved independently from it. Because ∆trepl would likely be selected
to decrease, following the lower equilibrium line of Fig. 2.7, evolution would reach a
steady state in which neither ka nor β are maximised. Thus, our results would hold and
we would recover the conclusions of (Takeuchi and Hogeweg, 2009).

Pre-biotic evolution In the context of prebiotic evolution, mutually replicating mo-
lecules (among which e.g. hypercycles (Eigen and Schuster, 1978)) are known to be
evolutionarily unstable: selection at the individual level causes the evolution of better
templates to the detriment of replication (Bresch et al., 1980, Maynard Smith, 1979).
Higher-order organisation, such as spatial extension ((McCaskill et al., 2001, Szabó
et al., 2002)), spatial pattern formation ((Boerlijst and Hogeweg, 1991c, Hogeweg and
Takeuchi, 2003, Scheuring et al., 2003)) or vesicles ((Niesert et al., 1981, Szathmáry and
Demeter, 1987)), is often invoked to solve this problem.

Here we have shown that individuals that behave only as templates may actually aid the
evolution of higher replication rates. Parasitic behaviour is, in fact, “functional” because
it contributes to the spatial structure that selects for higher levels of replication.

An earlier study on metabolism-based replicator models (Könnyű et al., 2008) showed
that metabolic parasites could evolve into replicases, providing a group-level (albeit re-
latively costless) evolutionary benefit to the system. In our system instead parasites are
beneficial as parasites, since we do not pre-conceive extra functional possibilities for
them. Parasites induce more replicase activity in pre-existing replicases despite the cost
of being a stronger replicase.

We conclude that parasites may be considered a functional degree of freedom that can be
exploited by evolution through higher-order organisation.

The evolution of multilevel evolution In general, spatial pattern formation can deeply
affect the evolution of its components (Boerlijst and Hogeweg, 1991a,c, van Ballegooijen
and Boerlijst, 2004), and can lead to selection that reinforces the spatial patterns even at
the expenses of its composing individuals (Savill et al., 1997), or to self-organised evol-
utionary switching between different spatial patterns (Boerlijst and Van Ballegooijen,
2010). This higher-level selection can be recognised in travelling waves as well (Ho-
geweg and Takeuchi, 2003, Takeuchi and Hogeweg, 2009, Takeuchi et al., 2011). Trav-
elling waves, however, also display compositional (and spatial) inheritance and variation,
and therefore are units of evolution ((Takeuchi and Hogeweg, 2009)).

Here we have shown that the system can autonomously undergo the phase transition
between chaotic and stable waves, as a result of a feedback between evolution and self-
organisation. This means that the self-reinforcing selection pressure can change direc-
tionality. Thus we have observed the evolution of wave-level evolution, transitioning
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from selection for fertility to selection for longevity.

It has been recently asked: “How far can the RNA World go without being encapsu-
lated in a cell?” (Higgs and Lehman, 2014). We have not yet seen its limit, it seems.

2.6 Supporting Information

2.6.1 Details of the model

The model is a spatially extended, individual oriented Monte Carlo simulation system.
Space is modelled as a two-dimensional square lattice with toroidal boundaries (based
on CASH, de Boer and Staritsky (2000)). Each node has eight neighbours (the Moore
neighbourhood) and can be empty or occupied by one individual. All dynamics imple-
mented is local, involving only nodes in the Moore neighbourhood, and all nodes are
updated in random order in one iteration of algorithm.

Replicators and parasites’ complex formation and replication There can be two
types of individuals, replicators and parasites. They differ in two ways: 1) replicators
can both form and accept complexes, whereas parasites can only accept complexes; it
follows that replicators can form complex with each other and with parasites, but the
latter can never form complexes with other parasites. 2) Parasites can be better than
replicators at forming complexes. This is modelled by assuming that replicators accept
complexes with rate scaled to 1, while parasites accept complexes at rate β ≥ 1 (unless
it evolves otherwise), which represents the advantage parasites experience at accepting
complexes relative to replicators. The rate at which replicators form complexes, called
the “association rate” throughout the text, is ka. Complex molecules always occupy two
adjacent nodes of the lattice (and each molecule in complex keeps a “flag” that signals
where the other molecule is located).

Complex dissociation happens with constant rate kdiss. When a complex is formed
between two adjacent individuals, ∆trepl AUT (units of time) must pass without the
complex dissociating; then if an empty node is available in the neighbourhood, the tem-
plate is copied with rate ρ. After replication, the complex breaks and molecules return
to an unbound state. Notice that the time passing, i.e. the counter that starts from ∆trepl
and reaches zero, is modelled as a first order reaction. Individuals decay with rate d,
leaving empty space. Molecules in complexes can also degrade.

Assume Xi and Xj are replicators, P is a parasite, C is a complex (the suffixes indicate
the individuals in complex, as well as which one is template and which one is replicase)
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and θ represents an empty node. The full reaction scheme reads:

Xi + Xj


kai−−−⇀↽−−−
kdiss

CXj◦Xi

ρ,θ,∆trepl−−−−−−→ 2 Xj + Xi

kaj−−−⇀↽−−−
kdiss

CXi◦Xj

ρ,θ,∆trepl−−−−−−→ 2 Xi + Xj

Xi + P
β·kai−−−−⇀↽−−−
kdiss

CP◦X
ρ,θ,∆trepl−−−−−−→ 2 P + Xi

X,P
d−−→ θ

CX◦X
2d−−→ X

CP◦X
d−−→ X

CP◦X
d−−→ P

Mutations happen after replication with probability µ and may affect the association rate
ka of the newly generated replicator, or parasite advantage β, by adding a small random
number drawn from a uniform distribution [− δµ2 ,

δµ
2 ]. No other parameter is evolved.

Diffusion Diffusion is modelled by swapping the contents of neighbouring nodes, it
happens with rate D and may involve single individuals as well as complexes. The
algorithm for diffusion follows Takeuchi and Hogeweg (2009): diffusion between two
molecules or a molecule and empty space is modelled as a second order reaction, dif-
fusion between a complex (which occupies two lattice nodes) and a free molecule or an
empty node is considered a third order reaction, diffusion between two complexes is a
fourth order reaction. Suppose that the focal molecule X1 is in complex with X2, and
a randomly chosen neighbour Y is a single molecule. Diffusion swaps their locations
in order to maintain adjacency between molecules in complex as follows: X1 takes the
place of Y , X2 takes the place where X1 was, and Y is moved to the node where X2

was. Two complexes, X1 ◦ X2 and Y1 ◦ Y2, swap places as follows: assuming X1 is
the focal molecule, and Y1 the random neighbour, X1 moves to the node of Y2 and vice
versa, X2 moves to Y1’s location and vice versa.

Algorithm update One iteration of the alogrithm runs as follows.

• One node is drawn randomly, and one if its neighbouring nodes is selected ran-
domly.

• Based on the content of the nodes, the possible events are determined, e.g. a rep-
licator next to a parasite can form a complex, swap places or decay.

• One event is drawn. Each event happens with probability proportional to its rate,
scaled by a constant which is larger than the sum of all the rates of all possible

53



Chapter 2. Parasites enhance replicators

reactions (because one event is drawn per iteration, whether it happens or not, the
constant also define the number of iterations of the algorithm which determines the
unit of time).

• The rate of a first order reaction (such as decay or decreasing the counter of ∆trepl)
is used “as such”, whereas the rate of second order reaction (such as replication or
diffusion of two individuals not in complex) is halved. The rate of third order
reaction (e.g. complex diffusion) is divided by 6 and so on.

2.6.2 The effect of mixing and large diffusion rates

Mixing and large diffusion lead to extinction in the system with only replicators

Well-mixed system Mixing is approximated by greatly increasing the rate of diffusion.
Unsurprisingly, selection for becoming a better template dominates when spatial patterns
cannot form and global extinction happens when ka reaches values too low to sustain
replication (Fig. 2.9a).

Large diffusion rates In the main text, we have shown that low diffusion allows the
persistence of replicators at the minimum viable association rate. This happens because
local accumulation of replicators with too low values of ka leads to their extinction,
followed by re-invasion from neighbouring replicators. Increasing diffusion favours rep-
licators with low ka because it prevents their local accumulation, and allows them to
exploit replicators further away from them, which leads to a lower steady state distribu-
tion of ka (Fig. 2.9b). When diffusion is too large the system approaches a well-mixed
conditions, ka becomes too small to sustain replication, and extinction ensues. Interest-
ingly, the limit value for diffusion rate before extinction ensues (D = 1) also displays
the most variability. This is presumably due to the fact that local extinction of replicators
happens on a somewhat larger spatial scale, so that the subsequent re-invasion endures
for long enough to trigger some selection for larger ka (see main text).

A moderate increase in diffusion rate does not qualitatively change results in
replicators-parasites system

Increasing diffusion rate 5 folds does not lead to qualitatively different results
(Fig. 2.10). We did not test the full range of β values due to computational load. How-
ever, replicators behave much like the default case (D = 0.1) in that 1) they reach
the minimal viable ka when no parasites are introduced, 2) they reach an evolution-
ary stable steady state for weaker parasites (β = 1.30), and maximise ka when parasites
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are stronger (β = 1.80). Notice that, in general, an increase in diffusion makes spatial
patterns larger. In order to contain such patterns for e.g. D = 1, the lattice should be
much larger than what is computationally feasible.

2.6.3 Too weak parasites are not maintained in the system

When β ≤ 1, parasites cannot prevent replicators from reaching low values of ka and go
extinct, as shown in Fig. 2.11.

2.6.4 Chaotic waves competition and selection for lower ka

In order to illustrate how wave-level selection causes the decrease of ka in replicators,
we modified the set-up of the simulation by shaping the field as a long narrow strip. We
initialised replicators and parasites in two waves, one at each end of the strip. In one
wave replicators have larger ka than in the other. We set mutation rates to zero to focus
only on the selection process (the ecological competition). We let the two waves collide,
as shown in Fig. 2.12. Although replicators with smaller ka expand slower, they escape
from the back of the original wave more frequently. The space behind the wave with
weaker replicators is thus much fuller and works as a reservoir of replicators when the
two initial waves collide and annihilate each other. The remaining empty space is then
invaded by waves in which replicators have lower ka.

2.6.5 Global extinction due to small lattice size

The size of spatial patterns can become comparable to that of the lattice when β and
ka are large. In this condition, the coexistence of multiple spatial patterns becomes
impossible, and extinction can happen, as shown in Fig. 2.13. Larger lattices are therefore
required to allow the evolutionary dynamics unfold properly (at the expenses of a larger
computational load).

2.6.6 Stable waves competition and selection for larger ka

When parasites are strong β ≤ 1.70, travelling waves become larger and more stable,
because limited (or no) escape is possible from their back. This means that, given the
same parasite (i.e. the same beta) competition is determined by invasion into empty
space, as shown in Fig. 2.14 (mutation rate is set to zero). Replicators with larger ka are
selected because they invade faster, and take over the expansion front.
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Figure 2.9. a: In a mixed system, extinction due to selection for becoming a template cannot
be prevented. D = 479.04, meaning that out of 100 events, 96 on average are diffusion,
each happening with probability pD = 0.998. Lattice size 1282. All other parameters are
the same as in the main text. b: Evolutionary steady state of a replicators-only system with
different diffusion coefficients D. Lattice size 5122.

Figure 2.10. No qualitative difference observed in evolutionary steady state with a larger rate
of diffusion. D = 0.5. Other parameters as in main text.
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Figure 2.11. Evolutionary dynamics of replicators in the presence of very weak parasites,
parasites go extinct when ka becomes too small. β = 1.0, other parameters as in main text.

Figure 2.12. Wave level selection for lower ka. Left: space-time plot of a replicator-parasite
system (i.e. a stack of the middle row of the lattice at successive time points). Right: snap-
shots of the lattice at selected time points. Parasites (black) β = 1.3, replicators (indigo on
the left) ka = 0.20 and (magenta on the right) ka = 0.80.
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Figure 2.13. Small lattices lead to extinction when travelling waves become larger. a, b, c,
d, e, f: Subsequent snapshots of the lattice. The expansion front of replicators is indicated by
blue arrows. Parasites advantage β = 1.7. Notice that boundaries are wrapped.

Figure 2.14. Replicators with larger values of ka are selected in the presence of stronger
parasites. Snapshots are at subsequent time steps. Parasites (black) β = 1.80, replicators
above (red) ka = 1.0, below (yellow) ka = 1.2.
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2.6.7 Method for calculating the index of continuous empty space
(Main Text Fig. 2.4)

The index in Main Text Fig. 2.4 is calculated as follows. For every combination of β and
ka shown in the figure, an ecological simulation (i.e. µ = 0) is run with replicators and
parasites. First a transient (5000 AUT) is let pass where the system self-organises and
forms spatial patterns, then, 3x3 equally distant nodes (to minimise data correlations) in
the field are screened for presence/absence of individuals. Every consecutive time step
a node is empty, a counter is incremented. If the node becomes occupied, the number
of consecutive time steps it spent as empty is recorded and the counter is re-set to zero.
When the node turns empty again, the process can restart.

All the values of the counters are accumulated and a histogram is generated which repres-
ents the distribution of time spans (tempty) nodes spent as empty. We used this as a proxy
for the amount of continuous empty space a wave experiences. The log-transformed data
can be well fitted by a linear function of the form α− γtempty (meaning that the original
distribution is exponential), as shown in Fig. 2.15. −γ is the index of continuous empty
space of Main Text Fig. 2.4.

We chose −γ because it increases when spatial patters generate larger amounts of empty
space behind them.

2.6.8 Ablations

Methods Periodical ablations are introduced in the system by deleting square patches
every 50 AUT. In order to introduce n ablations of size η2, n random coordinates are
generated, which represent the centres of the ablations. The surface of size η2 is then
turned to empty, and the dynamics proceeds by normally (if an individual is in complex
with one that is ablated, the complex breaks).

Ablations sustain the two species system Ablations of an intermediate size lead to
the establishment of two distinct lineage in a system with only replicators. If ablations
are stopped, however, the selection for increasing ka disappears, and the species with the
lowest ka outcompetes the other, as shown in Fig. 2.16

Higher death rate does not lead to speciation In order to generate enough empty
space to trigger selection for higher ka, ablations must be of a minimum size. Point-sized
ablations, for instance, are too small to achieve this. We modelled point size ablations
by increasing the decay rate of replicators from the default kdeath = 0.03 to 0.2 (i.e. 6.6
folds).
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Figure 2.15. Fitting the time spans nodes spend as empty space with exponential distribu-
tions. Each plot is a combination of ka and β (µ = 0). Distribution is log-transformed (base
10), units on x-axis is AUT*500. Blue: original data, green: line-fit.
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Figure 2.16. Interrupting ablations lead to the extinction of the species with higher ka
(green). Lattice size 10242.

Figure 2.17. Increasing death rate does not lead to speciation. kdeath = 0.2, other paramet-
ers as in main text.

Figure 2.18. Evolutionary steady state values of ka for replicators-only systems with longer
replication times. kdiss = 0.1, other parameters as in main text.
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The evolutionary steady state value of ka in Fig. 2.17 is larger than in Main Text Fig. 2.1a
because individuals die much more frequently. However, we do not observe qualitative
differences in evolutionary steady state behaviour, i.e. no speciation occurs.

2.6.9 Longer replication time leads to speciation

The evolutionary separation of two lineages (one of which behaves as parasite) is ob-
served for sufficiently duration of replication (∆trepl ≤ 3.5 AUT), as shown in Fig. 2.18.

2.6.10 Evolutionary transients during wave phase transition

When both β and ka can mutate, we observe that evolution maximises both of them for
∆trepl = 0. Starting from smaller values of β and ka, the system dynamically undergoes
the phase transition between chaotic and stable waves. As lattice size must be large
enough to contain the stable waves, spatial heterogeneities may lead to undergoing such
phase transition locally, so that stable waves form in one part of the lattice (ka and β
increase) but not in another. Stable waves, however, are outcompeted by chaotic waves,
because replicators in the latter can behave as parasites of the replicators in the former.
Therefore, several “evolutionary attempts” may occur for a successful phase transition to
actually happen at ∆trepl = 0,as shown in Fig. 2.19.

2.6.11 Limit behaviour for the generation of new waves

When β is very large, the longer-term stability of waves is threatened by the parasitic
erosion of the invasion front. However, as the invasion front becomes narrower, small
groups of replicators can be isolated from the side of the older wave, and establish a new
one. Fig. 2.20 shows that this process selects for lower parasite strength because more
waves are born from the sides of older waves when parasites are weaker, and constitutes
the limit behaviour of the selection pressure that leads to chaotic travelling waves.

2.6.12 Indefinite persistence for ∆trepl = 4.5 if β > 1

When ∆trepl = 4.5, parasites may drive themselves to extinction because they are selec-
ted to become worse templates than replicators (β evolves to lower than 1, see main text).
The consequent loss of spatial patterns may lead to the extinction of replicators as well.
Instead, both replicators and parasites persist indefinitely if parasites are not allowed to
decrease β below 1, because travelling wave dynamics sustain the two species, as shown
in Fig. 2.21.
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Figure 2.19. Repeated “evolutionary attempts” may be necessary to undergo the wave
phase transition due to wave-level competition. a:Co-evolutionary dynamics of ka and β
for ∆trepl = 0. b: spatial distribution of replicators and parasites.
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Figure 2.20. New waves are born from the side of older ones, when parasites are weaker. The
same portion of the lattice is displayed at subsequent time steps (each 50 AUT). The circles
highlight where the new wave is formed relative to the older one (all circles are at the same
coordinates). Parameters as in main text.

Figure 2.21. Spatial patterns allows indefinite persistence of replicators and parasites for
∆trepl = 4.5 when β cannot evolve below 1. Other parameters as in main text.

Figure 2.22. When only replicators mutate with longer replication times (∆trepl = 3), they
evolve to larger ka in response to larger parasite advantage β.
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2.6.13 The effect of longer replication time is lost when only replic-
ators evolve

Fig. 2.22 shows that when parasites are not allowed to co-evolve with replicators under
conditions of longer replication time (∆trepl = 3), we obtain qualitatively the same
results of Main Text Fig. 2.2, i.e. that evolutionary steady state ka increases with parasite
strength. Notice that, even though we did not extensively test for the presence of a phase
transition, the evolutionary maximisation of ka is not observed in the co-evolutionary
model.

2.6.14 The evolution of parasites and previous results

In earlier work, it has been shown that parasites can evolve to lower probabilities of
complex formation with a model similar to ours Takeuchi and Hogeweg (2009). In the
main text we have seen that replicators can evolve to both higher or lower probabilities of
complex formation (ka) depending on parasite strength. Moreover, we have shown that
replicator-parasites co-evolution can evolve in two different ways. Here we re-examine
the results of Takeuchi and Hogeweg (2009) in the light of our results, and show that
parasites also evolve to higher or lower complex formation rates as response to, respect-
ively, weaker or lower replicators.

We set ka constant and let β evolve. First we present results for ∆trepl = 0 and later we
show how this compares to the case of ∆trepl > 0.

The evolution of β depends on ka and on spatial pattern formation Fig. 2.23 shows
that an evolutionary stable steady state exists for β when replicators’ ka is set at lower
values (for ∆trepl = 0). This is the same result as in Takeuchi and Hogeweg (2009).
However, we find that parasites evolve to increase β when association rate of replicators
is larger.

Importantly, to recover the results from Takeuchi and Hogeweg (2009), we had to set
the lattice boundaries to fixed (i.e. individuals disappear when they cross the edge of
the lattice). In fact, stronger parasites organise in larger waves, which need more space
to unfold properly. Therefore, fixed boundary conditions may confound results because
larger waves are more likely to “fall out” of a lattice than smaller ones.

Because implementing larger lattices is computationally prohibitive, we turned boundary
conditions to wrapped, so that larger waves did not disappear when they reached the
boundaries, but instead re-entered from the opposite side of the lattice. We find that
the parasites speciate and organise in both chaotic and stable travelling waves. While
stronger parasites are more efficient at invading replicators (with which they form larger
patterns), new waves are created from older ones where parasites are weaker (Fig. 2.24a).
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Thus, we observe co-existence Fig. 2.24b. Notice that the lineage with large β goes
extinct because the associated waves become too large, and wrapped boundary conditions
are no longer sufficient to counteract the effects of a small lattice. After extinction,
evolution of a lineage which increases β occurs again.

Parasite evolution for longer replication time span For the sake of completeness,
we repeated the analysis above for larger values of ∆tr (we tested ∆tr = 1.5 and 2.5).
Results are in general agreement with above, i.e. parasites evolution leads to larger β
when replicators’ ka is larger (Fig. 2.25). There are three points to make. First, before
the phase transition, increasing ka leads to a lower steady state value of β, in contrast to
the case where replicators evolve with fixed parasites (compare with Main Text Fig. 2.2
and Supplementary Fig. 2.22). Second, the phase transition occurs to larger value for
larger value of ka when ∆trepl is increased. Third, we observe long term co-existence of
two parasite species for longer replication time span and large ka (Fig. 2.25b, ka = 1.99).

Source code The source code used to run the simulations can be found at the pub-
lisher’s website (dx.doi.org/10.1371/journal.pcbi.1004902).

Acknowledgments ESC thanks Nobuto Takeuchi for valuable discussions and Renske
M.A. Vroomans for extensive discussions on the results in this manuscript as well as for
critically reading the original draft.
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Figure 2.23. Parasite evolve to two different evolutionary steady state when replicators are
weaker or stronger, and boundary conditions are fixed. a: Evolution of β while replicators
have constant ka = 0.3, inset: long term evolution; b: same, but ka = 0.6. Other parameters
as in main text.

Figure 2.24. Co-existence of two lineages of parasites, mediated by the dynamics of different
spatial patterns, for wrapped boundary conditions. a: A snapshot of the lattice. b: Evolution
of β while replicators have constant ka = 0.3.Other parameters as in main text.

Figure 2.25. Parasite reach alternative evolutionary steady states depending on replicators’
strength also larger replication time spans. a: ∆trepl = 1.5. b: ∆trepl = 2.5. Other
parameters as in main text

67



Chapter 2. Parasites enhance replicators

68



3
High cost enhances cooperation through

the interplay between evolution and
self-organisation

ENRICO SANDRO COLIZZI, PAULIEN HOGEWEG (2016)

BMC evolutionary biology, 16(1), 1.

69



Chapter 3. The evolution of cooperation at high cost

Abstract

Background Cooperation is ubiquitous in biological systems, yet its evolution is a long
lasting evolutionary problem. A general and intuitive result from theoretical models of
cooperative behaviour is that cooperation decreases when its costs are higher, because
selfish individuals gain selective advantage.

Results Contrary to this intuition, we show that cooperation can increase with higher
costs. We analyse a minimal model where individuals live on a lattice and evolve the
degree of cooperation. We find that a feedback establishes between the evolutionary
dynamics of public good production and the spatial self-organisation of the population.
The evolutionary dynamics lead to the speciation of a cooperative and a selfish lineage.
The ensuing spatial self-organisation automatically diversifies the selection pressure on
the two lineages. This enables selfish individuals to successfully invade cooperators at
the expenses of their autonomous replication, and cooperators to increase public good
production while expanding in the empty space left behind by cheaters. We show that
this emergent feedback leads to higher degrees of cooperation when costs are higher.

Conclusions An emergent feedback between evolution and self-organisation leads to
high degrees of cooperation at high costs, under simple and general conditions. We
propose this as a general explanation for the evolution of cooperative behaviours under
seemingly prohibitive conditions.
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3.1 Background

When cooperation is costly to the individual but its benefits are equally shared in a group,
one would expect progressively more selfish behaviour to be selected. This indeed hap-
pens when interactions between cooperative and selfish individuals are random. Instead,
cooperation can be selected in a population when the interactions among cooperative
and selfish individuals are structured, be it genetically, spatially or socially (Hamilton,
1964, Mitteldorf and Wilson, 2000, Nowak and May, 1992, Santos and Pacheco, 2005,
Van Baalen and Rand, 1998, Wilson, 1975). Population structure favours cooperation
when it allows for cooperators to be in contact with each other more frequently than with
selfish individuals (Fletcher and Doebeli, 2009).

The result is a (locally or globally) stable equilibrium configuration in which cooperators
persist indefinitely, and selfish individuals may co-exist. For instance, this can be due to
spatial clustering of cooperators (Killingback et al., 1999), or to an inherent structure of
the interaction network (Ohtsuki et al., 2006). Then, the conditions for selfish individuals
invading and overtaking a group of cooperators represent the limit to the stability of
the solutions found. In general, these conditions state that higher costs of cooperation
increase the selective advantage of selfish individuals.

While spatial structure alone can favour cooperators due to population viscosity, a grow-
ing body of experimental and theoretical work indicates that self-organised spatial pat-
terns may have profound and complex effects on cooperative interactions, due to emer-
gent heterogeneities in the local distributions and densities of cooperators and selfish
individuals (Datta et al., 2013, Korolev, 2013, Momeni et al., 2013, Müller et al., 2014,
Nahum et al., 2011, Smaldino et al., 2013, Suweis et al., 2013, Szolnoki et al., 2014,
Van Dyken et al., 2013, Wakano et al., 2009). For instance, as a population of cooperat-
ors invade empty space, its expansion front can be enriched in altruistic individuals, while
selfish individuals lag behind (Datta et al., 2013, Korolev, 2013, Van Dyken et al., 2013).
Alternatively, mutualistic interactions that are favoured in a resident population can be
automatically broken on such expansion front (Müller et al., 2014). Furthermore, spatial
self-organisation can sort cooperative strains from selfish ones (Boerlijst and Hogeweg,
1991c, Hogeweg, 1994, Hogeweg and Takeuchi, 2003, Momeni et al., 2013, Szabó et al.,
2002, Takeuchi and Hogeweg, 2009), thus limiting the spread of the latter.

The customary approach to study the stability of cooperation (under a specific set of as-
sumptions) consists of fixing the strategies of the interacting cooperative and selfish indi-
viduals, and analyse the population dynamics of the system (e.g. whether cooperators and
defectors coexist, or if one lineage outcompetes the other). Because such pre-determined
strategies do not mutate over time, their evolutionary stability remains unexplored.

Although exceptions to this approach exist (e.g. Doebeli et al. (2004), Killingback et al.
(1999, 2006), Szabó et al. (2002)), little is known about what strategies evolve (by muta-
tion and selection) and how they feedback on the spatial self-organisation of a population,
even though it is clear that spatial self-organisation affects the population dynamics of
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cooperative traits (see examples above). Here, we seek to study this feed-back between
evolution and self-organisation with a minimal model where individuals can evolve the
degree of cooperation in a spatially extended system.

We model the cooperative trait in terms of public good production (inspired by social
dynamics in microbes (Crespi, 2001, West et al., 2007)), and we let the amount of public
good produced mutate in a continuous fashion. Thus, we can study the long term evol-
utionary dynamics of cooperation without preconceiving the extent to which individuals
cooperate or defect. As we will show, selfish individuals that produce zero public good
evolve readily at higher costs, and quickly invade cooperators. Rather than leading to
global extinction, this enables cooperators to thrive and selects for a higher degree of
public good production over evolutionary time scales.

3.2 Results

The model is a straightforward implementation of a population in which individuals
replicate depending on the amount of public good produced in their close neighbourhood.

Individuals are embedded on a lattice. They may reproduce, die or move (locally). Com-
petition for reproduction into neighbouring empty nodes is based on fitness, calculated
as the difference between benefits and costs (Fig. 3.1). An individual benefits from the
public good produced in its neighbourhood, but pays a cost for producing it. Thus, pub-
lic good production is a cooperative trait. We assume that reproductive success is solely
based on cooperation, so that individuals do not reproduce if public good in their neigh-
bourhood is insufficient. Mutations slightly change the offspring’s production rate (see
Methods for details).

High cost leads to the evolution of larger public good production We set the be-
nefits per unit of public good b = 10, and we let the spatial self-organisation and the
evolutionary dynamics unfold under different costs c.

When costs are much smaller than benefits (c ≤ 1.5, Fig. 3.2), the public good production
steadily increases because an individuals’ own production increases its fitness, rather than
decreasing it. Moreover, because replication is a local process, mutants with higher than
average production rates benefit from each other due to limited dispersal (Fletcher and
Doebeli, 2009, Killingback et al., 1999, Ohtsuki et al., 2006), outcompeting more selfish
lineages. Thus, cooperation is maximised in the long run. For increasing costs, public
good production suddenly drops (2 ≤ c ≤ 3, Fig. 3.2). In this regime, the clustering
advantage of cooperators is insufficient and more selfish individuals replicate the most
because, by producing less, they pay a lower cost. Eventually, public good production
stabilises at the minimum value needed for survival.
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Figure 3.1. The model. a The world is a square lattice with connectivity k = 8 (every
node has 8 neighbours) and wrapped boundary conditions. Individuals produce public good
at rate p, shared in equal parts (p/9) among all neighbouring nodes and self. b Individuals
compete for reproduction into an adjacent empty spot. Probability of reproduction depends
on fitness fi, which is the difference between benefits and costs. The sum of the public good
an individual collects from itself and the neighbours, if any, is psum = (pa + pb + ...+ pi)/9,
and confers a benefit b·psum. Individuals pay a fitness cost proportional to the public good they
produce: c · p. Successful reproduction yields a copy of the selected individual. Mutations
occur with probability µ and change the public good production rate by a small random
number chosen uniformly in the interval [−δ/2, δ/2]. Individuals have a small probability
kmove to move to a random adjacent node, and can die with probability kdeath, leaving the node
empty (See Methods for the details of the models).

Strikingly, further increasing costs leads to an increase in cooperation (c > 3, Fig. 3.2,
see Supplementary Section 3.6.1 for the full snapshots of the system). The distribution
of public good production is bimodal at evolutionary steady state, with most of the pop-
ulation having higher rates of public good production and a minority producing almost
no public good at all.

The long term evolutionary dynamics of cooperation at high cost Following the
evolutionary and the spatial dynamics of a single case elucidates why cooperation in-
creases and persists for higher costs (c = 4.5, Fig. 3.3, video at (Colizzi and Hogeweg,
2015)). When we initialise the system with highly producing individuals, public good
production decreases rapidly due to strong selection for selfishness (compare Fig. 3.3b
and c). Where public good production drops below the minimum for survival, large
patches of individuals go extinct (Fig. 3.3b). The surviving individuals can expand into
the empty space (Fig. 3.3c). As the expansion progresses, a selfish and cooperative lin-
eage separate from each other (Fig. 3.3d). The selfish strain evolves to zero public good
production, becoming incapable of autonomous persistence and relying on the public
good produced by cooperators for survival.

While the two strains differentiate from each other, they organise spatially to form trav-
elling waves (Fig. 3.3e and 3.3f, similar to (Hogeweg and Takeuchi, 2003, Takeuchi and
Hogeweg, 2009)). Cooperators constitute the front of a wave, and expand into empty
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Figure 3.2. An increase in costs results in an evolutionary increase in cooperation. a
Evolutionary steady state distribution (in blue) and mean (red diamond) of public good pro-
duction are plotted for different values of costs (benefits are kept constant). Parameters:
benefit (per unit of public good produced) b = 10, kdeath = 0.2, kmove = 0.02, µ = 0.05,
δ = 0.1. The maximum public good production is set to pmax = 10. b Snapshots of the lattice
at evolutionary steady state. Colour coding depends on public good production rate. White
is background. Lattice dimensions used for the simulations from left to right: 2562, 5122,
20482, 20482 (1/16 of the lattice is displayed for clarity, see Supplementary Section 3.6.1 for
the full snapshots).
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Figure 3.3. Evolutionary dynamics of public good production a At each time point the
distribution of public good production in the lattice is plotted as a heat map. b-g Snapshots
of the lattice at subsequent time steps (letters correspond between time plot and snapshots).
Costs (per unit of public good) c = 4.5, other parameters and colour coding in the snapshot
as in Fig. 3.2. Lattice size = 20482 (1/16 of the lattice is displayed for clarity). Time units are
Monte Carlo steps. See also Supplementary Section 3.6.2 for the full snapshots, and video at
(Colizzi and Hogeweg, 2015).
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space by replicating into it (generation after generation); selfish individuals invade those
cooperators, and constitute the back of the wave. Selfish individuals leave empty space
behind a wave after they die, causing the semblance of movement (See Fig. 3.4 and
(Colizzi and Hogeweg, 2015) for videos). The progression of a wave, however, happens
on a time scale that is much longer than the life time of an individual, which in turn ex-
periences a fairly constant environment throughout its life. Because waves persist longer
than individuals, they can integrate information over several generations.

New waves are “born” from the collisions of older waves. As cooperators on the front
evolve to larger public good production, waves become larger (compare Fig. 3.3e,f and g,
and Supplementary Section 3.6.2 for the full snapshots). The formation of spatial patterns
allows the populations in the system to persist indefinitely despite selfish individuals
continuously invading cooperators (Fig. 3.3g and Supplementary Section 3.6.6), provided
that the lattice is much larger than the spatial patterns (see Supplementary Section 3.6.3).

Spatial population dynamics of cooperators and selfish individuals Spatial self-
organisation drives the evolution of cooperation in the system. When spatial patterns are
destroyed, e.g. by mixing, only selfish individuals are selected and public good produc-
tion decreases, leading to global extinction (Supplementary Section 3.6.4), in accordance
with the result that random interactions favour selfish behaviour.

To unravel the interplay between the two lineages and their spatial organisation, we ana-
lysed the spatial population dynamics for cooperative and selfish individuals separately.
To this end, we shaped the lattice into a long, narrow strip, and set the mutation rate to
zero (see Material and Methods for details). Cooperators expand faster into empty space
when they produce more public good, and slower when costs are higher (Fig 3.5a, red).
When two clustered populations compete at the expansion front (Fig 3.5c), the one with
the largest public good production wins because, by replicating faster, it occupies space
before the competing one and eventually overtakes the entire wave front.

The replication rate of selfish individuals invading a population of cooperators is higher
when the cost of public good production is higher, and it is insensitive to how much
public good is produced (Fig 3.5a, blue). Clearly, when two strains compete in the back
of a wave, the winner is the more selfish one (Fig 3.5b).

The picture emerging from these experiments is that different selection pressures op-
erate depending on the spatial context: a population expanding into empty space (the
wave front) is selected for higher degrees of cooperation (in agreement with Datta et al.
(2013), Korolev (2013), Momeni et al. (2013), Van Dyken et al. (2013)), competition in
the back (behind the wave front) selects for more selfishness. Importantly, even though
costs, benefits and fitness function are the same, spatial pattern formation automatically
segregates these two opposing evolutionary pressures to spatially different contexts so
that they do not balance each other: hence the evolution of a cooperative and a selfish
lineage.
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Figure 3.4. The movement of a travelling wave. Magnification (200x100) of the same
portion of the lattice at 10 time steps distance. A) the wave-front, composed of cooperative
individuals (in green), B) the back, composed of selfish individuals (in blue). The snapshots
are from the same simulation run as in Fig 3.3, at time steps 400000 (left) and 400010 (right).
The dashed line in the right pane marks approximately the position of the wave in the left
pane. Reference (Colizzi and Hogeweg, 2015) shows one such travelling wave in a video.

Figure 3.5. Invasion rates and spatial dynamics of competition for cooperative and
selfish individuals. a Cooperators’ invasion rate increases with larger public good production
and lower costs; selfish invasion rate increases with increasing costs and it is insensitive to
the production rates of the cooperators that support them. The invasion rates for cooperators
invading empty space (red circles) and selfish individuals invading a population of cooper-
ators (blue circles) was measured for each combination of cost and public good production
rate (benefit is constant, and set to b = 10) in 10. b A population with lower public good
production rate out-competes one with larger production in the back of a wave. Paramet-
ers: cooperators (yellow wave-front) pyellow = 6.0, selfish individuals (magenta and blue
wave-back) pblue = 0.2 and pmagenta = 1.0. c The population with a larger production rate
out-competes the one with lower production at the front of a wave. Parameters: ppurple = 5.0,
pgreen = 6.0. For both a and b, µ = 0, b = 10, c = 4.0, background in white. Other
parameters as in Fig. 3.2.
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In the full system, cooperators and selfish individuals are ecologically and evolutionar-
ily interdependent (Supplementary Section 3.6.5). The two lineages establish an evol-
utionary feedback mediated by their spatial organisation. Empty space is generated by
selfish individuals after invading a population of cooperators. Therefore, the condition
for increasing public good production, i.e. the availability of continuous empty space,
is mediated by the invasion dynamics of the selfish lineage. With higher costs, selfish
individuals propagate faster, and space is left empty at a higher rate. The larger the
empty space, the more cooperators can increase public good production. This evolution-
ary feedback reaches an evolutionary steady state because highly producing cooperators
reduce the empty space faster upon faster expansions (Fig 3.5a). We checked the long
term stability of the steady state (Supplementary Section 3.6.6).

Altogether, cooperation evolves to a higher degree for higher costs due to an emergent
feedback between self-organised interaction structures (the spatial patterns) and the evol-
ution of the individuals composing them.

Robustness to parameter change Our results are robust when death rates, movement
rates and benefits are changed, provided that benefits-to-costs ratio is maintained (Sup-
plementary Section 3.6.7). At lower costs, individuals directly benefiting themselves
with their own public good are sometimes dubbed weak altruists (Fletcher and Doebeli,
2009, Wilson, 1979) (in our case, for c < b/(k + 1), with k + 1 = 9 the connectiv-
ity of the lattice including self), whereas they are considered strong altruists when their
public good is only shared among others (in the context of game theory, these situations
are called, respectively, snowdrift game and prisoner’s dilemma (Doebeli et al., 2004)).
In our spatial model, we observed no qualitative difference in the evolutionary dynam-
ics when individuals did or did not benefit from their own public good (Supplementary
Section 3.6.8). This could be expected because individuals’ own payoffs at high costs
are negative in both models. Indeed, in both cases the evolving populations underwent
speciation of a selfish and a cooperative lineage.

Weak or strong altruism do make a difference in the corresponding well-mixed systems,
where strong altruists go extinct at lower costs, while weak altruists maximise public
good production (Supplementary Section 3.6.9).

3.3 Discussion

It is known that during population range expansion, cooperation can be promoted on
the front of the expansion range (Datta et al., 2013, Korolev, 2013, Momeni et al., 2013,
Van Dyken et al., 2013). One could argue that in these models cooperation could evolve
only as long as empty space is available, and should eventually be out-competed globally
by selfish strategies when the invasion dynamics reach an end. Here we have shown
that selfish individuals provide the empty space to allow continuous expansion within a
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limited area.

Generally, stable solutions to the problem of cooperation are based on the condition
that at equilibrium selfish individuals do not locally invade a population of cooperators.
For instance, it is well known that cooperation can be stabilised in spatially extended
systems, as cooperators cluster and segregate selfish individuals to the edges of those
clusters (Doebeli and Hauert, 2005, Killingback et al., 1999, Smaldino et al., 2013). A
side effect of these solutions is that higher costs undermines the stability of such clusters.
In the parameter region where travelling waves do not form (Fig. 3.2, for c ≤ 3) our work
is in agreement with those results in that there exists an inverse relationship between costs
and cooperation (e.g. Hamilton (1964), Van Baalen and Rand (1998), Wilson (1975)),
and in particular with the heuristics (Ohtsuki et al., 2006) that cooperation evolves when
the benefit-to-cost ratio is larger than the connectivity of the lattice (b/c > k, while it
becomes progressively more unlikely when b/c approaches k).

However, we have shown that a novel class of solutions exists at high costs, where large
degrees of cooperation are maintained in a locally out-of-equilibrium fashion, with selfish
individuals always successfully invading cooperators and setting the stage for the evol-
utionary increase and the global stability of cooperation. We conclude that spatial self-
organisation can reverse the relationship between costs and cooperation, thus extending
the evolutionary viability of cooperation to higher costs.

Our results rest on two assumptions: population size can vary and some degree of
cooperation is necessary for reproduction. Variable population size is obviously real-
istic, even though it is not often included in evolutionary models of cooperation. Al-
though the assumption of necessary cooperation is not always met, it is reasonable in
several cases. Examples in microbiology include, cooperative protection or cooperat-
ive virulence in bacterial infections (Diggle et al., 2007, Stewart and Costerton, 2001);
invertase production in yeasts while growing on sucrose (Carlson and Botstein, 1982);
siderophore production in iron-limited environments (Luján et al., 2015, Miethke and
Marahiel, 2007, Schrettl et al., 2004), cooperative secretion of digestive enzyme in mi-
crobial hunting (Crespi, 2001, Konovalova et al., 2010). Outside the microbial world,
situations where our model may apply are e.g. dangerous behaviours in cooperative nest
defence (Olendorf et al., 2004), and replication in trans in prebiotic evolution (Higgs and
Lehman, 2014, Takeuchi and Hogeweg, 2012).

Two recent studies have come to conclusions that at first sight are similar to ours
(Smaldino et al., 2013, Szolnoki et al., 2014). By making the assumption, as we do, that
the lack of cooperation leads to death, they observe (quasi) static spatial patterns in which
cooperation is maintained because despite relatively high costs, clusters of cooperators
cannot be invaded by selfish individuals.
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In contrast, cheaters can always invade in our system, and do so faster when costs are
higher. This shows that costs are qualitatively higher in our model. Cooperation is main-
tained despite, and due to the evolution of true cheaters (in the sense of (Jones et al.,
2015)). Furthermore, we show that the amount of public good produced by an indi-
vidual increases in evolutionary times, whereas the evolutionary stability of the solutions
in (Smaldino et al., 2013, Szolnoki et al., 2014) is left unexplored, and only the long
population dynamical transient is analysed.

More in general, the importance of spatial self-organisation for understanding the popu-
lation dynamics of cooperators and defectors has been highlighted both from a theoretical
(Wakano et al., 2009) and from an experimental point of view (Penn et al., 2012). Here
we make a similar point, but with an evolutionary twist: in our case selfish individuals
are not merely a burden to cooperators; instead, their emergence as a separate lineage
is necessary for the evolution of high degrees of public good production because they
generate the spatial conditions in which cooperators thrive and evolve.

Allowing mutations to change public good production in a continuous range resulted
in the evolution of two separate strains, a selfish and a cooperative one. The evolution of
stable heterogeneity in a population has been observed before in models of cooperation
(Doebeli et al., 2004, Koella, 2000, Szabó et al., 2002). Here, besides stressing that the
evolution of two lineages from a single ancestral one might be a rather general feature of
models with variable investments (as very simple assumptions were needed, in contrast to
(Doebeli et al., 2004)), we make the case that true cheating behaviour (sensu Jones et al.
(2015)) is actually functional and beneficial to the long term evolution of cooperation.

3.4 Conclusions

In conclusion, besides extending the theoretical limits of cooperation, our results broaden
the search image of cooperative behaviour in nature by suggesting that there need not be
a strict trade-off between costs and benefits; rather, a wider view of the self-organised
eco-evolutionary processes must be taken into account to understand the occurrence of
costly cooperation.

3.5 Material and Methods

General system Our system is an individual-based, Monte Carlo simulation run on
a square lattice with connectivity k = 8 and toroidal boundary conditions. The nodes
of the lattice can be empty or occupied by at most one individual. Individuals produce
public good with rate p per time step (alternatively, p can be considered the degree of
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altruism of an individual). An individual i produces pi public good per time step (0 ≤
pi ≤ 10), which is divided equally among neighbouring nodes and self, each receiving
pi/9 public good. All n neighbours, in turn, share a fraction of the public good they
produce p{1,2,...,n}/9 with individual i. The benefit from the public good received from

each neighbour and from self is Bi = b

(
pi
9 + 1

9

n∑
j=1

pj

)
, where b is the benefit per

unit of public good. Individuals pay a cost proportional to the public good they produce
Ci = cpi. Public good is not accumulated over multiple time steps. The fitness of an
individual is the difference between benefits and costs: fi = Bi − Ci (set to zero if costs
exceed benefits).

Each Monte Carlo step, all nodes are updated in random order (although synchronous
updating rules do not affect results). If a node is empty, the individuals in its neighbour-
hood (if any) compete for replication. Assume an individual i is competing with m other
individuals, and let us name ftot the sum of the fitness of all individuals competing for the

same empty node, then ftot = fi+
m∑
k=1

fk. Individual i is chosen for reproduction over its

competitors with probability P(i replicates) = fi
ftot

(
1− e−ftot

)
. The term in parenthesis

is the probability that at least an individual replicates, which models the assumption rep-
lication should be more frequent in a neighbourhood where there is more public good,
and conversely it should be rare if little public good is produced. Notice that this term
does not affect death.

Upon successful replication, mutations may happen with probability µ and affect p
by adding a small random number drawn with uniform probability from the interval
[−δ/2, δ/2]. If a node is not empty, with probability kmove its content is swapped with
that of a randomly chosen adjacent node. Moreover, every non empty node can turn to
empty with probability kdeath. See Fig. 3.1 for a cartoon of the model and the caption of
Fig. 3.2 for the actual values of the parameters. The algorithm is implemented using the
CASH libraries (de Boer and Staritsky, 2000).

Invasion dynamics of cooperators and selfish individuals (Fig. 3.5) We modified
the system described above as follows: 1) we shaped the lattice into a narrow strip of
arbitrary length; 2) we changed the boundary conditions to no-flux, and in particular we
removed individuals when they moved or replicated into a boundary node of the lattice;
3) we set mutation rates to zero to better focus on spatial population dynamics. The
rules for the local dynamics remained the same as above. We initialised all populations
on one side of the lattice and waited until they reached the other side. For cooperators
this meant that they invaded empty space, whereas selfish individuals invaded a resident
homogeneous population of cooperators. In all cases, the number of Monte Carlo time
steps it took for the first individuals to arrive to the other side of the lattice (generation
by generation) was recorded. The invasion rate plotted in Fig. 3.5 was calculated as the
length of the space invaded divided by the time it took for the population to invade it.
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3.6 Supplementary Material

3.6.1 Full snapshots of the system at evolutionary steady state for
different costs

The snaphsots of the lattice at evolutionary steady state for different costs (main text,
Fig. 3.2) are magnified to highlight the spatial patterns. The full snapshots are presented
here in Fig. 3.6 and the correct proportions between different lattices are maintained. In
the parameter conditions where spatial patterns do not form, i.e. c ≤ 2.5 a smaller lattice
was used (because simulations are computationally expensive). A larger lattice was used
for larger costs (see Supplementary Section 3.6.3 for the consequences of smaller lattice
with large spatial patterns).

3.6.2 Full snapshots of the evolutionary dynamics of public good
production

The snaphsots of the lattice at evolutionary steady state for different costs (main text,
Fig. 3.3) are magnified to highlight spatial pattern formation. The full snaphsots are
presented here in Fig. 3.7, 3.8, 3.9 (black squares mark displayed portion in main text).

3.6.3 Evolutionary consequences of small vs. large lattice

Because spatial pattern dynamics play an important role, the size of the lattice must
be large enough to accommodate them. When costs are high relative to benefits, the
spatial scale of pattern formation may become comparable to the lattice size. When this
is the case, extinction is often observed as a consequence of wave-wave collision (see
snapshots in Fig. 3.10), or because the front of a wave touches its own back (Fig. 3.11, in
both cases c = 5.3, recall that lattice has wrapped boundary conditions). Hence, results
in the main text may be extended to higher costs if lattice size were larger (at the expense
of computational load). However, the evolutionary mechanism by which cooperation
increases in the system remains the same as that reported in the main text.

3.6.4 In a well-mixed system at high costs, only selfish behaviour is
selected

In the main text, we have shown that cooperation increases for larger costs. The spatial
organisation of the cooperative and the selfish lineage play a fundamental role in this. In
Fig 3.12 we show that for high costs in well mixed conditions (where spatial patterns are
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Figure 3.6. Evolutionary steady state of public good production for different costs (same
figure as Fig.3.2). The snapshots depict the full lattice for c = 0.5, c = 2.5, c = 4.0 and
c = 5.0. The black square marks the part of the snapshot that is displayed in Fig. 3.2.
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Chapter 3. The evolution of cooperation at high cost

Figure 3.7. Evolutionary dynamics of public good production for c = 4.5 (same figure as
Fig.3.3). This figure is meant for reference to the following.

Figure 3.8. Snapshot of the full lattice at time point b, c and d of Fig. 3.7.

Figure 3.9. Snapshot of the full lattice at time point e, f and g of Fig. 3.7.
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Figure 3.10. Giant wave-wave collisions may lead to extinction with high costs. Arrows
indicate the direction of expansion of the waves, the ribbon-like symbols indicate where two
wave-fronts have collided. Costs = 5.3

Figure 3.11. Giant single waves may touch their own back, letting selfish individuals invade
the cooperators in the front. Under high costs this may lead to extinction. Arrows indicate
the direction of expansion of the wave, the ribbon-like symbols indicate where two sides of
the same wave-front collided on each other. Costs=5.3

destroyed), evolution favours selfishness. Public good production rapidly decreases in
the system until it reaches values that are too small for survival. There, global extinction
ensues.

Figure 3.12. In a well mixed system with costs c = 4.0 cooperation is always minimised
until extinction. Other parameters as in main text Fig. 3.3.
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3.6.5 Consequences of removing cooperative or selfish individuals

We tested directly the interdependence between cooperative and selfish species by re-
moving one species or the other from the system. In practice, we continued a simulation
with high costs (c = 4.5) and after 10000 AUT we removed all individuals with public
good production rate either larger or smaller than p = 1.5.

Removing all cooperators results in an almost instantaneous extinction of the selfish in-
dividuals (data not shown).

Removing all selfish individuals at one time point (Fig. 3.13a) results in a quick filling
of the lattice with cooperators. With no selfish individuals to generate empty space, only
individual-based selection for selfishness is present, and we observed a global decrease
in public good production which leads to the same evolutionary dynamics observed in
Fig. 3.3 of the main text. Eventually both the cooperative and the selfish species are
restored and the system reaches the evolutionary state it had before removing all selfish
individuals.

As a complementary approach, we ran a simulation and continuously removed selfish
individuals, i.e. any individual with production rate p < 1.5 (costs are set to c = 4.5, as
before). Removing selfish individuals does not allow for waves to form properly, which
inhibits the evolutionary feedback between evolution and self-organisation described in
the main text. Hence, we do not expect the evolution of large degrees of cooperation.
This is confirmed by the results in Fig. 3.13b.

3.6.6 Long term stability of the evolutionary steady state

The evolutionary dynamics of cooperators can be very noisy in the short run (Fig 3.14,
upper pane). Mutliple lineages separate and persist long enough to evolve to different
degrees of cooperation (public good production rates between 4 and 10). Nevertheless,
we confirmed the long term stability of the steady state reached by the evolutionary dy-
namics by letting the system (shown in Main text Fig. 3.3) run much longer than the time
scale needed to reach such steady state (Fig 3.14, lower pane).

3.6.7 Moderate parameter changes do not affect results

Death rate Individuals have an average life span of 1/[death rate] = 1/0.2 = 5 AUT.
Decreasing the death rate to 0.1 does not change results (Fig. 3.15, top pane).
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Figure 3.13. a: Removing all selfish individuals (at time 10000 AUT) results in a new evolu-
tionary cycle which ultimately restores cooperative and selfish individuals. b: Continuously
removing selfish individuals inhibits the evolution of cooperation.

Figure 3.14. Short vs. long term evolutionary dynamics after reaching evolutionary steady
state. The simulation is the same as in the Main text Fig. 3.3.
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Movement Movement is implemented as a random diffusive process (see Material and
Methods in the main text). The probability that individuals move is kept to very low
values (pmove = 0.02 per individual, per time step) but not zero, so that spatial patterns
do not get stuck in frozen configurations. This enhances the robustness of the observed
spatial patterns. The stability of our results was checked by starting from backups and
setting the rate of diffusion to 10 times higher (i.e. to pmove = 0.2). We analysed three
data points, corresponding to the three behaviours observed in the system for low, in-
termediate and high costs. Results are shown in Fig. 3.15 (central pane), and are not
qualitatively different. However, at higher costs (c = 4.5), we observe a much larger
increase of public good production. A moderate increase in movement also increases the
frequency with which other individuals are met. This constitutes an evolutionary advant-
age for selfish individuals, which translates in the generation of more empty space, thus
giving cooperators a greater opportunity to expand into it.

The limit of very large diffusion is the well-mixed system. There, the advantage of selfish
individuals becomes large, because spatial patterns cannot form. In this limit, coopera-
tion breaks down at high costs, and for low costs with strong altruism (see Supplementary
Section 3.6.9).

Different values for benefits and costs In the main text, the benefits are kept always
constant (b = 10) and simulations are run for different costs. Results do not change qual-
itatively if benefits are increased, as long as the benefit-to-cost ratio is kept approximately
as in the main text. We report results for b = 20 in Fig. 3.15 (bottom). For c = 10, the
system shows large scale evolutionary fluctuations in public good production, with the
selfish lineage occasionally producing more public good. However, the mechanism by
which public good production increases remains the same as explained in the main text.

3.6.8 Strong or weak altruism do not differ qualitatively

Whether an individual contributes positively to its own fitness or not is sometimes re-
ferred to as, respectively, weak and strong altruism (Fletcher and Doebeli, 2009, Wilson,
1979). In our model, a fraction of public good remains by the individual that produced
it. We can calculate the costs for which an individual has a positive fitness gain from its
own public good production. The contribution to fitness an individual i gains from its
own public good production is fself = bpi/9− cpi. For the benefits used in the main text,
b = 10, fself is positive only for c . 1.1. Thus we do not expect qualitative differences
in the evolutionary dynamics for higher costs if we implemented strong altruism (where
fself = −cpi, which can never be positive).

Fig.3.16 confirms our prediction. Results are qualitatively the same to those described in
the main text (Fig. 3.2) if public good is shared among neighbours, but no fraction is given
to self. The maximum cost for which the system is viable is presumably higher than c =
4.5. However, spatial patterns become very large at higher costs, and an adequate lattice

88



3.6 Supplementary Material

Figure 3.15. Top: Final distribution for kdeath = 0.1. Centre: Final distribution for larger
diffusion, pmove = 0.2. Bottom: Distribution for benefits b = 20, twice as much as those used
in the main text after reaching evolutionary steady state. Both distributions in the shaded area
correspond to c = 10 and are taken at different time points (tgreen = 450000, tblue = 550000
time steps). In all cases other parameters are identical to main text Fig. 3.2.
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size render the simulation computationally infeasible (see Section 3.6.3 for a discussion
on small lattice size and its consequences). More importantly, the evolutionary dynamics
also lead to larger public good production with higher costs.

3.6.9 Under well-mixed conditions, strong or weak altruism differ
at low costs

As shown in Section 3.6.8, the spatial system is largely indifferent to whether a fraction of
produced public good is retained by the producer or not. Instead, if the spatial patterns are
destroyed by well-mixing the system, we can observe that at lower costs, weak altruism
leads to maximising public good production, while under strong altruism the system goes
extinct (b = 10, c = 0.5 in Fig 3.17, left pane). When public good production costs are
higher, the system goes extinct for both strong and weak altruism (b = 10, c = 4.0 in
Fig 3.17, right pane).
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Figure 3.16. Increasing costs lead to increased cooperation when individuals do not retain
the public good they produce. Parameters: b = 10, kdeath = 0.1, kmove = 0.02, µ = 0.05,
δ = 0.1

Figure 3.17. a With smaller costs c = 0.5, when individuals retain a fraction of public good
they produce (A), public good production is maximised in the long run. In contrast, when
producers do not retain a fraction of their own public good cooperation is minimised until
extinction (B). b Whether individuals retain (A), or not (B) a fraction of public good they
produce, in well mixed system with high costs c = 4.0 cooperation is always minimised
until extinction. Notice that (A) is identical to Fig. 3.12.
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Chapter 4. Evolution of mutational division of labour

Abstract

According to Quasispecies Theory, high mutation rates limit the amount of information
genomes can store (Eigen’s Paradox), while genomes with higher degrees of neutrality
may be selected even at the expenses of higher replication rates (the “Survival of the Flat-
test” effect). Introducing a complex genotype to phenotype map, such as RNA folding,
epitomises such effect because of the existence of neutral networks and their exploitation
by evolution, affecting both population structure and genome composition.
We re-examine these classical results in the light of an RNA-based system that can evolve
its own ecology. Contrary to expectations, we find that quasispecies evolving at high
mutation rates are steep and characterized by one master sequence. Importantly, the
analysis of the system and the characterization of the evolved quasispecies reveal the
emergence of functionalities as phenotypes of non replicating genotypes, whose pres-
ence is crucial for the overall viability and stability of the system. In other words, the
master sequence codes for the information of the entire ecosystem, while the decoding
happens, stochastically, via mutations. We show that this solution quickly outcompetes
strategies based on genomes with a high degree of neutrality.
In conclusion, individually coded but ecosystem based diversity evolves and persists in-
definitely close to the Information Threshold.
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4.1 Introduction

In the classical formulation of quasispecies theory, populations are modelled as collec-
tions of mutationally interconnected genotypes with different growth rates. The outcome
of the mutation-selection dynamics is a stable distribution of closely related genotypes:
a quasispecies.

The structure of the quasispecies depends on the particular choice of the mutational
scheme and the relative growth rates of the mutants, features often summarized together
in the concept of fitness landscape. In a steep landscape the overall growth rate drops
drastically in the close mutational neighbourhood, whereas in a flat one many geno-
types have similar fitness. Since selection targets the population with the highest average
growth rate (Schuster and Swetina, 1988), in a fitness landscape with both steep and flat
regions, the quasispecies can be distributed in the flatter parts at high mutation rates, even
if the fittest genotypes there have lower growth rates. This effect is called “survival of
the flattest”.

In these models, genotypes are defined solely in terms of growth rate, and fitness land-
scapes are static and pre-determined. Alternatively, replicators can be characterised by an
explicit genotype, and a genotype-to-phenotype map. To this end, a biologically groun-
ded instance consists of “coding” genotypes as RNA-like sequences, and phenotypes
by RNA folding to secondary structure, thus co-locating information and functionality
on a single molecule. RNA folding as a genotype-to-phenotype map is known to 1)
be very rugged ((Huynen et al., 1993), (Fontana et al., 1993)) and 2) have intertwined
neutral networks which percolate throughout the entire genotype space (Schuster et al.,
1994),(Huynen, 1996). A population of replicators that evolves on a neutral network
eventually spends most of the time on its highly connected regions, provided that muta-
tion rate and population size are large enough (Van Nimwegen et al., 1999). Hence,
neutrality increases automatically in the long term evolution of replicators with expli-
citly defined genotypes and phenotypes.

A quasispecies can be maintained in the system only if mutation rate is below a threshold
value, the Error Threshold, above which the effect of too frequently arising mutants can-
not be counteracted by selection, Darwinian optimization breaks down and the quasispe-
cies delocalizes. A consequence of the Error Threshold is that, if the per-base mutation
rate is constant, longer sequences suffer from mutations more than shorter ones, and
there exists a maximum length a sequence can sustain above which the accumulation of
deleterious mutations cannot be prevented: the Information Threshold (Eigen, 1971).

The Information Threshold poses a serious limit on the evolutionary accumulation of
information in a genome. Earlier approaches to overcome such limitation consisted of
modelling different types of replicators interacting with each others, which, collectively,
would integrate more information than each individual species (e.g. the hypercycle (Ei-
gen and Schuster, 1978)). By introducing interacting replicators, the problem of inform-
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ation integration is taken from the quasispecies level to the ecosystem level. However,
in well-mixed conditions, these systems are evolutionarily unstable to species that be-
nefit from being replicated without giving replication, i.e. parasites. Not so if some
form of compartmentalization is taken into account, be it explicit (as in (Szathmáry and
Demeter, 1987)), or emergent as a consequence of the dynamics in discrete spatially ex-
tended systems, e.g. in the form of spiral waves ((Boerlijst and Hogeweg, 1991c)), or
travelling waves of replicators/parasites ((Hogeweg and Takeuchi, 2003)). More gener-
ally, spatial pattern formation has been shown to have important consequences for the
eco-evolutionary dynamics of a system (e.g. (Takeuchi and Hogeweg, 2009)).

(Eigen and Schuster, 1978) (part B) considered functionally cooperating partners be-
longing to different lineages to be the only possible solution to the problem of integrating
more information in a system (i.e. the hypercycle). Quasispecies-based solutions were
excluded on the rationale that genotypic kinship relations cannot confer functional phen-
otypic coupling.

Here, in stark contrast, we show that a single quasispecies can integrate a large amount of
information at high mutation rates, and that it behaves functionally like an ecosystem. In
particular, we extend the analysis of a recently developed model (Takeuchi and Hogeweg,
2008) by focusing on quasispecies dynamics and the survival mechanisms of interacting
replicators: we characterize the evolved quasispecies not only in terms of replication
rates, but also by the emergent functional roles of mutants.

The Results Section is structured as follows: 1) a quasispecies which survives at high
mutation rates is evolved, 2) the master sequence is determined and it is shown that rep-
lication rate is neither maximized, nor can it alone explain the survival of such sequence,
3) it is established that, counter to expectations, the evolved quasispecies is exceptionally
steep, i.e. neutrality is low and most mutants are not viable, 4) we propose a functional
classification of non viable phenotypes and the evolved quasispecies is explored in depth,
5) the role of the functional classes is analyzed in simplified models as well as by their
spatial distribution. Finally, results are put together and the unified picture of a “func-
tional ecosystem”, populated mostly by non viable mutants, is presented. Since results
are presented by means of one case study, the generality of the results and the (rare)
qualitatively different outcomes close the Results section.

4.2 Material and Methods

Model The system is a spatially extended, individual oriented, Monte Carlo simula-
tion model. Individuals consist of RNA-like strings of constant length (50 nucleotides)
which are folded (to minimum free energy secondary structure, with Vienna Package
version 1.7, (Hofacker et al., 1994)). They are located on a two-dimensional square grid
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of 512x512 cells with toroidal boundaries (based on CASH libraries, (de Boer and Star-
itsky, 2000)). Each cell of the grid can be occupied by at most one individual. Fig. 4.1
gives a representation of the model. One Monte Carlo step is as follows: all cells are
chosen in random order and, if not empty 1) complex formation or complex dissociation
may happen; 2) if in complex with a catalytically active molecule (see below), and in
presence of empty space, a sequence can be replicated and the complementary sequence
is generated (after which the complex breaks apart), mutations may occur 3) diffusion
takes place as one step of random walk and 4) sequences can decay, i.e. the cell they
occupy turns to empty. Suppose X is a catalytically active molecule and Y is not, then,
schematically:

X + Y
k1(X,Y )−−−−−−⇀↽−−−−−−
k2(X,Y )

{
CX◦Y
CY◦X

CY◦X


κ,θ,(1−µ)−−−−−−→ X + Y + Y−1

κ,θ,µ−−−→ X + Y + Y−1
µ

X
d−−→ θ

where C is a complex molecule, θ represent empty space (which constitutes the re-
source for replication), Y −1 is the complementary sequence (the subscript µ refers to
the mutated sequence), κ is the replication rate and d is the decay rate. k1(X,Y ) and
k2(X,Y ) are the probabilities that, respectively, complex formation and complex disso-
ciation happen. Complex formation happens by binding the 5’ dangling end and the 3’
dangling end of two molecules adjacent on the grid. The probability of binding depends
on the complementarity of the two dangling ends: the two stretches are aligned by slid-
ing one strand on the other, to find the minimum energy score (Gmin(X ◦Y )), calculated
as the minimum sum of the contributions of base pair matches in a continuous stretch
(i.e. gaps are not allowed). G − C contribution is -0.15, A − U is -0.1 and G − U is
-0.05, the contribution of all other base pairs is zero. The probability of binding is then
pX◦Y = 1− exp(Gmin(X ◦ Y )). Since two molecules can form complexes in two ways
(because either can be at the 5’ end), the probability of binding is calculated for both con-
figurations (so, in the same way: pY ◦X = 1−exp(Gmin(Y ◦X))). If pX◦Y +pY ◦X > 1
the two probabilities are normalized, i.e. k1(X ◦ Y ) = pX◦Y /(pX◦Y + pY ◦X), oth-
erwise k1(X,Y ) = pX◦Y . The probability of complex dissociation is k2(X,Y ) =
1− k1(X,Y ).

Quantitatively, if two dangling ends match only for a G − C pair, the probability of
complex formation is negligible (≈ 0.015), while complex dissociation is very likely
(1− 0.015 = 0.985); moreover, it takes at least five G−C pairs (or seven A− U pairs)
for the probability of complex formation to be larger than that of complex dissociation
(pX◦Y > 0.5 ⇐⇒ Gmin(X ◦ Y ) < −0.694, which, for G− C only pairs is true when
G(5× (C ◦G)) = −0.75, and for A− U pairs when G(7× (A ◦ U)) = −0.7).
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Figure 4.1. Schematic representation of complex formation and replication: two adjacent
sequences form a complex based on sequence similarity; if the molecule binding with the 5’
dangling end is catalytic, in presence of empty space, replication takes place and the comple-
mentary of the other sequence is produced. Mutations may happen at this step. In the model,
all sequences are 50 nt long, here they are depicted shorter for clarity.

Figure 4.2. Classification of the mutational classes. Phenotypes are determined for pairs
of complementary sequences (black: + strand, red: - strand), and are coarse grained to
presence/absence of 5’ dangling end, catalytic structure, 3’ dangling end. Since different
phenotypes may fall in the same functional class, some of all the possibilities are depicted
(the larger ones are the most frequent configurations). “Helpers” are defined by having a 5’
dangling end and the catalytic structure on at least one (and the same) strand, and not having
a 3’ dangling end in both strands. “Stallers” are defined by having a 5’ dangling end but no
catalytic structure on at least one (and the same) strand, and not having a 3’ dangling end in
both strands. “Junk” are sequences that do not have any 5’ dangling end on either strands,
and no 3’ dangling end on at least one. “Hybrid” sequences display a helper-like phenotype
on one strand and staller-like on the other.
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Catalytic activity consists of being able to replicate other molecules. A sequence
is defined as catalytic if it folds into a predetermined, coarse grained secondary struc-
ture, arbitrarily chosen to consist of a multiloop which connects a stem to two hairpins,
((((H)S)((H)S)M)S), in Shapiro notation (as implemented in the Vienna Package). Two
more conditions need to be satisfied for replication to take place: the catalytic molecule
must be engaged in complex with its 5’ dangling end and empty cell must be present in
the neighbourhood of the complex. The sequence complementary to that at the 3’ end
of the complex is generated, folded and located on the empty cell. The only mutations
implemented are substitutions, which happen with a per base probability µ. The rep-
lication rate, κ is set to 1 (i.e. replication depends only on complex formation and the
availability of empty space), the decay probability d is set to 0.03. A small probability
of not moving (p = 0.1) is introduced for complex molecules, to take into account their
slower diffusion.

4.2.1 Phenotype recognition and classification

For the analysis of the simulation output we have developed a classification of indi-
vidual molecules which is based on presence/abscence of catalytic domain, as well as
on 5’ and 3’ dangling ends. Considering both a sequence and its complement, which to-
gether define a genotype, any phenotype can be coarse-grained to 6 bits of information,
meaning that there exist 26 = 64 possibilities. If a dangling end is short, a molecule
would have a small probability of forming a complex. In order to classify a molecule as
having/not having a dangling end, the complementary stretch is generated, and the prob-
ability of complex formation is calculated as above. We set a threshold for the energy
score of the complex: if G ≤ −0.75 (corresponding to a probability ≈ 0.5) then the
molecule is classified as having that dangling end, otherwise, as not having it.

Phenotypes with minor differences can be grouped into phenotype classes, which can
be further joined by integrating functional considerations. In Fig. 4.2 the proposed clas-
sification is presented. The dependence on a particular threshold value to recognize a
dangling end as such (G ≤ −0.75) is minimal in the evolved system (within a reason-
able range; see Supplementary material Fig. 4.12, left pane). In contrast, the distribution
of the functional classes in random sequences does depend on it (right pane).

A necessary (intrinsic) condition for genotypes to be replicated is to have a 3’ dangling
end on both strands. However, in order to give replication, a sequence must fold into the
catalytic structure and have a 5’ dangling end. A “Unit of replication”, is a viable pair
of complementary sequences, of which at least one is able to give replication. It is trivial
to observe that, for a minimal system to persist, units of replication have to be present.
Nonetheless, the minimum viable phenotype consists of a pair of sequences that do not
fold into the catalytic structure, have 3’ dangling end, but no 5’ ones. Such phenotype
could exploit the units of replication for catalysis, and as such would be a parasite.
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Units of replication and parasites are the only two viable classes. Among the non vi-
able ones, we define “Helpers” as those sequences which can replicate other molecules
but cannot be replicated, “Stallers” can engage molecules in complex, but can neither
replicate them nor be replicated, “Junk” cannot form complexes (these phenotypes are
mostly inert) and “Hybrids” sequences display a helper-like phenotype on one strand and
staller-like on the other.

4.3 Results

4.3.1 Evolving persistence to high mutation rates

Sequences have to be evolved in order to withstand high mutation rates because ini-
tializing the system already at high mutation rates (µ ≥ 0.013) with randomly generated
units of replication leads to a quick extinction (see below). Starting from low mutation
rates, each time a sequence is mutated, a small positive random number is added to its
mutation rate (if the distribution is unbiased and negative numbers can be drawn, muta-
tion rate decreases). During the evolutionary run, the system displays various dynamic
regimes which can be characterized by the structure and the stability of the evolving eco-
system (see Supplementary Material and Fig. 4.13). The dependence of the number of
species and ecosystem structure on mutation rate is in line with (Takeuchi and Hogeweg,
2008): while for lower mutation rates multiple lineages coexist in the field, when muta-
tion rate is sufficiently high (µ ≥ 0.014) only one quasispecies is present. At this point
the simulation is continued by setting the value of µ to constant. For the case we focus
on, µ = 0.015, which corresponds to a probability of at least one mutation happening per
replication event 1− (1− µ)ν = 0.53 (with ν -length of a sequence- = 50 nucleotides).

4.3.2 The Master Sequence of the Quasispecies

Clustering the sequences reveals that only one quasispecies is present in the field,
with a high degree of sequence similarity (Fig. 4.3, top). The consensus sequence is
also the most abundant genotype occurring, thus the master sequence, and the center
of the quasispecies. The inspection of the ancestors tree (Fig. 4.3, bottom) confirms it,
as such sequence is the most frequently observed ancestor of every other molecule (cf.
(Hermisson et al., 2002)). However, at any time point, several sub-lineages coexist and
compete even for long time periods before going extinct. Along the line of descent (in
yellow), as well as in the other lineages (in red), the presence of the master sequence is
intermittent, and the ancestor of the lineage becomes a close mutant. Nonetheless, back
mutations restore the original sequence in the long run. This is an indication that the
system is close to the error threshold (cf. metastable states close to the Error Threshold
in (Takeuchi and Hogeweg, 2007a)).
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Figure 4.3. Evolved quasispecies: clustering, sequence logo, consensus sequence and an-
cestor tree. Top: Clustering, sequence Logo and most abundant sequence with its secondary
structure (in dots-and-brackets notation) of the quasispecies at µ = 0.015. 1000 sequences
are randomly sampled from the population at one time point, clustered (500 hundred are dis-
played for clarity) and the sequence logo is generated (sampling at different time points, or
larger samples do not produce qualitatively different results. Colours on the leaves corres-
pond to the functional class in which sequences fold (see Models and Methods). Cyan: most
abundant sequence, black: units of replication, green: helpers, red: stallers, grey: junk, blue:
hybrids. The tree is visualised with iTOL ((Letunic and Bork, 2011)) Bottom: Ancestors tree
over the first 450 ∗ 103 time steps of a simulation run (the simulation is initialised with a ho-
mogenous population of master sequences, it consisted of≈ 2.5∗106 time steps, after which
it was interrupted). The rest of the simulation as well as different runs show qualitatively the
same pattern. The tree is built so that the nodes at a given time step are every individual’s
ancestor 50 ∗ 103 time steps later, edges connect lines of descent; yellow nodes are those in
the line of descent that persists until the end of the simulation, in red the others. Numbers
mark the Hamming Distance of the ancestor from the master sequence. The tree is visualised
in Cytoscape ((Smoot et al., 2011)).
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4.3.3 Replication rate

Since in Quasispecies Theory fitness is defined (solely) by replication rate, we calcu-
late the replication rate of the master sequence and analyze to which extent it is maxim-
ized in the evolved quasispecies.

The phenotype associated to the master sequence is catalytic and has two dangling
ends. The 5’ one is composed exclusively of C’s, while the 3’ end lacks a clear pattern in
sequence composition. The complementary strand is not catalytic, with a closed 5’ end,
and a 3’ dangling end with only G’s. Taking into account both strands, the overall phen-
otype class is that of a unit of replication. In order to replicate, the catalytic strand has to
be able to form a complex with both itself and the complementary sequence. Clearly, the
5’ end of the catalytic strand matches perfectly with the 3’end of the opposite strand (the
probability of complex formation is ≈ 0.86). However, forming a complex with another
catalytic strand poses a problem: having too many G’s on the 3’ end, which would, in
principle, ensure a high complex formation probability, could cause a molecule to fold
on itself (forming a stem), thus leaving no dangling ends. This explains the intricate
mixture of nucleotides at the 3’ dangling end of the catalytic strand. The probability that
two catalytic strands of the master sequence form a complex is 0.90.

The self-replication rate of the master sequence is rather high, due to its long danglind
ends and the C − G-based strategy for complex formation. To test whether self-
replication is maximized we implemented an evolutionary optimization algorithm that
selects sequences for replication rate, without considering any interaction between ge-
netically different individuals. Catalytically perfect units of replication evolve quickly
by using an evolutionary optimization algorithm that selects sequences for replication
rate. Genotypes consist of a pairs of complementary sequences, both catalytic, for which
the total probability of binding both the same strand and the complementary are equal to
1 (i.e. when µ = 0, the only limit to growth is diffusion; see Material and Methods). Se-
quence composition on the dangling ends of units of replication evolved with this method
is far from being dominated by C’s, rather, A’s and U’s (interspersed within each tail) are
the most frequently observed nucleotides (see caption of Fig. 4.4).

Since the optimized sequences achieve the highest absolute degree of optimization for
replication rate, while those in the full model do not, the former do replicate faster also
in the full model, when µ = 0. However, all the sequences tested quickly go extinct for
µ ≥ 0.013, where the master sequence easily survives.

A unit of replication which has both strands catalytic is never observed in the model,
possibly because both its strands can be exploited by parasites as well as other (non
symmetric) units of replication. Moreover, from a pool of randomly generated units of
replication, we found that those catalytic on both strands are the minority (37%), and
for only 4% of the sequences each strand replicates the other better than self. Units of
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Figure 4.4. Hamming Distance = 1 mutational neighbourhood of the evolved master se-
quence (left), one typical maximally fit sequence after evolutionary optimization for replic-
ation rate (centre), the average random unit of replication (right). The piecharts show the
fraction of mutants that fold into the various functional classes. a): units of replication (in
black),i.e. neutrality vs. the other foldings (in blue). b): as above, with, in yellow, the frac-
tion of mutants that fold into parasite; c): the full mutational neighbourhood. Colours of
functional classes are the same as for the cluster tree. The sequence of the optimised unit
of replication is AAAACGUGUAAAGGAGCGAAUCGCAGGCAGAGCCACCAUAAAAGUUAUUA.
Random units of replication are obtained by generating 106 random sequences and screen-
ing their function: 228 units of replication are found. All HD=1 mutants of the latter are
generated and the fractions of mutants folding into each functional class are determined.
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replication optimized for replication rate so that only one strand can be catalytic achieve
slightly higher replication rates than those in the full model. Moreover they are not biased
in nucleotide composition and they invariably go extinct at high mutation rates (data not
shown).

In conclusion, the selection of the master sequence cannot be explained by considering
exclusively its (partially optimized) replication rate, or the structure of its dangling ends.

4.3.4 The mutational neighbourhood of the master sequence

Having excluded that optimization at the level of replication rate is the sole outcome of
evolution, we turn to study the effect of interactions within the quasispecies, i.e. the inter-
actions with the mutants of the master sequence. We first consider the viable mutants, i.e.
neutral ones and parasites, then we characterize the rest of the mutational neighbourhood.

Neutrality The fraction of all the Hamming Distance (HD) = 1 mutants of the master
sequence that fold into units of replication is λms = 0.06 (note that a broad definition of
neutrality is adopted, as folding into a unit of replication suffices, and replication rate is
not taken into account). In comparison, the average degree of neutrality for random units
of replication is λr = 0.33 and for a typical unit of replication obtained by optimizing
replication rate is even larger (λopt > 0.40, Fig. 4.4, top row). Interestingly, the master
sequence seems to belong to a steep (as opposed to flat) quasispecies. The master se-
quence is also non-modular: the fraction of units of replication obtained when mutating
only the dangling ends of the catalytic strand is only slightly higher than the neutrality of
the whole sequence (λtails = 0.11). Moreover, the master sequence is a far outlier with
respect to the neutrality distribution for random units of replication (Fig. 4.5, first pane).

Parasites In this model, parasitic lineages readily evolve at lower mutation rates and,
because of spatial structuring, they do not destroy the ecosystem (Supplementary mater-
ial, and (Takeuchi and Hogeweg, 2008)). Strikingly, the chances of generating a parasite
as a HD = 1 mutant of the master sequence are exactly zero (0.0005 at HD = 2),
despite the fact that a single mutation disrupting the catalytic structure of a unit of rep-
lication could suffice. In contrast, the fraction of parasites in the HD = 1 mutational
neighbourhood of both random units of replication and the ones optimized for replic-
ation rate is much higher (Fig. 4.4, center row). When these sequences are inoculated
in the full model at high mutation rates, parasites are going to be generated often and,
being very similar to the unit of replication they originate from (HD = 1), they become
strong competitors for getting replicated. As close mutants of units of replication, they
are not spatially separated (as it happens in, e.g., travelling waves) and lead the system
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Figure 4.5. Distribution of HD=1 mutants for random sequences and for the master sequence.
Each histogram displays the distribution of number of units of replications for their fraction of
mutants that fold into the functional class indicated (bin size = 0.02). In blue, the distribution
of the 50% least neutral sequences among different classes, in red, the 50% most neutral.
Green stars: fraction of mutants of the master sequence belongiong to the class indicated.

to extinction, similarly to the situation in a well mixed system (cf. e.g (Takeuchi and Ho-
geweg, 2007b)). This explains why these sequences fail to survive despite having a high
replication rate. In conclusion, long term evolution at high mutation rates minimizes the
chances of producing parasites in the quasispecies.

So far, only 6% of the HD = 1 mutational neighbourhood has been characterized,
considering the low degree of neutrality of the master sequence (λms = 0.06) and the
fraction of its mutants that turn into parasites (λP = 0). This completes the description
of the viable mutants. In the next section, the remaining 94% of non-viable mutants are
better characterized.

TheHD = 1 mutational neighbourhood In Section Material and Methods the clas-
sification of all the possible phenotypes has been introduced. Here we analyze the distri-
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bution of such classes in the mutational neighbourhood of the master sequence, to con-
clude that the evolved quasispecies is selected for the peculiar distribution of its mutants.

In Fig. 4.4, bottom row, the relative fractions of functional classes arising as mutants of
the master sequence are compared to those of optimized sequences and random ones (as
before). Helpers make up to about 50% of the mutational neighbourhood of the master
sequence, in contrast to the case of random sequences (≈ 10%) and those optimized for
replication. The master sequence does not seem to differ much from random sequences
for what regards junk, stallers and hybrids.

In Fig. 4.5, the mutants of the master sequence are compared with the full distribution of
mutants from random units of replication, rather than just with the average values. The
green star in each subplot represents the frequency of each functional class in the HD =
1 mutational neighbourhood of the master sequence. The degree of neutrality of the
master sequence (λms = 0.06), the fraction of its mutants that fold into parasites (λP =
0) or helpers (λH = 0.51) are far outliers of their respective “null” distributions: the first
two are under-represented, while helpers are over-represented. Stallers, junk and hybrid
sequences in the neighbourhood of the master sequence seem not to be significantly
different from random.

It could be the case that, since the total number of possible mutants produced is constant
(i.e. 3 possible substitutions ∗ sequence length = 150 mutants), the lower degree of neut-
rality in the master sequence would allow for more different kinds of functional classes as
a side effect. To address this caveat, the population of random units of replication is split
into two groups: the 50% least neutral sequences (blue in Fig. 4.5) are separated from
the 50% most neutral (red), and the two groups are compared for the other functional
classes. We find no evidence that such is the case, as the two groups distribute roughly
in the same way for all functional classes. Altogether, this indicates that the properties of
the HD = 1 mutational neighbourhood of the master sequence are evolved and that the
master sequence is selected for its mutational neighbourhood wich minimizes neutrality
and frequency of parasites, as well as maximizes the amount of helpers.

Comparing the mutational neighbourhood of random units of replication with the global
occurrence of functions in genotype space (Supplementary material, Fig. 4.12, right
pane), we observe that the global occurrence of helpers and hybrids is limited, which
explains why they are so infrequent as mutants of random units of replication. Instead,
it is remarkable that some units of replication have only few stallers, junk or parasites,
given their abundance in the genotype space. However, as mentioned above, most of the
sequences in these functional classes might be unreachable with few mutational steps
from a unit of replication. From which we conclude that the genotype space from the
“mutational point of view” of a particular phenotype looks biased from the global pic-
ture. Of course, selection can act on the former, and not on the latter.
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The mutational neighbourhood at larger distance Units of replication arise as
mutants of the evolved master sequence, and, in turn, make more mutants. Analyzing
what the mutational neighbourhood is like at higher Hamming Distances allows us to
understand to which extent of the mutational neighbourhood selection pressure reaches.

The first search to higher Hamming Distances is performed by selecting units of replic-
ation that have a replication rate as high as (or higher than) that of the master sequence.
Starting from the master sequence, the average mutational neighbourhood of these units
of replication, at progressively higher Hamming Distances is plotted in Fig. 4.6 (core
neutral mutants). The frequency of units of replication mutants of neutral sequences
increases slightly and seems to saturates for HD > 4, whereas the fraction of core neut-
ral mutants among them remains extremely low. The fraction of helpers drops quickly,
whereas, symmetrically, the fraction of stallers increases. Very few parasites are present,
and there seems to be little variation for Junk and Hybrid sequences. Taking into account
that mutants in the close mutational neighbourhood are also close in space in the full
system (because replication is a local process), the picture that emerges is that the mas-
ter sequence is able to outcompete neutral mutants by being replicated more often than
anyone else by helpers, while being hindered less than every other unit of replication by
stallers.

A second search is performed by selecting any unit of replication (pseudo neutral in
Fig. 4.6, second row). The main differences with the results above are the marked in-
crease in units of replication at higher Hamming Distances and the larger amount of
parasites, while stallers do not increase as much as in the previous case. Although units
of replication are increasingly neutral at higher Hamming Distances, they do not outcom-
pete the master sequence.

Finally, a third procedure is implemented, by sampling the mutants of the master se-
quence at progressively higher Hamming Distances. This procedure is implemented for
the sake of completeness: some units of replication may be generated only with mul-
tiple mutations (hence, they would not be taken into account by the previous procedures)
and may contribute to the overall shape of the landscape. However, the mutational neigh-
bourhood emerging from this method is very similar to the one described above (Fig. 4.6,
third row).

Altogether, the analysis of the mutational neighbourhood suggests that selection acts
to shape and finely tune the mutational neighbourhood in such a way that small gen-
otypic variations (single substitutions) have large effects on the functional role of the
phenotypes. Moreover, interactions with strong competitors are minimized, as they are
mediated by either non competitive units of replication (which dilute the latter) or non
viable sequences. The distribution of the non viable mutants of the master sequence is
shaped in such a way to contribute to the replication of the master sequence itself (the
helpers at low Hamming Distance) or hinder competitors (stallers at high Hamming Dis-
tance). The mutational neighbourhood of units of replication selected with the second
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Figure 4.6. Mutational neighbourhood of the master sequence at higher Hamming Distances.
First row: fully neutral mutants (units of repl. with replication rate as high or higher than
that of the master sequence), Second row: pseudo neutral mutants (units of repl. with repl.
rate lower than that of the master sequence). Random sampling for units of replication if
more than 104 are found in both cases), Third row: pseudo neutral mutants sampled from
the master sequence at Hamming Distances from 1 to 10 (if the total number of units found
exceeds 104 or if, after 105 tries, no more units are found, the algorithm moves on to the
next Hamming Distance value). In the first row. Continuous red line: average fraction of
phenotypes in each class. In the second and third row: Thick red line: average fraction of
phenotypes in each class for pseudo neutral mutants; orange line: average fraction of mutants
for core neutral units of replication. For all rows. Shaded area: between +/ - standard devi-
ation. Continuous black line: fraction of total mutants that are core mutants. Dashed black
line: fraction of total mutants that are pseudo neutral mutants. Blue dotted line: mutational
neighbourhood of the sequence with lowest neutrality at a certain Hamming Distance. Light
blue dotted line: as before, except for highest neutrality.

108



4.3 Results

method becomes more and more similar to that of random units of replication the higher
the Hamming Distance. Above, we have seen that random units of replication are not
viable at high mutation rates, hence, they cannot be competitors of the master sequence.
The lack of a structured mutational neighbourhood (especially for the abundance of para-
sites) explains their quick extinction (see above).

4.3.5 Spatial population dynamics

So far, we have presented the functional classes and analyzed the quasispecies from a
“static” perspective, i.e. by exploring the mutational neighbourhood of the master se-
quence. We now turn to the field to assess which effects the functions defined above
have, and at which scale.

Limited diffusion is essential for survival, as increasing the number of random walk-
steps per reaction step (to a ratio 3:1), as well as mixing the system, leads to extinction
quickly. Nevertheless, at a first glance, the field looks patchy and disorganized. Copies
of the master sequence are more or less clustered and separated from parasites, which (as
expected) are closer to the regions with empty space. The other units of replications, as
well as helpers, stallers and junk, are widespread, with limited apparent spatial clustering
(Supplementary Material, Fig. 4.14. Notice that the system is far from being mixed,
as increasing the frequency of random walk-steps per reaction step leads to extinction
quickly, and so does mixing the system every time step).

The total number of individuals oscillates in time (occupying in total about half of the
field), however, since the relative ratio of functional classes remains almost constant
(Fig. 4.8), we can study the distribution in the field from a single time point. The indi-
viduals at HD=1 from the master sequence (Fig. 4.8) distribute similarly to the HD=1
mutants (see Fig. 4.7), the exception being the great abundance of units of replication.
The relative fractions of functional classes, however, distribute in a way roughly similar
to random (Fig. 4.7).

Units of replication and parasites are selected in the short run (their number is large)
because they are viable. Nontheless, most sequences are non viable at any given moment:
helpers, and to a lower magnitude, junk, are more frequent at lower Hamming Distances,
while stallers reach their peak at higher ones. The distribution of parasites has a peak
even further in Hamming Distance. Notice that in the field it is possible to discriminate
the strand of a hybrid genotype, which can be assigned to helpers or stallers. Fig. 4.8 and
Fig. 4.6 share some degree of similarity (until HD = 10) in that helpers decrease with
higher Hamming Distances, stallers increase, parasites increase only for HD > 3 and
the fraction of junk does not show much variation. Analogously, Fig. 4.3 (top) shows
that helpers and units of replication are more frequently found close (genotypically) to
the master sequence, while stallers and parasites arise far from it.
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Figure 4.7. The piecharts represent left the mutational neighbourhood of the master se-
quence, centre the mutational neighbourhood of random units of replication, right frequency
of functional classes present in the system at one time point (Fractions : units of replication
0.31, helpers 0.18, stallers 0.29, junk 0.14, parasites 0.08). The colours in the piecharts are
as in Fig. 4.4.

Figure 4.8. Distribution of the abundances of the functional classes in the field (at one time
point) as function of the Hamming Distance of their sequence from the master sequence. The
Hamming Distance value is calculated as the minimum between the Hamming Distance of
the sequence and the master sequence, and the Hamming Distance of the complementary
sequence with the master sequence. Inset: Time plot of the abundances of the various func-
tional classes (the total population is between 100 ∗ 103 and 150 ∗ 103 individuals). Colour
coding as in Fig. 4.4; in cyan, the master sequence
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Altoghether, there seems to be a correlation between the distributions of mutants of the
master sequence and the distribution of functional classess present in the field. To bet-
ter explain the particular distribution of the functional classes, more information about
the behaviour of the non viable phenotypes is needed, which is the concern of the next
section.

4.3.6 The role of non-viable mutants for the stability of the system

So far, the non-viable phenotypes have been classified, assigned a function and their
presence in the field has been shown. It still remains to determine what role they have
in terms of ecological stability of the system, especially for what regards helpers and
stallers, which is the concern of this section.

Helpers To assess the role of helpers we exclude them from the field in two ways:
either by removing them, leaving empty space (in which case they still benefit the system
in that the empty space becomes a resource), or by turning them into junk (i.e. inert
material). In both cases the system goes extinct quickly. Helpers are crucial for the
viability of the whole system.

Because helpers are widespread in the field (Supplementary Material, Fig. 4.14), para-
sites benefit from them as well. To investigate the interplay of helpers and parasites for
the stability of the system (especially at high mutation rates), we study a simple system
of ordinary differential equation (ODE) model. We assume that units of replication (X,
we ignore the +/- strand difference), can form complexes with other units, helpers (H)
and parasites (P), and the last two can also form complexes. Upon complex formation,
new molecules are generated. The mutational products of units of replication are help-
ers, parasites and junk (which is inert). We assume that parasites do not mutate, which
is justified by their (generally) high neutrality and the lack of helpers in their mutational
neighbourhood; for simplicity, we do not include junk produced by them, thereby mod-
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elling strong parasites. The reaction scheme goes as follows:

2 X
axx−−⇀↽−−
bxx

Cxx



κ,θ,(1−µ)−−−−−−→ 3 X
κ,θ,µ·λH−−−−−−→ 2 X + H
κ,θ,µ·λP−−−−−→ 2 X + P
κ,θ,µ·λJ−−−−−→ 2 X + J

X + H
axh−−−⇀↽−−
bxh

Cxh



κ,θ,(1−µ)−−−−−−→ 2 X + H
κ,θ,µ·λH−−−−−−→ X + 2 H
κ,θ,µ·λP−−−−−→ X + H + P
κ,θ,µ·λJ−−−−−→ X + H + J

X + P
apx−−⇀↽−−
bpx

Cpx
κ,θ−−→ X + 2 P

H + P
aph−−⇀↽−−
bph

Cph
κ,θ−−→ H + 2 P

X,H,P,J,Cxx,Cxh,Cpx,Cph
d−−→ θ,

(4.1)

where a is the rate of complex formation for the molecules indicated by the subscripts,
b is the complex dissociation rate, C is a complex between two molecules indicated in
the subscript. κ is the replication rate (it can be thought of as a polymerization rate), θ
is a phenomenological term for competition (e.g. resources, such as empty space), µ is
mutation rate, λ is the fraction of mutants that turn into the class in the subscript. The
ODE system from this reaction scheme and a summary of the bifurcation analysis can be
found in Supplementary Material.

In Fig. 4.9 (left pane), the steady state values of the units of replication are plotted
against mutation rate (µ) for different values of the fraction of mutants that turn into
helpers, λH (bifurcation plot). Interestingly, the system is destabilized at lower mutation
rates for higher values of λH . This effect is entirely due to the presence of parasites and
stays the same if the fraction of mutants that turn into parasites (λp) is set to zero. To show
this, the parasite equation is removed from the ODE system, and a similar bifurcation plot
is built (Fig. 4.9, right pane). In contrast with the previous case, increasing the fraction
of mutants that turn into helpers (λh) makes the system more resistant to mutations (see
inset of Fig. 4.9, right pane). The comparison of the two systems shows that in the
absence of parasites, helpers stabilize units of replication to a large extent, but it still
remains that the system is fragile to parasites: at high mutation rates, the latter can invade
and cause extinction (not shown). Conversely, the production of parasites as mutants of
units of replication destabilizes the system and leads to extinction at much lower mutation
rates, no matter the value of λH . We conclude that in the full system helpers are only
favorable for the master sequence (and, possibly, for the units of replication very close to
it), because of its lack of parasites in both the mutational and the physical neighbourhood.
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In the next section we show how the latter is mediated by stallers.

Stallers To investigate the role of stallers (similarly to the case with helpers) we ex-
clude them from the field either by removing them or by replacing them with junk. In
both cases the density of the units of replication in the field increases abruptly, and two
new lineages evolve: one catalytic and one parasitic, with the system self-organizing into
travelling waves. The strategy of units of replication in the new lineage is still ’C’-based,
whereas parasites are similar in structure to those evolving at lower mutation rates (see
(Takeuchi and Hogeweg, 2008)). In the case where stallers are removed from the field,
the new catalytic lineage lacks a persisting master sequence, has high neutrality (≈ 0.3)
and few helpers in the mutational neighbourhood. An increase in neutrality of units of
replication is both a way to cope with high mutation rates and a mechanism to partially
weaken the parasitic exploitation, because it increases the variability in the system. In
contrast, for the case where stallers are turned to junk, the units of replication are char-
acterised by low neutrality, a moderate amount of helpers and a large fraction of stallers
(tuned to junk). However, the new master sequence evolves so that what is classified as
junk behaves partially as stallers. This quasispecies outcompetes the parasitic one, which
goes extinct.

That stallers hinder the growth of units of replication (in general) can be seen from
the initial, sudden increase of density in the field, when stallers have just been removed.
Since the quasispecies is highly homogeneous across the field (see Fig. 4.3, top), the in-
creased number of units of replication makes it easier for a parasite to invade (to some
extent, further facilitated by the fact that the stallers in their mutational neighbourhood
are also excluded). In this sense, stallers affect parasites mostly by removing the sub-
strate for their replication (i.e. units of replication), and only to a lesser extent by direct
interaction with them. In such conditions, parasites optimize the exploitation of the units
of replication, by loosing both 5’ dangling ends while increasing the density of ’G’ on
both 3’ ends. Given the evolution of faster replicating parasites, units of replication that
rely on helpers for survival, such as the master sequence, are counter-selected and go
extinct (as explained above).

Altogether, we conclude that stallers are an intrinsic problem for the system, and that the
master sequence of the full model has evolved some mutational control over them.

Similarly to the case with helpers, an ODE model is studied to understand the interplay
of units of replication, stallers and parasites. When units of replication (X) replicate er-
roneously, mutants can be junk (J), parasites (P) or stallers (S); the erroneous replication
of parasites produce mutants as well, namely junk or stallers. Stallers engage in complex
with both parasites and units of replications, but no replication happens. The reaction
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Figure 4.9. Bifurcation diagrams for the ODE systems with helpers (Reaction scheme
4.1). Left: with parasites. Parameters: ahp = 0.7, axh = 0.7, axp = 0.7, axx =
0.7, d = 0.03, λP = 0.03, κ = 1, θ = 1 . Continuous line: stable equilibrium;
dashed line, unstable equilibrium; black squares: bifurcation points. The arrow highlights
the direction of change for the bifurcation point with progressively increasing λH values
(λH ∈ {0, 0.25, 0.5, 0.75, 0.95}). For simplicity, the Hopf bifurcation is marked rather than
the homoclinic bifurcation. However the two bifurcations are very close. For all parameters
combinations, the extinction state (0) is a stable equilibrium. Inset: two parameter bifurca-
tion plot (µ vs. λH ). Right: Same as above, except parasites are not included in the ODE.
The arrow highlights the direction of change of the limit point. Numerical integration and
bifurcation analysis performed with GRIND and CONTENT ((de Boer and Pagie, 2005),
(Kuznetsov, 1999)).

Figure 4.10. Bifurcation diagrams for the ODE system with stallers (Reaction scheme 4.2).
Solid lines: stable equilibria, dashed lines: unstable equilibria, dotted lines: max/min limit
cycle, dots: bifurcations ((h): estimated location of possible homoclinic bifurcation, H:
Hopf, F1 and F2: Fold, T : transcritical bifurcation). Left: general figure, parameters: λP =
0, µ = 0.4, aps = axs = 0.75, axp = 0.8. Centre: changing µ and λP (green: µ=0.3,
blue: µ=0.4; dark colour: λP = 0, light colour λP = 0.02), other parameters: aps = axs =
0.7, axp = 0.775. Right: highest values of µ (green: µ=0.45, red: µ=0.52; dark colour:
λP = 0, light colour λP = 0.02), other parameters as before. Parameters common to all
three figures: axx = 0.9, d = 0.03, κ = 1, Θ = 1. For all parameters combinations, the
extinction state (0) is a stable equlibrium.
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scheme of the system reads:

2 X
axx−−⇀↽−−
bxx

Cxx



κ,θ,(1−µ)−−−−−−→ 3 X
κ,θ,µ·λS−−−−−→ 2 X + S
κ,θ,µ·λP−−−−−→ 2 X + P
κ,θ,µ·λJ−−−−−→ 2 X + J

P + X
apx−−⇀↽−−
bpx

Cpx


κ,θ,(1−µ)−−−−−−→ 2 P + X
κ,θ,µ·λS−−−−−→ P + X + S
κ,θ,µ·λJ−−−−−→ P + X + J

X + S
axs−−⇀↽−−
bxs

Cxs

P + S
aps−−⇀↽−−
bps

Cps

X,S,P,J,Cxx,Cpx,Cxs,Cps
d−−→ θ,

(4.2)

where the names of variables and parameters are assigned as above. The ODE system
derived from this reaction scheme, as well as a summary of the bifurcation analysis, can
be found in Supplementary Material.

The model formulated here is very similar to those studied in (Takeuchi and Hogeweg,
2007b). However, the main focus there was on understanding how the interplay of muta-
tion rates with the affinity of the parasites for replicators affected the stability of the
system (and in that sense, the comparison with the spatial system was made at a meso-
scale level). Here, we are interested in the average behavior of the system at a small scale,
where units of replication, stallers and parasites have similar dangling ends, making the
rate of the reactions X+S

axs−−→ Cxs and P+S
aps−−→ Cps comparable to P+X

apx−−→ Cpx

and rather high. The important difference between the master sequence and the other
units of replication (at high Hamming Distance) is that the latter have more stallers in the
mutational neighbourhood than the former, i.e. the probability that a staller is produced
(λS) is higher.

The system displays a wide range of behaviors. Fig. 4.10 gives an overview of the
concentration of units of replication, X , as a function of the rate at which stallers are
produced, λS , for different combinations of other parameters. For lower mutation rates,
in the absence of parasites (λP = 0), units of replication are minimally hindered by
stallers (uppermost line in the left and center pane of Fig. 4.10). However, if the fraction
of mutants that turn into stallers is too low (λS < λS(h)), parasites can invade and lead
the system to extinction. Increasing λS weakens progressively more the exploitation of
units of replication by parasites (stable lines in the middle of left and center pane of
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Fig. 4.10) until the point (λS = λS(F1)) where parasites cannot invade any longer. A
similar result holds if parasites are generated as mutants of units of replication (Fig. 4.10,
center pane). A large production of stallers at higher mutation rates becomes deleterious
for units of replication, and may lead the system to extinction (λS > λS(F2), Fig. 4.10,
right pane).

In conclusion, stallers are unavoidable in the full model, especially at higher mutation
rates, and they constitute a hinder for units of replication if abundant in the mutational
neighbourhood, while providing a form of defense against parasites. The master se-
quence has a limited fraction of them in its mutational neighbourhood, which exposes it
to the risk of invasion by parasites. However, mutant units of replication have a high frac-
tion of stallers in their mutational neighbourhood, which protect the system from para-
sites by sequestering such units into complex with stallers, or by decreasing the chance
that contacts happen between parasites and units of replication. In practice, such strategy
favors the master sequence while hindering everybody else in the long run.

4.3.7 Global picture of quasispecies: a functional ecosystem

After having elucidated the functional role of non viable mutants, results can be
summed up to present the general picture of the quasispecies. In Fig. 4.11 (upper pane),
the quasispecies is presented as a network of mutationally adjacent units of replication.
The only clearly abundant units of replication are those closest in Hamming Distance
to the master sequence (Fig. 4.11, lower left pane): this is understandable because, on
the one hand, they are often generated from the master sequence, on the other, and more
importantly, their mutational neighbourhood is the most similar to that of the master
sequence. Upon inspection, it is clear that already at HD = 2 no sequences are as
abundant. The abundance of each unit of replication seems to correlate more with the
abundance of helpers and with the scarcity of stallers in their mutational neighbourhood,
rather than with the replication rate of the sequence (e.g. cf. the two units of replication at
HD = 1 in orange at the bottom, with the neutral ones at the top, in yellow). The lower
right pane of Fig. 4.11 shows the progression of mutant units of replication towards
the periphery (in genotype space) of the quasispecies. The more Hamming Distance
increases, the higher the fraction of stallers in the mutational neighbourhood becomes.
This explains why units of replication closer to the master sequence are selected (in the
short run), as seen in the field (Fig. 4.8), why the peak of the distribution of helpers is
one step after (in Hamming Distance) from that of units of replication, and why the peak
of the distribution of stallers is at higher Hamming Distances.

Altogether, the evolved quasispecies is under the mutational control of the master se-
quence, which minimizes the competition with other units of replication by its low degree
of neutrality, minimizes the hinder from stallers while it maximizes the help received.
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Figure 4.11. Overview of the units of replication in the quasispecies (top) and close-ups
(bottom). Units of replication are generated by following the procedure explained in the
caption of Fig. 4.4. Each node represents a unit of replication and each edge connects two
units of replication if they are at Hamming Distance = 1 from each other. The number in the
centre of the node is the Hamming Distance from the master sequence. Each node shows
the mutational neighbourhood of the unit of replication it represents (the pie chart in the
centre, colour coding as in Fig. 4.4), and its abundance (the size of the ring around), which is
coloured according to whether it is a core neutral mutant of the master sequence (in yellow)
or not (orange). The radial layout is meant to stress the central role the master sequence has
in shaping the rest of the quasispecies. In order to make the figure clearer, units of replication
are shown only up to Hamming Distance = 7. The network is visualised with Cytoscape 2.8.
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Other units of replication are selected in the short run provided their mutational neigh-
bourhood has a high enough fraction of helpers. However, at higher Hamming Distances
the fraction of stallers in their mutational neighbourhood makes them effectively non vi-
able. Helpers have been shown to be necessary for the survival of the whole system,
whereas stallers contribute to the global stability of the quasispecies (i.e. the master
sequence) by sequestering units of replication and by limiting their accessibility to para-
sites. No particular selection pressure is found to act on the frequency or the production
of inert molecules (junk). In conclusion, the quasispecies behaves functionally like an
ecosystem, where different emergent functions are acquired by non viable sequences and
have particular and defined roles.

4.3.8 Generality of the results, steep vs. flat quasispecies

The initial step to evolve units of replications to higher mutation rates was repeated
both here and in (Takeuchi and Hogeweg, 2008). Including the one described so far, a
total of eight units of replication were evolved. These sequences can survive to mutation
rates within the range 0.014 < µ < 0.0165 (see table 4.1). In most cases (6/8), these
sequences exploit a catalytic strategy based on C’s (as the unit of replication described
above), and their mutational neighbourhood is characterized by a lower degree of neut-
rality, a higher fraction of helpers and a minimal fraction of parasites. Less frequently
(2/8 cases), sequences exploit a catalytic strategy that seems to rely more on A’s than
other nucleotides, and, more importantly, they have a higher degree of neutrality and a
lower fraction of helpers in their mutational neighbourhood, although parasites are still
minimized.

The units of replication belonging to the steep quasispecies not always display a unique
master sequence: in some cases (4., 5., and 6. in table 4.1) a small group of core neutral
mutants with almost identical mutational neighbourhood substitutes it. However, the
cases that resist to the highest mutation rates do have a unique master sequence (1., 2.
and 3. in table 4.1).

Survival of the flattest The two sequences with a higher degree of neutrality (7. and
8. in table 4.1) seem to be a qualitatively different outcome at high mutation rates. Their
sequence composition is similar to the units of replication that evolve at lower mutation
rates (the “A-catalyst” observed in (Takeuchi and Hogeweg, 2008)). In both cases, the
quasispecies have no persisting master sequence, and the sequence variability in the field
is high. Moreover, parasites are much more abundant in the field than in the case of steep
quasispecies (see Supplementary Material Fig. 4.15). The characteristics of these two
quasispecies clearly point to a survival of the flattest effect.

With this in mind, and given that the overall replication rate of steep and flat quasispecies

118



4.4 Discussion

are comparable, we performed all the pairwise competitions between the flat quasispecies
and the steep ones. In all cases but one the steep quasispecies outcompete the flat ones
in little time (notice that in the case in which the steep quasispecies is outcompeted, its
Error Threshold is very close to the mutation rates used for the competition experiment).

4.4 Discussion

In this study we investigated the eco-evolutionary dynamics at high mutation rates of
interacting replicators with an explicitly defined genotype (RNA-like sequences), and a
phenotype that depends on a complex genotype-to-phenotype map (RNA folding). We
show that a quasispecies evolves which is steep and in which emergent functionalities
are associated to non viable individuals, and critically contribute to the overall stability
and long term persistence of the system. The information on the structure of the func-
tional ecosystem is coded on the master sequence, and stochastically decoded through
mutations.

A key feature of the model is that neither an interaction structure is preconceived, nor
it is predefined which sequences are most fit (i.e. no fitness function is imposed on the
system). All that is implemented are simple “chemistry” rules, i.e. sequence recognition
for complex formation, which selection may exploit. Both complex formation and rep-
lication are local processes, which means that individuals interact mostly with identical
copies of themselves as well as, inevitably, with their close mutants. This implies that
interactions, when happening, are usually strong (i.e. if the appropriate dangling ends are
present, the probability of complex formation and replication is high). Co-localization
and strong interaction are at the basis of the observed evolutionary (positive) feedback:
units of replication are selected (at least in the short run) if their close mutants replicate
them more than the mutants themselves get replicated. This happens in two ways: close
mutants (both in genotype and in physical space) are exploited for giving replication
without being able to replicate (helpers), further away mutants (stallers) block competing
units of replication and parasites. So, although genotypically very close, these sequences
are phenotypically and functionally different. Altogether, the evolutionary structuring of
this mutational process establishes the functional linkages within the quasispecies. The
extent of the mutational control the master sequence reaches is surprisingly deep (Ham-
ming Distance ≈ 10, where it becomes indistinguishable from random).

This model was initially studied in (Takeuchi and Hogeweg, 2008), where it was argued
that the evolution of ecological complexity is limited at greater mutation rates, where a
single, invariant quasispecies persists. Here we see that low diversity at sequence level
enables a specific mutational neighbourhood and therewith a large functional diversity.
The evolution of new lineages is prevented by the structured mutational neighbourhood at
high mutation rates. At low mutation rates, the amount of functionally different mutants
generated within the quasipecies is reduced, and separate lineages, e.g. parasites, readily
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mut. nei. µmax replic. rates competition
+/+ +/- 7 8

Steep quasispecies

1. 0.0164
0.902 0.858
0.914 0.831 X X

2. 0.0154
1.000 0.878
0.932 0.854 X X

3. 0.0151
1.000 0.777
0.870 0.744 X X

4. 0.0145
1.000 0.817
0.866 0.777 X X

5. 0.0151
1.000 0.777
0.818 0.731 X X

6. 0.0143
1.000 0.777
0.858 0.729 x x

Flat quasispecies

7. 0.0154
0.725 0.817
0.892 0.798

8. 0.0149
0.902 0.817
0.872 0.792

Table 4.1. Properties of units of replications that survive at µ ≥ 0.014. 1st column: pie
charts of the HD=1 mutational neighbourhood of the master sequence (for case 4. and 5. no
single master sequence is present, the pie chart is an average of the common ancestors along
the line of descent collected every 5 ∗ 104 time steps. Analogously for case 6., where the
most abundant individuals were collected every 5 ∗ 104 time step); 2nd column: value of µ
between the maximum µ for which the system doesn’t go extinct and the minimum µ for
which it does, confidence interval: ±0.0001; 3rd and 4th columns: Upper row: probability
of complex formation of the master sequence (or the first common ancestor) with itself, lower
row: average probability of complex formation for units of replication within the quasispe-
cies. Left: catalytic strands with other catalytic strands, right: with complementary sequences
(calculated by sampling 5 ∗ 102 units of replication, determining all vs. all probabilities, then
averaging); 5th and 6th columns: competition experiment with flat quasispecies (7. and 8.).
X: the steep one outcompetes the flat one, x: vice versa (the experiments are performed by
initializing half of the field with one quasispecies and half with other, both taken from runs
at sufficiently late time steps).
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evolve.

In conclusion, mutation rate “automatically” classifies different eco-evolutionary dy-
namic regimes, even though the genotype-phenotype-interaction map is identical.

One-to-many genotype-to-phenotype map The outcome of the evolutionary dynam-
ics consists of a sequence which stores the information for the entire functional eco-
system. Functions are unfolded through minimal variations (mutations). In our model,
substitutions are the only mechanism that can allow the spatial and functional control
required to evolve the complex interaction structure observed, hence the need for high
mutation rates. Altoghether, this represents an example of a one-to-many genotype-to-
phenotype map.

Other mechanisms to achieve multiple functionalities with limited coding resources (e.g.
in proximity of the Information Threshold) have been explored in silico by (Hogeweg
and Hesper, 1992), and more recently within the context of RNA folding in e.g. (Ancel
and Fontana, 2000), (Fontana, 2002), (de Boer and Hogeweg, 2012) and (de Boer, 2012)
(the phenomenon occurs frequently in vivo (Trifonov, 1989); see (Tuck and Tollervey,
2011) for a recent review about RNAs). While in those models the evolution of a one-to-
many genotype-to-phenotype map was the object of study, in our model it was completely
unexpected. Similarly to (de Boer and Hogeweg, 2012), our results make the point that
mutation rate should be interpreted as a structural degree of freedom rather than only a
limiting factor to information accumulation.

Steep vs. flat quasispecies From a quasispecies-theoretical perspective, evolution ex-
ploits the very defining feature of quasispecies sensu strictu, namely, that mutations hap-
pen often and surely. In our models this produces an interaction structure. In combination
with a complex genotype to phenotype map, some control over these mutants can emerge.

This cannot happen if the only selectable trait is replication rate: when mutations happen
frequently (with large enough populations), populations evolving on neutral networks
automatically increase their mutational robustness (Van Nimwegen et al., 1999). Quas-
ispecies models that display the survival of the flattest effect (originally (Schuster and
Swetina, 1988), later emphasized by (Wilke et al., 2001)) suffer from the same limit-
ation. Indeed, the spatially extended versions of these models show that the range of
mutation rates in which flat quasispecies outcompete steeper ones is larger than in the
well mixed case (Sardanyés et al., 2008). Multiple selection steps at different life stages
can lead to favoring antirobust individuals (as they purge deleterious mutations faster),
but this is not the case at higher mutation rates (Archetti, 2009).

In contrast, our model shows that the evolution of an interaction structure and the lack of
neutrality are closely linked. This explains why the increase in mutational robustness is
not observed in most cases, and why, for the cases in which flatter solutions evolve, they
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are most often outcompeted by quasispecies with a highly structured mutational neigh-
bourhood. In other words, survival of the flattest does not happen. Sequences in flat
quasispecies are, to some extent, under the same selection pressure as the steep ones, i.e.
selection for a structured mutational neighbourhood (which can be seen from the mod-
erate fraction of helpers and the low fraction of parasites in their mutational neighbour-
hood, in Table 4.1). In this sense, it seems that flat quasispecies are somewhat deregulated
solutions in comparison to the steep ones. Nonetheless, flatter quasispecies retain a high
maximum replication rate, comparable to that of steep solutions (in contrast to (Elena
et al., 2007)), while the average replication rate is even higher (in Table 4.1 the average
replication rate is calculated taking into account only units of replication, and not non
viable individuals). This means that higher neutrality in the quasispecies does not come
about due to a less effective selection pressure, as is the case in (Krakauer and Plotkin,
2002) as well as in the Royal Road Genetic Algorithm ((Mitchell et al., 1992),(van Nim-
wegen and Crutchfield, 2000)). The flat quasispecies are outcompeted because they lack
the (evolved) properties of the steep ones, namely, a structured mutational neighbourhood
which establishes a functional linkage within the quasispecies.

It has been shown (Huynen, 1993) that in predator-prey dynamics with RNA-like or-
ganisms (in which the prey is not eaten if it is not “recognized”, i.e. if the predator’s
phenotype does not match that of the prey), populations evolve to steeper regions of the
phenotype landscape and the increase in mutational robustness does not happen. Selec-
tion acts to rapidly change phenotypes so that individuals that can change the fastest (i.e.
those that are in the least neutral portion of the neutral network for a given secondary
structure) will have an advantage.

The evolutionary dynamics in that model is very different from ours. In that case it is
Red Queen dynamics ((Van Valen, 1973)), while in our case a steady state-like solution
is evolved (moreover we do not preconceive any interaction structure). However both
models make the point that interacting individuals characterised by a phenotype determ-
ined with a complex map (e.g. RNA folding) may evolve to lower degrees of mutational
robustness at high mutation rates, as these solutions are more versatile.

The effect of lethal mutants In our model (and conceivably with RNA in general),
the loss of viability as a result of mutations manifests at the phenotype level, when the
sequence has already been generated. This means that lethal phenotypes (in a broad
sense of the word) do not die the moment they are born (which is, instead, the customary
modelling approach in quasispecies theory, e.g. in (Takeuchi and Hogeweg, 2007a),
(Kirakosyan et al., 2010), but not in (Tejero et al., 2010)), while it still remains that the
fitness advantage of the individual that produced them is infinite. The consequences of
this (in our model) are important: 1) viable individuals evolve to increase the fraction of
lethal (non viable) sequences in their mutational neighbourhood, with the latter acquiring
novel functionalities, 2) the exploitation of non viable mutants by units of replication
to outcompete other viable individuals becomes more extreme the higher the mutation

122



4.4 Discussion

rates. A remarkable side effect is that neither delocalization nor an Error Threshold sensu
strictu happen. For higher mutation rates, the quasispecies hits an extinction threshold
when the viable individuals do not produce enough viable offsprings.

In conclusion, the presence or absence of delocalization depends on the evolutionary
dynamics of the quasispecies. This provides a counter example to the claim made in
(Holmes, 2010), that the “Extinction Threshold” does not rely on quasispecies dynam-
ics, although our model is obviously not explicitly meant to address the quasispecies
dynamics of RNA viruses.

Evolution and persistence of diversity Since the original work on the Hypercycle
(Eigen and Schuster, 1978), the problem posed by the Information Threshold has often
been addressed as the problem of maintaining (functional) diversity, i.e. in terms of
persistence of independent lineage (e.g. (Happel and Stadler, 1998), (Szathmáry, 1991),
(Boerlijst and Hogeweg, 1991c)) or evolving it (e.g. (Hogeweg, 1994)).

It was recently shown that genotypic diversity could be maintained if RNA replicators
exploited different nucleotide compositions (Szilágyi et al., 2013), although in that case
coexistence seems to be very sensitive to single substitutions. In (Ma and Hu, 2012),
a system of functional molecules which cooperate to perform the various steps needed
for (protocell) self replication, could spread without loosing diversity. In (Könny and
Czárán, 2013) a large number of different species are shown to coexist in a spatially ex-
tended system if they are all necessary to the (local) production of resources they all (loc-
ally) exploit, even if parasites evolve (depending on the diffusion rates of resources and
of replicators). However, (to the best of our knowledge) the evolutionary maintenance
of the metabolic diversity is unclear. Nevertheless, within the framework, parasites were
shown to acquire replicase activity, thus increasing the overall complexity of the system
(Könnyű et al., 2008). The stabilisation of replicators/parasites interactions in spatially
extended systems is mediated by spatial pattern formation. The eco-evolutionary dy-
namics of such systems have been studied in depth in (Takeuchi and Hogeweg, 2009),
where it was shown that travelling waves constitute a higher level of selection than that
of individual replicators and parasites. In (de Boer and Hogeweg, 2010) spatial pattern
formation mediated the evolution of an ecosystem based information-processing system
at high mutation rates. In our case, differently functional individuals and their interac-
tions are emergent phenomena. However, different functions are performed by similar
genotypes, hence diversity is phenotypic rather than genotypic.

Division of labour From a more general biological perspective, the ecoevolutionary
dynamics presented here represent a form of (partial) reproductive division of labour.
The evolution of division of labour in an RNA-like system, from a self replicating mo-
lecule to a transcription-like mechanism (i.e. with templates and polymerases), has been
shown to evolve because it confers an increased resistance to parasites (Takeuchi et al.,

123



Chapter 4. Evolution of mutational division of labour

2011). In this respect, we present a different mechanism to achieve this. What we observe
is twofold: 1) a line of descent of (almost) identical genotypes (the master sequences)
carrying the information for their own survival, as well as that for the functions and spa-
tial organization of the mutants and 2) a multitude of mostly non viable genotypes very
similar to those along the line of descent, with very different phenotypes, which come
from and aid the further propagation of the master sequences. In this sense, our results
are reminiscent of the reproductive division of labour in social insects or that of germline
and soma in (possibly early evolutionary stages of) developmental processes, although in
those cases regulation instead of mutation underlies the differentiation process.

4.5 Conclusions

Although the details of the results presented here are specific to the arbitrary chemistry
implemented, we maintain that the conclusions are general in that:

• A quasispecies evolves which behaves like an ecosystem,

• The emergent functions are carried out by non viable sequences,

• It constitutes an individually coded, but stochastically decoded ecosystem based
solution,

• It exploits the frequently arising mutations by evolving to regions of the genotype-
to-phenotype map where small genotypic change produce large phenotypic differ-
ences.

4.6 Supplementary material

4.6.1 Global distribution of functional classes in the field vs. geno-
type space

4.6.2 Evolution to high mutation rates

As mentioned in the main text, initializing the system at high mutation rates (µ =
0.014 or higher) with randomly generated units of replication always leads to a quick
extinction. Here, results are reported about the evolutionary run that leads to sequences
able to sustain high mutation rates. A homogeneous population of units of replication is
used to initialise the system. The mutation rate (µ) assigned is sligthly greater than zero.
µ determines the fidelity by which a unit of replication copies another sequence. When
mutations occur, µ is changed as well, by adding a tiny but strictly positive number.
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Figure 4.12. (In)sensitivity of functional classes to the cutoff parameter. Global distribution
of functional classes in the CA (left) and in entire genotype space (right). The different
abundances in functional classes are shown as function of the cutoff score used to determine
presence/absence of dangling ends, in the main text the value corresponding to 15 is used as
default (see Models and Methods). Left pane: at one time point of a standard simulation (as
described in the main text), all sequences are collected to produce the figure. Right pane:
106 random sequences are generated for the figure. Notice that the scale of the two y axis is
different.

An alternative method consists of imposing on all sequences an external mutation rate
and setting it to progessively higher values (in little steps). Results do not differ more
between runs wich implements different methods than they differ for two runs with the
same method. In Fig. 4.13, one such pre-evolution runs is shown. The distribution of
mutation rates is plotted in time for both Units of replication (red) and Parasites (black).

During the pre-evolution step, we distinguish three time-interval groups, on the basis
of the dynamic regime the system displays. These three intervals can be characterized
by the mutation rates of the individual lineages present during such interval. Patterns
are distinguished by clustering the sequences and analyzing their phenotypes, which, as
will become clear in the following, corresponds to characterize their ecological role. The
three time periods (in arbitrary time units) are 1) Red Queen dynamics: 0 < time <
600 ∗ 103, 2) Multi-species dynamics 600 ∗ 103 < time < 1300 ∗ 103, 3) Single (quasi-
)species dynamics time > 1300 ∗ 103. Time boundaries are somewhat arbitrary, as it is
not possible to uniquely locate in time when the system changes dynamic regime.

Red Queen dynamics For the first 600 ∗ 103 time steps, the average mutation rate for
the catalytic sequences is low (0 < µ < 0.003). As can be seen from Fig. 4.13 (black
box), at time 500 ∗ 103 three different lineages of Units of replication coexist with a
parasitic one. All of them can be characterized by a particular nucleotide preference on
the 5’ dangling end of the catalytic strand (depicted in the figure), or, for the Parasite, the
3’ dangling end. All the catalytic lineages have about the same mutation rate, and the
variability in the field is limited (see the sequence Logo’s). However, the system is not
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stable and these lineages are not persisting, with the exception of the unit of replication
class characterized by ’C’ nucleotide. Since Parasites descend from Units of replication,
they are assigned a mutation rate, which they inherit generation after generation. Such
parameter does not have any actual use for Parasites, because they are not catalytic, but
it still mutates with the same algorithm by which a µ assigned to a functional molecule
would. Therefore, given that mutation rate is biased to only increase, the exponentially
increasing curve of the parasitic branch represents drift. Altogether, the evolutionary
dynamics seems to be dominated by a Red Queen-like effect (Van Valen, 1973), with
different catalytic strategies rapidly changing in response to the arise of parasitic lineages.

Multi-species dynamics In the second time period, between 600 ∗ 103 and 1300 ∗ 103

time steps, the nucleotide preferences in the lineages become more predictable. When
four species are present, the 5’ dangling end of all units of replication are composed
either by a majority of ’C’ or ’A’, while the parasites have 3’ dangling ends composed
either by ’G’ or by ’U’s. The C-unit of replications are exploited by G-parasites, while
the A-units are exploited by the U-parasites (Fig. 4.13 red box). In the CA this gives rise
to mutually invading travelling waves, where each catalyst grows in the empty space left
by the parasite it is not exploited by. When the A-units of replication reach high mutation
rates, first the U-parasite goes extinct, then the A-units disappear. The C-units maintain a
much lower mutation rate and, since the G-parasite is still present, this opens a niche for
a new A-unit of replication to evolve, quickly increase the mutation rate, reach the Error
Threshold and disappear again. The cycle of evolution and extinction of the A-catalytic
lineage repeats a few times. This can be explained as follows: while the C-unit/G-parasite
system is present, mutations that turn the C nucleotide preference to the A nucleotide are
selected, as they allow a progressively lower exploitation by the G-parasite. However,
since mutation rate is biased to increase upon substitutions, the same process that drives
the evolution of an A-lineage, also drives it quickly to hit its Error Threshold and make
it disappear, opening the niche again for a new A-lineage. However, when mutation rate
becomes sufficiently high for the C-unit of replication, new A-catalytic lineages cannot
appear any longer and only two species coexist (Fig. 4.13 blue box).

Single (quasi-)species dynamics In the last time period (time > 1300∗103) mutation
rate is greater than 0.012, and the system is characterized by a single quasispecies. The
structure, the selection pressures and the survival mechanism of this quasispecies are the
concern of the main text of the paper.

4.6.3 Snapshot of the field for the quasispecies described in the main
text

See figure 4.14.
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Figure 4.13. Distribution of mutation rates in time and species composition at different time
points. Top pane: every 104 timesteps, the mutation rate of each sequence is collected and
plotted. Red: catalytic sequences, black: non catalytic sequences. At three different time
points, corresponding to different dynamic regimes, a random sample of sequences of the
same strand (chosen so that the units of replication display the catalytic one) are clustered
and the sequence logo is obtained for each quasispecies (see caption of Fig. 4.3 in the main
text).
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Figure 4.14. A snapshot of the field: all figures are at the same time point, but coloured
differently for each functional class. Upper-left: the full field; colours as in the main text.
Upper-right: The Hamming Distance of all sequences from the master sequence (cyan) is
depicted. The colours follow the gradient cyan-green-yellow-red-magenta, corresponding
to Hamming Distance 0 to 7. In white, Hamming Distance > 7. Blue: parasites. For
all that follows: copies of the master sequence are in cyan, all the classes not explicitely
mentioned are in dark grey, background is in black. Centre-left: units of replication (white).
Centre-right: helpers (green). Bottom-left: stallers (red), parasites (yellow). Bottom-right:
junk (light grey). Colouring is as follows: for each cell the functional classes in the Moore
neighbourhood are determined (excluding empty cells, except in the upper right figure), and
the whole neighbourhood is coloured according to the ( functional or Hamming Distance)
class in the majority. Notice that the density in the field seems higher than what it actually is.
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4.6.4 ODE system with helpers

The ODE system derived here follows the reaction scheme presented in the main text
(reaction scheme 4.1). For all second order reactions, mass action is assumed:

ẋ = −2axxx
2 + (2bxx + 3κθ(1− µ) + 2κθµ)cxx

−axhxh+ (bxh + 2κθ(1− µ) + κθµ)cxh

−apxpx+ (bpx + κθ)cpx − dx
ḣ = κθµλhcxx − axhxh+ (bxh + κθ(1− µ) + κθµ(1 + λh))cxh

−aphph+ (bph + κθ)cph − dh
ṗ = κθµλpcxx + κθµλpcxh − apxpx+ (bpx + 2κθ)cpx

−aphph+ (bph + 2κθ)cph − dp
j̇ = κθµλjcxx + κθµλjcxh − dj

ċxx = axxx
2 + bxxcxx − κθcxx − dcxx

ċxh = axhxh+ bxhcxh − κθcxh − dcxh
ċpx = apxpx+ bpxcpx − κθcpx − dcpx
ċph = aphph+ bphcph − κθcph − dcph

where θ = 1−(x+h+p+j+cxx+cxh+cpx+cph)/Θ, λh+λp+λj = 1, b = 1−a and

κ = 1. For all µ, (
→
0 ) is a stable equilibrium. Progressively increasing µ, the non trivial,

stable equilibrium (solid line in Fig. 4.9) is at first a fixed point, then a supercritical Hopf
bifurcation occurs and a stable limit cycle appears. Further increasing µ, the limit cycle
disappears (most likely via a homoclinic bifurcation, when the minimum of the limit
cycle touches the line of unstable equilibria) and the only stable equilibrium remaining

is (
→
0 ), i.e. the system goes extinct (but notice that the difference between the Hopf

bifurcation and the homoclinic bifurcation is always very small). Different fraction of
mutants turning into helpers λH change the bifurcation plot quantitatively. Removing
parasites from all the equations (Fig. 4.9, right pane), changes the bifurcation plot both
quantitatively and qualitatively in that both Hopf and homoclininc bifurcations disappear
and extinction at high µ is now mediated by a fold bifurcation.
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4.6.5 ODE system with stallers

Analagously to the case with helpers, the ODE system derived for stallers (from the
reaction scheme 4.2) reads:

ẋ = −2axxx
2 + (2bxx + 3κθ(1− µ) + 2κθµ)cxx

−apxpx+ (bpx + κθ)cpx − axsxs+ bxscxs − dx
ṡ = κθµλs(cxx + cxp)− axsxs+ bxscxs − apsps+ bpscps − ds
ṗ = κθµλpcxx − apxpx+ (bpx + 2κθ(1− µ) + κθµ)cpx

−apsps+ bpscps − dp
j̇ = κθµλj(cxx + cxp)− dj

ċxx = axxx
2 + bxxcxx − κθcxx − dcxx

ċxs = axsxs+ bxscxs − dcxs
ċpx = apxpx+ bpxcpx − κθcpx − dcpx
ċps = apsps+ bpscps − dcps

where θ = 1 − (x + s + p + j + cxx + cxs + cpx + cps)/Θ, λS + λP + λJ = 1,

b = 1 − a and κ = 1. For all parameters combinations, the extinction state ((
→
0 )) is a

stable equilibrium.

Higher a∗∗ values, λP = 0 See Fig. 4.10, left pane. For high λS , only one nonzero
stable equilibrium is present, which corresponds to a situtation where parasites are out-
competed and go extinct. The point F1 marks a fold bifurcation, after which, following
the lower branch, a stable equilibrium emerges and parasites can coexist with replicators.
Until the transcritical bifurcation (T ), the system is bistable. The upper unstable branch
departing from T corresponds to a situation where the system can be invaded by parasites
(hence its instability), but is otherwise stable without (the other stable branch of the tran-
scritical bifurcation is not included in the figure because equilibrium values for parasites
become negative). For lower values of λS a Hopf bifurcation happens (H), with units
of replication and parasites coexisting on a stable limit cycle, followed by a (possible)
homoclinic bifurcation (h), when the minimum of the limit cycle hits the lower unstable
manifold. After this value, depending on initial conditions (i.e. if parasites are present or
not), the system will either converge to the state where no parasites are present, or will
go extinct.

Lower a∗∗, different mutation rates and λP 6= 0 See Fig. 4.10, middle pane. Chan-
ging a∗∗ and µ produce only quantitative differences, except at lower λS where the Hopf
and the homoclinic bifurcation may disappear. However, setting λP > 0 changes the
bifurcation plot qualitatively: both the transcritical and the fold bifurcation disappear,
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as well as the (unstable) equilibrium with no parasites at low λS , because parasites are
always produced from units of replication. Despite this, parasites are present in very low
numbers at higher λS , meaning that stallers effectively limit them.

High µ See Fig. 4.10, right pane. Pushing the system to higher µ has the effect of
making X̄ more dependent on λS as stallers are produced more often. F2 marks the limit
fraction of stallers that can be produced after which the system goes extinct (via fold
bifurcation). For the highest µ parasites, even if arising as mutants of units of replication,
cannot invade.

4.6.6 Snapshot of the field for a flat quasispecies

Figure 4.15. A snapshot of the field for the neutral quasispecies (7. in Table 4.1, in the main
text): the figures correspond to the first two in Fig. 4.14. The colouring is the same. For the
master sequence, the most abundant sequence in the field is used.

4.6.7 Sequences mentioned in Table 1

1. CCCCCCCCCCCCCGACACGGAAACGACGUGAGAGUCAUUAGAUAGGUGUC

2. CCCCCCCCCCCCCCGGCCGGAAACAACGUAAGAGCCAUUGUGUGGAUGCC

3. CCCCCCCCCCCAGCACCGGAAACAACGAAAGUACGCUGAAUGAGUGGUGC

4. ACCCCCCCCCCAGGCAACGAAAGACGAAAGAACGCCAUUGAGUGUGUGCC

5. CCCCCCCCCCGGCACAGGAAACAAAGCUAAAAUGCAGCCAUGCGGUGUGC

6. CCCCCCCCCCCGCAACGGCAACCGGAAAUCCAGCGACUUGAGUGUGUGCC

7. AACACUUCUACCCAGGCAAGGAAACACGGAAACAGCCAUCUUUUACUGCC

8. GAAAAAAAGAACAGAGCCAGGGGACACGUAAGGAGGCAUUAUACUAUGGC
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Abstract

Clashes between transcription and replication on heavily transcribed genes can lead
to point mutations as well as chromosome rearrangements. In yeast, transcription-
replication conflicts lead to copy number variation in the ribosomal genes. Surprisingly,
their occurrence seem to reflect physiological strategies which are beneficial only in the
long (evolutionary) term.

In order to study how the mutational dynamics observed in yeast affect genomes’ evolu-
tionary stability, we developed an in silico evolutionary simulation system where single-
cell organisms undergo mutations more frequently when their transcriptional load is lar-
ger. We show that mutations induced by high transcriptional load are beneficial when
biased towards duplications and deletions because they decrease mutational load, even
though they increase the overall mutation rates. Moreover, evolving a larger proportion
of transcriptional duplications allows organisms to maintain high fitness in the presence
of random, life-history independent high rates of deletions and deleterious mutations, as
is the case for yeast rDNA.

Our results show that the mutational dynamics observed in yeast are beneficial for the
long term stability of the genome, and pave the way for a theory of evolution of muta-
tional biases.
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5.1 Introduction

In both Bacteria and Eukaryotes, genes that must be actively transcribed throughout a
cell’s life time may become the stage for clashes between transcription and replication
complexes (Brambati et al., 2014, Kim and Jinks-Robertson, 2012, Merrikh et al., 2012).
These clashes are known to destabilise genome and epigenome, e.g. by inducing single
and double strand breaks (Takeuchi et al., 2003), by generating R loops (mRNA-DNA
hybrids) (Brambati et al., 2014) and interfering with the correct depositions of histones
(Castellano-Pozo et al., 2013, Herrera-Moyano et al., 2014). Several strategies have
evolved to correctly schedule transcription and replication so that collisions are avoided.
Some examples involve slowing down the replication fork or stalling it at the beginning
of actively transcribed genes by means of Replication Fork Barriers (Labib and Hodg-
son, 2007); alternatively, heavily transcribed genes may be translocated closer to nuclear
pores to release their mRNAs faster (Bermejo et al., 2011), or removing transcription
complexes altogether (including degrading the nascent mRNA) (Brambati et al., 2014).

This notwithstanding, conflicts do occur and often results in mutations, ranging from
single nucleotide substitutions to duplications and deletion due to recombination (Kim
and Jinks-Robertson, 2012, Sankar et al., 2016, Takeuchi et al., 2003).

One of the best characterised example of transcription-replication conflicts comes from
the ribosomal RNA genes of Saccharomyces cerevisiae. Ribosomal RNA genes in yeast
are organised in several identical repeats - about 150 to 180 in wild-type - on the XII chro-
mosome. Their expression is independent of copy number, and is instead under control of
a dedicated polymerases (PolI) (French et al., 2003). Indeed, deleting a large number of
rDNA copies either “physiologically” by homologous recombination (Sinclair and Guar-
ente, 1997), or artificially does not alter yeast’s growth rate (French et al., 2003). Because
few rDNA copies impose a larger transcriptional load, transcription-replication conflicts
occur more frequently (Ide et al., 2010, Kim et al., 2007). The outcome of these muta-
tions is often recombination, mediated by a Replication Fork Barrier (Takeuchi et al.,
2003). Interestingly, recombination events lead frequently to duplications, which restore
the wild-type rDNA copy number distribution after several generations (Jack et al., 2015,
Kobayashi et al., 1998).

It has been recently discovered that the TOR pathway (a ubiquitous nutrient signalling
pathway) controls ribosomal RNA gene duplications in yeast during caloric excess (Jack
et al., 2015). The signalling cascade leads to a larger rate of double strand breaks, which
are then repaired by non-homologous recombination and results into a larger rate of du-
plications when the rDNA copy number is small.

Altogether, yeast evolved a nutrient-dependent mechanism which causes mutations that
increase the number of rDNA repeats in the absence of short-term selection. As such, this
is a prime experimental example of evolution of evolvability (Crombach and Hogeweg,
2008, Hindré et al., 2012).
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Chapter 5. High rates of duplications and deletions prevent evolutionary deterioration

With yeast rDNA dynamics in mind, we make an in silico evolutionary model which
integrates the effects of metabolism and mutations, in order to understand the functional
significance of the observed mutational regime in yeast.

We show that mutations induced by high transcriptional load reduce mutational load
when they are biased towards duplications and deletions, even though they increase the
overall mutation rates. Moreover, we show that evolving a larger proportion of transcrip-
tional duplications allows organisms to maintain high fitness when random deletions and
deleterious mutations occur with high frequency, as is the case for yeast rDNA.

Results are organized as follows: In the first part, we study the evolutionary dynamics
of the system with large or small influx of resources, including two different mutational
schemes: either only life-history independent (background) mutations, or in combination
with mutations caused by large transcription rates. By comparing these systems we show
how selection for growth in a richer environment in combination with higher mutation
rates leads to a large genome composed mostly of inactive genes and low fitness.

Next, we incorporate the effects of intergenic fragile sites (genomic break point), which
increase mutation rates and bias mutational outcomes towards duplication and deletions.
We make the case that intergenic break points can be selected because they reduce muta-
tional load.

Finally, by studying a system where transcription-induced mutations compensate biases
in background mutations, we show how the mutational dynamics observed in yeast’s
rDNA contribute to long-term genome stabilty and fitness (Jack et al., 2015, Kim et al.,
2007, Takeuchi et al., 2003).

5.2 Model

The model is loosely inspired from (Scott et al., 2010), and consists of a population of
single-cell asexual individuals. Fig. 5.1 shows a cartoon of population and cell dynamics.
Each cell has a genome, a proteome and is capable of regulation. Cells uptake resources
from the environment and convert them into aminoacids, which are used as building
blocks for proteins, as well as signalling molecules for regulation of gene expression.
Growing cells must reach a target volume (an increasing function of genome size, spe-
cified below), at which they can replicate (i.e. they are divided in two daughter cells),
to begin the cycle anew. Fitness is based on inter-division time and internal homeostasis
and population size is kept constant.

The cellular proteome consists of enzymes, housekeeping proteins and ribosomal pro-
teins. Enzyme convert resources into aminoacids, housekeeping proteins must be kept at
homeostatic concentration while (partially) determining transcription rates and cell fit-
ness, and ribosomes -the combination of ribosomal proteins and ribosomal RNA- trans-
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late mRNAs into their respective proteins.

Transcription is regulated by a linear function that combines basal transcription rates and
metabolite- (i.e. aminoacid-) dependent transcription rates, it is reduced when the cell is
far from homeostasis in housekeeping proteins, and is capped by a maximum per-gene
transcriptional load.

There are four types of genes, one for each macro-molecule. The genome is a string of
genes, which can be “active” or mutated into a non-functional state.

The sum of proteins and ribosomal RNA determines the volume of the cell. Genome
size determines the target volume at which a growing cell divides, producing two cells.
For the sake of simplicity, only one of the two cells is mutated. Two types of mutational
events affect the genome: random mutations independent of the cell life-history, and
mutations due conflicts between transcription and replication complexes, occurring on
highly transcribed genes. The effect of a mutation can be gene duplication, deletion and
inactivation. Once inactivated, genes cannot become active again. Mutations of the regu-
lation parameters also occur during replication, by adding a small random number taken
from a uniform distribution centred in zero. Where specified, the relative proportion of
duplications, deletions and inactivations can also mutate.

Overview of intracellular dynamics The intracellular dynamics are modelled in terms
of Ordinary Differential Equations (ODEs), as follows:

Ṡ = Sin − dsS − Fmet

Ȧ = −daA+ Fmet − Ftransl(mT )− Ftransl(mQ)− Ftransl(mRp)

Ṙr = Ftranscr(Rr)− dRr
ṁT = Ftranscr(T )− dmT
ṁQ = Ftranscr(Q)− dmQ
ṁRp = Ftranscr(Rp)− dmRp

Ṫ = Ftransl(mT )− dtT
Q̇ = Ftransl(mQ)− dqQ
Ṙp = Ftransl(mRp)− dRpRp

where S represents resources, A aminoacids (products of metabolism), Rr ribosomal
RNA and Rp ribosomal proteins, T enzymes, Q housekeeping proteins, and mX the
mRNA corresponding to each macromolecules.
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Figure 5.1. A cartoon of the model. See Methods for details. S: resources, A aminoacids,
T : enzymes, Q housekeeping proteins, Rr ribosomal RNA, Rp ribosomal proteins.
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Functions are defined as follows:

• Metabolism, the enzymatic conversion of resources to aminoacids, is defined as
Fmet = ktT

αtS
αtS+βtA+1 , where S are resources, A are aminoacids, T are enzymes,

and the functional form of metabolism assumes Michaelis-Menten kinetics with
product-inhibition.

• Transcription of a gene X (where X can be enzymes, housekeeping proteins, ri-
bosomal RNA or ribosomal proteins) depends on regulation parameters, amino
acids and homeostasis requirements, and is capped at a maximum per-gene tran-
scription rate, as follows. Every integration step, a “Transcriptional demand”
tX is generated as a linear function of aminoacids tX = k0 + A ∗ k1, where
k0 and k1 are regulation parameters, they are evolvable and take real values.
The transcriptional demand is scaled by the “health” of a cell, i.e. a function
h (0 < h < 1) that measures the distance of Housekeeping protein concentra-
tion from an arbitrary homoeostatic optimum. If [Q] denotes the concentration
of housekeeping proteins in a cell volume V (the sum of the proteins and the ri-
bosomal RNA) h(Q) = exp(−kh([Q]−Qopt)

2). Transcription is bounded between
zero and a maximum transcription rate which depends on the number of genes
tmax = kmaxnX , assuming nx is the copy number of genes of type X . Alto-
gether, the transcriptional load per time step is lX = min(tX · h(Q), tmax), and
the amount of mRNA mx is the proportion of the load transcribed from the active
genes: Ftranscr(X) = nactiveX

nX
lX .

• Translation of mRNAs into the respective proteins is carried out by the Ribo-
some, in the presence of aminoacids, according to the function mxRA

ε+sMmx+sRR+sAA
,

where the ribosome R is formed by the association of ribosomal RNAs Rr and
proteins Rp, assumed in steady state: R = kRp•Rrmin(Rp, Rr)

Each generation, the cell dynamics described above is run for all individuals of the
population. Cells grow until they reach their target volume, which is calculated from the
genome size G as Vt = κGλ (with κ = 3.5 and λ = 0.9).

When all cells have reached their target volume (or after a maximum integration time
elapsed), they are ranked on the basis of their inter-division time (the number of integra-
tion steps from birth to reaching target volume), which is used to calculate the probability
of replication. A fraction of the cells are culled from the population, with cells that have
lost all their active genes of any type being preferentially removed. If the fraction of
cells with zero fitness exceeds 10%, these are the only cells removed, otherwise cells
are sampled randomly until 10% of the population is reached. The fittest cells (up to
stochasticity) are duplicated and the offspring mutated.

Random mutations occur with a per-gene probability µR and are independent of a cell’s
life history. In addition, mutations may be due to high transcriptional load, which in-
terferes with replication. These mutations occur with larger frequency when genes are
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transcribed more. To this end, we calculate the life-time average, per-timestep transcrip-
tional load 〈lx〉 (separately for every gene). The closer this is to the maximum transcrip-
tion rate, the higher the chances of mutations will be. To be precise, transcription induced
mutation rates µT = µmax

1+(hµ
〈lx〉
tmax

)
ρ , where ρ = 10 ensures that mutations occur rarely with

lower transcriptional load.

Finally, the number of proteins, RNAs and aminoacids is divided by two, and the popu-
lations enters the next generation. Notice that external resources S, are not halved.

The numerical value of parameters that remain the same throughout all simulations can
be found in Appendix 5.5.1. Relevant parameter values are specified where needed.

A number of assumptions are introduced in the model:

• Target volume is directly determined by genome size, according to the relation
Vt = κGλ, with λ = 0.9 (see van Hoek and Hogeweg (2009) and references
therein). This assumption introduces fitness differences by penalising slower
growth or larger genomes.

• Cells live in environments that are independent from each other. Thus, individuals
are only competing for growth rates and ecological strategies are not possible (e.g.
deplete resources without actually consume them).

• Dosage effects do not occur automatically upon gene duplication or deletions, be-
cause transcription is assumed to be under control of polymerase (if a cell double
its genes, half of the polymerases will be available on each gene).

• Much of intracellular dynamics are modelled in terms of phenomenological func-
tions.

• Aminoacids behave both as signalling molecules for gene expression (Jewell et al.,
2013) and as building blocks for proteins.

• Mutations do not diversify genes (only inactivate them).

5.3 Results

5.3.1 Evolutionary dynamics with background mutations only

We first study the evolutionary dynamics of the system when mutations occur in-
dependently of transcription. The aim here is to set a baseline for the case with
transcription-induced mutations.
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The proportion of duplications, deletions and inactivations is set to be equal, pBG
µ =

(1/3, 1/3, 1/3), and we compare results at lower, intermediate and higher mutation rates,
i.e. for µBG = 0.01, 0.084 and 0.23.

Fig. 5.2a shows such comparison when cells have evolved under a small constant influx
of resources Sin = 1, and Fig. 5.2b when cells evolved in a richer environment, i.e.
Sin = 10. Notice that because the decay rate of resources is dS = 0.1, the steady state
values of resources in the absence of cellular metabolism would be, respectively, S̄in=1 =
10 and S̄in=10 = 100. Lower values for S are due to faster metabolism. Similarly, lower
values for aminoacids A indicate faster translation.

The differences in the effect mutation rates make when evolving in a rich or poor environ-
ment are striking. When resources are scarce there is little difference between high or low
mutation rates with respect to genome size, resource exploitation and aminoacid usage.
Inter-division time increases with higher mutation rates, i.e. fitness is lower, presumably
due to the slightly smaller number of coding genes.

In contrast, in the rich environment genome size is much larger when mutations are more
frequent because of the accumulation of inactive genes. Consequently, inter-division
time increases. In addition, a decrease in coding genes for ribosomal RNA and enzymes
can be observed with increasing mutation rates.

Moreover, cells evolved in richer environments have 10 to 20 times larger genomes than
those evolved in poor environments under the same mutation rates. Most of the difference
is caused by inactive genes, which constitute between 50% and 90% of the total copy
number of each gene type, while the copy number of coding genes is only 2 to 3 times
larger. The genes for ribosomal RNA are in the largest copy number in all cases (rRNA
is present in large copy number in eukaryotes (Long and Dawid, 1980) and to a lesser
extent in bacteria (Stoddard et al., 2015)). This is because the abundance of ribosomal
RNAs is proportional to transcriptional load, whereas protein counts can be increased by
translating the same mRNA multiple times.

Despite a larger genome, cells replicate faster when resources are abundant, as long as
mutation rates are not too large.

Fig. 5.3a shows the evolutionary trajectory along the line of descent for the first 16000
generations, in a simulation with richer environment (Sin = 10) at intermediate mutation
rates (µBG = 0.084).

We start from small, random, initial genomes, with metabolic and regulatory paramet-
ers set so that homeostasis is already achieved (but can still evolve). We observe that
inter-division time decreases quickly, and reaches a stable minimum within 5000 gener-
ations. This is a consequence of the fitness criterion, which rewards faster cell growth
(provided homeostasis in housekeeping gene expression). The decrease in inter-division
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Figure 5.2. Simulations with Background mutations only, evolved in environments with a
Sin = 1 and b Sin = 10. Colour coding for active and inactive genes: T (green) enzymes,
Q (blue) housekeeping proteins, Rr (red) ribosomal RNA, Rp (black) ribosomal proteins.
For all datasets, data are collected from the ancestor’s line of descent for the last 250 · 103

generations of a simulation, after evolutionary steady state is reached (to ensure this, in all
cases we collected data after at least 3 · 106 generations). For each subplot the x-axis is the
background mutation rate.
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time seems to be due to the increase in ribosomal RNA gene copy number, accompan-
ied by an increase in its expression. This allows faster growth because it allows a larger
exploitation of resources (resources decrease to almost zero in a comparable time-scale).

Interestingly, while duplications are positively selected in this phase, the number of inac-
tivating mutations that go to fixation (those in the ancestral linage) is much smaller, even
though they occur with the same probability. This is likely due to a stronger competi-
tion for shorter inter-division time in the first phase of the evolutionary experiment, where
inactivations are doubly deleterious because they increase the target volume without con-
tributing to faster growth.

In contrast, inactive genes do accumulate in the long evolutionary term, when active
genes reach a stable distribution, as shown in Fig. 5.3b. An expansion of the inactive
genome leads to a larger target volume without increasing growth and should not be
favoured. It is, however, accompanied by a larger usage of aminoacids, implying that
cells partially compensate a larger mutational load by becoming more efficient.

Over long evolutionary time scales, inactive genes reach an overall stable steady state,
even though large scale fluctuations in genome size occur frequently (Fig. 5.3b).
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Figure 5.3. Early and late evolution along the line of descent. Background mutations µBG =
0.084, resource influx Sin = 10. Notice that both x and y axis differ between a and b.
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In summary, the initial evolution of the system is driven by selection for reducing inter-
division time, achieved by increasing the number of active genes in the genome; later,
cells become more efficient at using aminoacids, while inactive genes accumulate.

The initial genome expansion is limited by the maximum amount of inactivating muta-
tions that can be weeded out by selection. Once the mutational limit for the genome is
reached, duplications of active genes may still increase growth rate, thus being selec-
ted in the very short run. This would be the case especially in the richer environment,
where larger metabolism leads to a larger consumption of resources. As genome size
becomes large, the effect of each inactivating mutation becomes less deleterious, even
though mutations occur more often in absolute terms. The cell responds by evolving
regulation parameters to increase trancription, which can be again satisfied by a larger
active genome, and the cycle repeats. This runaway process leads to the evolutionary
deterioration of the genome, especially at higher mutation rates.

5.3.2 Evolutionary dynamics with transcription-induced mutations

In the previous paragraph we have observed that genome expansion in a rich environ-
ment (to accommodate a larger transcriptional load) leads to the accumulation of inactive
genes. In this paragraph we show that including mutations induced by transcription in
the same proportion as background mutations leads to a worse evolutionary steady state,
with lower fitness and a larger inactive genome, even when mutation rates are lower.

In the model discussed so far mutations occur as random mistakes during genome
replication. It is known, however, that a larger transcriptional load can lead to conflicts
between the transcription machinery and the replication apparatus which increase the
chances of mutations (Kim and Jinks-Robertson, 2012). We include this observation in
the system by assuming that the per-gene probability of mutation depends on the total
amount of transcription of that gene type over the life span of a cell. For example, if
ribosomal RNA genes are few in copy number but heavily transcribed, the chances of
mutation on ribosomal RNA genes will be higher. Inactive genes can have a new role
in this system, i.e. they buffer against higher mutation rates as they reduce the per-
gene transcriptional load. This models the sequestering of RNA-polymerases by inactive
genes.

As a first step, we assume that transcription-induced mutations amplify the chances of
background mutations, with the relative proportion of duplications, deletions and inac-
tivation being equal: pTR

µ = pBG
µ = (1/3, 1/3, 1/3). In Fig. 5.4 we compare the results

with only background mutations and the system that incorporates transcription-induced
mutations. For the sake of the comparison between the two mutational regimes, we set
the sum of background and transcriptional mutation rates in the latter to being, at most,
as high as the background mutation rate in the former.
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Evolution in the presence of transcriptional mutations leads to a longer inter-division
time, due to a larger non-coding genome. The number of coding genes is instead slightly
smaller than in the case of higher rates of background mutations.

Even though the overall mutation rate is lower when transcription-induced mutations are
introduced, cells perform worse than in the case of a life history-independent mutations
(i.e. when only background mutations are present, even at high rates) because mutations
affect those genes that are most transcribed (i.e. most needed), thereby having a larger
effect. Indeed, transcriptional load is kept maximal throughout a cell’s lifespan both at
early and at late evolution when only background mutations occur (Appendix 5.5.2a).
In contrast, cells evolve to a lower transcriptional load for all genes when exposed to
transcription-induced mutations (Appendix 5.5.2b). As a side effect, the growth curve
is roughly exponential in the former case, and sub-exponential in the latter, even though
resources and aminoacid consumption follow approximately the same curves (notice,
however, that the shape of the transcriptional load over a cellular lifespan may change
considerably over long evolutionary times).

As mentioned above, a larger mutational load is due to the inability of a genome to purge
inactivated genes, while still selecting for a larger active genome because of increasing
transcriptional demand (tX = k0+A∗k1, see Methods). Including transcription-induced
mutations strengthens this process because mutations target the most actively transcribed
genes, and a larger fraction of active genes is beneficial in the short run, even if selection
cannot maintain it in the face of mutations. This can be seen in Fig. 5.5 by the fact
that ancestors have a larger fraction of active genes than the rest of the population in
which they lived (in 99% of the cases ancestral genomes are larger than the median of
the population, and in 46% of the cases they are above the 95th percentile, in the last
1.5 · 106 generations, sampled every 5000).

Selection pressure for a larger active genome leads through mutations to an increase in
inactive genes. This in turn causes lower RNA polymerase occupancy (lower transcrip-
tional load) and therewith to selection pressure for higher transcription rates. As reg-
ulation parameters evolve to increase transcriptional load, the chances of transcription-
induced mutations rise. Those mutations that increase the active genomes are selected,
and the cycle repeats.

Thus, this evolutionary feedback results in a large non-coding genome.

To further clarify this, we compare evolutionary steady state genomes when regulation
does not evolve (Fig. 5.6). We extract regulation parameters from the simulation that
produces µBG+TR in Fig. 5.4, at an early evolutionary time and at a later one (5 · 103

and 2 · 106). Inactive genes do not accumulate in the long run when “early” parameters
are used, whereas evolution increases mutational load with “late” parameters (Fig. 5.6).
Inter-division time mirrors this (notice that the number of coding genes is similar in the
two cases).

In conclusion, if the sole effect of transcription-induced mutations is to amplify the effect
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Figure 5.4. Transcription-induced mutations worsen mutational load despite being, at most,
as frequent: a comparison with background mutations only (identical to Fig. 5.2b, µ2). For
µBG+TR background mutations are the same as µ1 in Fig. 5.2b, and have the same proportion of
duplications, deletions and inactivations for transcription-induced mutations. Colour coding
in the figure as above.
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Figure 5.5. Evolving with transcription-induced mutations, cells in the ancestral lineage have
a larger fraction of active genes than the population in which they lived. max(µTR) = 0.074;
µBG = 0.01; pTR

µ = pBG
µ = (1/3, 1/3, 1/3).
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of background mutations, evolution along the line of descent leads to lower fitness than
when only background mutations are present even when the mutation rate is, on average,
lower. As in the case without transcription-induced mutations, selection cannot purge
inactive genes effectively when genome size is large. This is more so in this case, because
inactive genes buffer against mutations by lowering transcriptional load, even though
they do not contribute to the transcription pool.

Although the intuitive solution to the problem of mutational deterioration would be to
lower mutation rates, in the next paragraph we show how a coding-rich genome evolves
when mutation rates are higher and mutational effects biased, as is the case for yeast’s
rRNA genes.

Interdivision time

r
p

Early par. Late par. Early par. Late par.

Early par. Late par. Early par. Late par.

Figure 5.6. Mutational load increases with larger transcriptional demands. Two ancestral
cells, at an early and at a later stage of evolution (from the same dataset as Fig. 5.4, at gener-
ation number 5 · 103 and 2 · 106), are used to seed a homogeneous population which cannot
mutate its regulation parameters (other mutational dynamics are as before). After long-term
evolution, the last 50 · 103 generations are collected for both to generate the figure. Values
of “early” transcription parameters k0, k1: Enzymes (0.099, 0.014), Housekeeping proteins
(0.11, 0.0078), Ribosomal RNA (0.12, 0.031), Ribosomal proteins (0.11, 0.025). Values of
“late” parameters: Enzyme (0.54, 0.39), Housekeeping proteins (-0.24, 0.33), Ribosomal
RNA (0.13, 0.69), Ribosomal proteins (0.14, 0.21).
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5.3.3 Larger rates of duplications and deletions are beneficial des-
pite increasing mutation rates

Fragile sites, regions of a genome most affected by mutations, are more frequently loc-
ated outside coding parts of genes (Lemaitre et al., 2009). An example of fragile sites are
those portion of genomes where Replication Fork Barriers (RFB) are located: RFBs stall
the replication machinery, which may in turn slip or detach entirely from the template it is
copying and re-attach somewhere else, often causing mutations (Rothstein et al., 2000).
RFB-mediated stalling in yeast rDNA can cause recombination, resulting in duplications
and deletions if transcriptional load is large enough (Takeuchi et al., 2003).

As above, we do not model a specific mechanism but limit ourselves to model the effects
of mutations, i.e. their outcomes, when every gene is flanked by a fragile site (as is the
case for ribosomal RNA genes in yeast), and assume that mutational effects are limited
to a single gene downstream. We combine low rates of background mutations (as before
µBG = 0.01, pBG

µ = (1/3, 1/3, 1/3)), with a much larger maximal rate of transcription-
induced mutations (max(µTR) = 0.074) with a bias to duplications and deletions.

In Fig. 5.7 we show that a larger bias towards transcription-induced duplications and de-
letions contributes to a more compact genome and a shorter inter-division time. Genomes
evolved with only transcription-induced duplications and deletions (µTR 3 Fig. 5.7) have
a larger active genomes and hardly any inactive gene. These cells maintain a large tran-
scriptional load and therewith a high frequency of duplications and deletions, whereas
cells evolved with no bias in their mutations decrease their transcriptional load which
results in transcription-induced mutations occurring less frequently. Cells evolved with
a larger transcriptional mutation rate biased to duplications and deletions reach a fitter
evolutionary steady state than those evolved only with rare background mutations (com-
pare µTR 3 and µBG Fig. 5.7). Moreover, when the relative proportions of transcription-
induced mutations evolve, we observe a strong selection pressure towards minimising
inactivations and/or increasing duplications and deletions, keeping the proportion of the
latter two at the same level (Appendix 5.5.3). A consequence of a steady and large tran-
scriptional load is that mutations happen at a similar (large) rate every generation. This
suggests that we could make a “conceptual” simplification of the model by introducing
this bias directly in background mutations (i.e. disregarding that biased mutations are in-
duced by transcription). The simplified model leads to similar results as above (Appendix
5.5.3).

As a side note, if transcription-induced duplications occur more frequently than deletions,
genomes accumulate inactive genes without bound, even in the absence of transcription-
induced inactivations (See Appendix 5.5.4).

To conclude, even though conflicts between transcription and replication might be un-
avoidable and frequently result in mutations, we find that biasing mutations to duplica-
tions and deletions may turn this “scorch” into an asset, leading to the evolutionary stabil-
ity of fitness and smaller genomes containing mostly active genes. In the next paragraph
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we show that transcription-induced mutations can evolve to counter-balance pre-existing
biases in background mutations.

�TR 1: 1/3, 1/3, 1/3,
�TR 1: 5/12, 5/12, 2/12,
�TR 3: 1/2, 1/2, 0

�BG:background mutations only
�TR (1,2,3) :background mutations

+ transcriptional mut.

dupl., del., inact.

�TR 1 �TR 2 �TR 3�BG

�TR 1 �TR 2 �TR 3�BG �TR 1 �TR 2 �TR 3

�TR 1 �TR 2 �TR 3�BG �TR 1 �TR 2 �TR 3�BG

Inter-division time

T

r
p

Figure 5.7. The beneficial effect of larger rates of transcription-induced mutations, when
biased to duplications and deletions. Data collected along the line of descent for 250 · 103

generations after evolutionary steady state is reached. Background mutations are the same in
all four cases: µBG = 0.01, pBG

µ = (1/3, 1/3, 1/3). The maximum mutation rate caused by
transcription is max(µTR) = 0.074.

5.3.4 Evolution biases transcription-induced mutations in response
to skewed background mutations

As mentioned in the introduction, yeast controls its rDNA mutational dynamics by means
of the TOR pathway (a nutrient signalling pathway) (Jack et al., 2015). In particular,
rDNA gene are more likely to duplicate under caloric excess if rDNA copy number is
small, even though no short-term selective advantage is gained by duplicating genes
((Ide et al., 2010)). The regulation of this duplication bias is not entirely understood,
but it likely involves double strand breaks at replication fork barriers (every ribosomal
gene copy has one) due to transcription/replication conflicts and non-homologous recom-
bination.

We study genome stability and mutational load assuming that background mutations res-
ult in deletions and inactivations more frequently than duplications (as in yeast), with
and without transcription-induced mutations. In the latter case we let the proportion of
duplications, deletions and inactivations caused by transcription evolve.
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In Fig. 5.8 we show that background mutations skewed towards deletions and inactiva-
tions (µDI, Fig 5.8) lead to compact genomes with almost no inactive genes. Despite the
absence of inactive genes, cells are less fit than when evolved with an equal proportion of
duplications, deletions and inactivations (compare inter-division time with µ2, Fig. 5.2b).
In contrast, evolution reaches a larger final fitness when evolvable transcription-induced
mutations are incorporated (µTRev, Fig 5.8), even though inactive genes are purged less
successfully. The rate of transcription-induced duplications evolves to a slightly larger
value than the rate of transcriptional deletions (Fig.5.9a, the median of the differences
between duplications and deletion is 0.046), to balance the continuous loss of genes
due to background mutations, while the rate of transcription-induced inactivations ap-
proaches zero. We also observe that there is no direct benefit in the high copy numbers
of rRNA genes: Fig. 5.9b shows that a considerable portion of rRNA genes must be
removed from an evolved genome in order to increase inter-division time (notice that
more rRNA genes can be removed without altering fitness if the initial genome has a
higher copy number). This is in qualitative agreement with yeast rDNA genome dynam-
ics, where removing copies of ribosomal genes does not affect short-term fitness (growth
rate), but removing too many leads to a rapid deterioration of genome stability and, con-
sequently, fitness (Ide et al., 2010).

Altogether, evolution balances the biases in life-history independent mutations by main-
taining a high transcription-induced mutation rate and a skewed mutational outcome. The
process leads to a larger fitness despite a two-fold increase in overall mutation rates.

We conclude that the observed features of the yeast’s rDNA organisation and mutational
processes, i.e. transcription-replication conflicts and biases towards recombination of
rRNA repeats, are beneficial and contribute to its long term physiological and evolution-
ary stability.

5.4 Discussion

In this chapter we have studied the evolutionary dynamics of genomes in single-cell
organisms by constructing a minimal (computational) model in which metabolism, reg-
ulation and mutational dynamics are integrated. Several theoretical models have been
developed to study genome dynamics (Crombach and Hogeweg, 2008, Cuypers and Ho-
geweg, 2012), some at a greater resolution than what we do here (Knibbe et al., 2007).
However, the effects of large transcriptional load on genome dynamics have received no
attention (to the best of our knowledge), despite being extensively studied experiment-
ally. Here we made a first step in this direction.

We find that cells quickly adapts to fast growth (inter-division time being the fitness
criterion), but their long term evolution depends strongly on the mutational dynamics.
Genomes accumulate inactive genes in the long evolutionary term when background
mutational outcomes are equally divided among duplications, deletions and inactivations,
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Inter-division time

�DI �TRev

�DI: high rate of background
deletions and inactivations,
low rate of duplications

�TRev: background mutations as �DI +
evolved proportion of
transcriptional mutations
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�DI �TRev �DI �TRev
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Figure 5.8. A large transcriptional load is maintained and is beneficial when back-
ground mutations are biased towards deletions and inactivations. µDI = 0.084, pDI

µ =
(1/25, 12/25, 12/25); Background mutations in µTRev are the same as µDI, transcription-
induced mutations can evolve their relative proportions (see Fig. 5.9a); the maximum muta-
tion rate caused by transcription is max(µTR) = 0.074.
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Figure 5.9. a Histogram of the differences between duplications and deletions for the system
µTRev in Fig. 5.8. Positive values indicate a bias towards duplication, negative ones towards
deletions (inactivations approach zero in all cases). Red line indicates zero. Data collected
along the line of descent every 1000 generations. b Growth rate is minimally affected when
several ribosomal RNA genes are removed (cf. French et al. (2003)). Three cells are taken at
a later evolutionary stage from the same dataset as Fig. 5.8 µTRev, along the line of descent.
Ribosomal RNA genes are removed maintaining the proportion between active and inactive
ones and inter-division time is recorded. The original copy number of rRNA genes in the
genomes used for these experiments is (total, active, inactive): 39, 27, 12 (full line); 66, 49,
17 (dashed line); 71, 60, 11 (dotted line).
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because duplications of active genes are selected in the short run, but inactivations cannot
be effectively purged. Mutational dynamics caused by large transcriptional load worsens
this problem when the proportion of mutational outcomes has no biases, even though
the system evolves to low mutation rates. The accumulation of inactive genes caused by
failure of selection to purge them is is reminiscent of an Error-threshold problem (Eigen,
1971). It is most surprising, then, that higher mutation rates can overcome it.

Genome integrity (as well as fitness) is restored when transcription-induced duplications
and deletions occur more frequently than inactivations, even when the overall mutation
rate is increased. Inactive genes do not accumulate despite transcription being maintained
at large rates, and thus transcription-induced mutations occur more often. High rates of
duplications and deletions increase the variability in the population (compare active and
inactive genome distributions for µBG and µTR 1-2-3 in Fig. 5.7), which increases the se-
lection pressure for a larger active genome and a smaller inactive one. This overcomes
the long term mutational flow from active to inactive genes, and suppresses the evolu-
tionary feedback that leads to the deterioration of the genome in the long term. Note,
however, that the short term effect of duplications and deletions is not the direct cause
of increased fitness, as these mutations are almost neutral. Their effect lies in halting the
flow to inactivations by accelerating gene dynamics.

Altogether, increased rates of neutrality (mutational robustness) and a faster mutational
dynamics (which leads to larger adaptability) prevent the evolutionary deterioration of
the genome by slightly deleterious mutations.

A similar situation is observed in yeast, where no short-term benefit is apparent despite
the frequent occurrence of duplications and deletions in the rRNA gene cluster (French
et al., 2003). In this respect, our work suggests that the observed mutational dynamics in
yeast are beneficial for long-term genome integrity. Moreover, the large neutral variabil-
ity in yeast’s rRNA copy number is a long term evolutionary side-effect of the observed
mutational dynamics.

In summary, the short-term benefit of duplications of active genes lead to long-term de-
leterious consequences, i.e. the inability of purging inactive genes, even at low mutation
rates. Evolution has solved this problem in yeast by increasing mutation rates and biasing
the mutational outcome towards duplications and deletions.

The evolutionary dynamics described in this study applies at evolutionary steady state
only for genes existing in large numbers of identical copies, such as the rRNA gene.
However, it is known that genome expansion can lead to long-term fitness benefits be-
cause the excess genetic material provides more degrees of freedom for evolution to adapt
(Cuypers and Hogeweg, 2012, de Boer and Hogeweg, 2010). The evolutionary dynamics
discussed here can form the substrate on which neo-functionalisation works.
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Few mutational operators are defined in our model because we coarse-grained genomes
to the gene level. As a consequence, genomes have little freedom in the coding struc-
ture they can evolve. While this study shows the effects of the mutational dynamics
observed in yeast, future work will address the evolution of the mechanism that increases
transcription-induced gene-duplications and deletions, by incorporating finer details of
genomes, such as evolvable fragile sites.

Finally, aminoacids are used as signalling molecules in our minimal model of regulation,
in accordance with their prominent role in the signalling cascade in the TOR pathway
(Jewell et al., 2013, Kim, 2009). In future developments of the model we will explore
the evolutionary consequences of richer regulation-mutation dynamics, such as those
observed in yeast.

Nevertheless, this study makes the case that mutations induced by large rates of du-
plications and deletions induced by transcriptional load can prevent long term genome
deterioration.
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5.5 Appendix

5.5.1 Numerical values of parameters used in the simulations

Parameter Value Description

ds 0.1 Decay resources
da 0.005 Decay amino acids
dT 0.005 Decay Enzymes
dQ 0.005 Decay Housekeeping proteins
dRp 0.005 Decay Ribosomal proteins
dRr 0.005 Decay Ribosomal RNA
dmT 0.05 Decay mRNA of enzymes
dmQ 0.05 Decay mRNA Housekeeping pr.
dmRp 0.05 Decay mRNA Ribosomal pr.

kt 2.5 Metabolism of resources
αt 0.5 Metabolism of resources
βt 1.0 Metabolism of resources
kh 15 Homoeostatic parameter
kh 0.3 Optimal concentration of Housekeeping pr.
kmax 0.2 Max transcription rate time step
ε 10−4 Translation parameter
sm 10 Translation parameter
sR 1 Translation parameter
sA 3 Translation parameter
kRp•Rr 0.9 Ribosomal RNA and pr. association
hµ 0.9 Transcription-induced mut. parameter
ρ 10 Transcription-induced mut. parameter
λ 0.9 Genome to volume scaling
κ 3.5 Genome to volume factor

5.5.2 Details of the intracellular dynamics with background and
transcription-induced mutations

In Fig. 5.10, we compare the life cycles of cells at different time points with background
mutations only (a), or with un-biased transcription-induced mutations (b).
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Figure 5.10. A comparison of intracellular dynamics during one life cycle at different time
points. a background mutations only (µBG in Fig.5.4); b both background mutations and
transcriptional mutations (µBG+TR in Fig.5.4). The internal dynamics of ancestral cells at
chosen time points (from dataset used for Fig. 5.2) are run in the absence of mutations and
parameters are plotted for one generation. Abscissa in all plots: integration time (arbitrary
units). Genomes are represented with upper and lower case letters indicating the respectively
the active and inactive form of genes (T: enzymes, Q: housekeeping, R: ribosomal RNA, P:
ribosomal proteins), lower scripts indicate copy number. Transcriptional load is represented
as the fraction of mRNA production relative to the maximum gene occupancy (see Methods).
Notice log y-axis for volume plots.
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5.5.3 Larger rates of duplications and deletions in background
mutations

Fig. 5.11 shows that a bias towards duplications and deletions in background mutations
restores fitness despite an increased overall mutation rates.

Interdivision time

�BG �BG+DD

�BG: background mutations
�BG+DD: background mut +

high rate of
duplications and
deletions

Sin=10

�BG+TRevol

�BG �BG+DD�BG+TRevol �BG �BG+DD�BG+TRevol �BG �BG+DD�BG+TRevol

�BG+TRevol

Duplications - Deletions �TRevolAvrg �TR

�TRevol: background mut +
evolved rates of
transcription-
induced mut.

Figure 5.11. The beneficial effect of larger rates of background transcription-induced muta-
tions, when biased to duplications and deletions. µBG = 0.01,pBG

µ = (1/3, 1/3, 1/3);
µBG+DD = 0.084,pDD

µ = (12/25, 12/25, 1/25). Data collected along the line of descent
for 250 · 103 generations after evolutionary steady state is reached.
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5.5.4 Deleterious consequences of duplications being more frequent
than deletions

Fig. 5.12 shows that a bias towards duplications leads to inordinate integration of non-
coding genes in the line of descent of a population.
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Figure 5.12. A larger proportion of transcription-induced duplications leads to unboun-
ded genome expansion, due to the accumulation of inactive genes. µBG = 0.01, pBG

µ =
(1/3, 1/3, 1/3); max(µTR) = 0.074, pTR

µ = (1/2, 1/3, 1/6).
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6
Discussion

6.1 Summarising Discussion

In Chapter 2 we found that strong parasites generate the spatial conditions in which rep-
licators can become more cooperative, in a prebiotic evolutionary model. We extended
these results in Chapter 3 by studying the evolutionary dynamics of cooperation when in-
dividuals must produce a costly public good to survive. We observed the evolution of two
lineages at high cost, a cooperative and a parasitic one, each enhancing the evolution of
the other. In Chapter 4 we analysed the interplay of spatial pattern formation and coding
structure in an RNA-like model system. We found that a master sequence arises at high
mutation rates that encodes the information for an array of novel functions beneficial to
the master sequence and associated to genotypes that cannot be replicated. In Chapter
5 we studied the interplay of mutations induced by transcription, background mutations
and genome dynamics in a cell model. Large mutational load is accumulated in the gen-
ome when gene duplications, deletions and inactivations occur at similar rates, because
mutations that are beneficial in the short run cannot be maintained by selection in the long
evolutionary term, and slightly deleterious mutations accumulate. In contrast, an excess
of gene duplications and deletions reduces the mutational load of the cell, improves long-
term genome stability and increases fitness. Yeast’s rRNA genes are known to frequently
undergo duplications and deletions due to conflicts between transcription and replication
complexes without leading to differences in growth rates. Our results suggest that the
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mutational dynamics observed in yeast is the result of a long-term evolutionary pressure
to maintain genome integrity.

In the following paragraphs we expand the discussion of the results presented in this
thesis, and we outline several directions for future research.

In Chapter 2 we observed two evolutionary strategies depending on travelling waves
dynamics: selection for fecundity is observed with weaker parasites, selection for longev-
ity with stronger ones. Both outcomes can evolve when either parasite strength or rep-
licators’ association rate is set to evolve. When both replicators and parasites evolve,
the outcome depends on the time-span needed to complete replication, i.e. how costly
replication is.

In replicator-parasite systems encapsulated in vesicles (which constitute a higher level of
organisation) selection always favoured longevity (Takeuchi and Hogeweg, 2009). How-
ever, two alternative evolutionary strategies were also observed, depending on mutation
rates: lower mutation rates led to the evolution of weaker parasites - analogously to the
chaotic waves regimes in Chapter 2 and (Takeuchi and Hogeweg, 2009); higher mutation
rates, instead, destabilised the coexistence of replicator and parasites, to which vesicle-
level selection responded by slowing down their internal dynamics - a solution that has
no analogue in the self-organised system.

In the self-organised system, evolution chooses either of two strategies by the feed-back
process with the spatial organisation studied in Chapter 2. However, due to the inherent
stability of travelling waves, it is unlikely that changing mutation rates can change the
direction of evolution, as happens in the vesicles (nevertheless the experiment remains to
be done).

Altogether, even if local (microscopic) rules are the same for parasites in the two systems,
they become functionally incomparable (qualitatively different) due to the higher levels
of organisation.

The evolutionary mechanism that allows the increase in cooperation observed in
Chapter 2 and Chapter 3 rests on the presence of uninterrupted empty space generated by
strong parasites. However, a second species of replicators can directly invade that space
if it is not affected by the same parasite (Takeuchi and Hogeweg, 2008). This suggests
a slightly different mechanism for the evolution of cooperation, which does not depend
on empty space: the direct competition for space between a replicator and the parasite of
a different species leads both of them to increase replication rate, the former by becom-
ing more cooperative, the latter by exploiting its replicator more strongly. Importantly,
this mechanism works as a selection pressure to diversify the second replicator species
(Takeuchi and Hogeweg, 2008), but would work as well if the two pairs of replicators
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and parasites had no genetic relation at all. Therefore cooperation could evolve as a side
effect of spatial competition with multiple species (von der Dunk et al., 2016).

Moreover, in Chapter 2 and Chapter 3 we observed that the interplay between parasites
and replicators leads to increasing the rate at which complexes form - which is an al-
truistic trait - when costs are larger. Parasites evolve quickly in the interacting RNAs
model of Chapter 4 and (Takeuchi and Hogeweg, 2008), suggesting that the same inter-
play between evolution and self-organisation can explain the increase of binding affinity
in the master sequence, which seems optimised for replication.

At high mutation rates, replicators “solve” the problem of selfish mutants (and para-
sites) by evolving the complex coding structure presented in Chapter 4. Most mutants of
the evolved master sequence cannot be replicated (they are non-viable). This increases
the selective advantage of the master sequence, whose competition is local, i.e. mostly
with its kins. However, the most striking result is that these non-viable mutants are
functional, in that they enhance the replication of the master sequence (we named these
sequences “helpers”) or inhibit the replication of competitors as well as the rare para-
sites (we named these “stallers”). Altogether, several different functions are united into
a single template, as is true for chromosomes.

Two questions follow from the fact that the system functionalises mutations, i.e. it ex-
ploits the characteristic property of quasispecies. First, is there an Error Threshold?
Secondly, what happens if sequence length is not fixed and consequently a variable
volume of genotype space can be exploited by the master sequence?

The answer to the first question can be obtained straightforwardly by tracking the muta-
tional neighbourhood of the master sequence as mutation rate is increased. One could
expect that extinction ensues when sequences begin to de-localise because variability be-
comes so large that complex formation cannot occur. Fig. 6.1 shows that extinction does
not occur via an Error Threshold, i.e. the quasispecies does not de-localise. As muta-
tion rate increases, the process that stabilises the master sequence simply becomes more
intense until the master sequence is replicated correctly so infrequently that the system
goes extinct. We conclude that whether sequences delocalise or not at high mutation
rates is a side effect of the evolved properties of a quasispecies.

The second question does not have a definite answer, instead. As mentioned in the Intro-
duction, the protocol for RNA evolution to target secondary structure in a well-mixed
system can be easily extended to incorporate mutations that change sequence length
(structure must be suitably coarse-grained to assign the same fitness to identical mo-
tifs with different length). Fig. 6.2 shows results in the spatially extended system at high
mutation rates. First, the master sequence becomes shorter to reduce mutational load
(from 50 to about 40). Because the mutational neighbourhood of the shorter master se-
quence does not generate the same distribution of mutants, parasites evolve and organise
with replicators in travelling waves. These parasites are optimised to exploit the master
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Figure 6.1. Lack of delocalisation in the interacting RNAs system of Chapter 4, when muta-
tion rate is increased to larger values. Per-base mutation rate is increased of 10−4 every
50 ∗ 103 time steps until global extinction occurs. Upper pane: Hamming Distance from
master sequence; Lower pane: functional composition in the system (see Chapter 4 for the
definition of functional classes.).
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sequence (the 5’ end of both strands consists mostly of G nucleotide), and are very short
(20 nucleotides). In the long evolutionary run, however, a novel sequence appears which
1) cannot be characterised by a particular replicating strategy, 2) outcompetes the previ-
ously established lineages of replicators and parasites, 3) has a surprisingly large degree
of neutrality (more than 60% and in some tested sequences up to 75%).

The fact that the original master sequence disappears is not unexpected once considered
that it is fine-tuned to the effects of substitutions and not insertions and deletions. These
results should be compared with sequences that undergo long-term evolution with these
mutational operators. The significance of such large increase in neutrality, however,
deserves further investigation: can the neutral evolution of robustness lead to this muta-
tional neighbourhood, or is there a novel evolutionary pressure behind it?

In Chapter 5 we have encountered the well known problem of the long term accumula-
tion of deleterious mutations (Kimura et al., 1963, Muller, 1964). In our case, however,
the unavoidable accumulation of mutational load is caused by long-term accumulation
of mutations that are beneficial (for fitness) in the short run. The conflict between short
and long term fitness is inherent to the dynamics of altruistic replication (Chapter 2, 3
and 4). Much less obvious is the occurrence of such conflict in the lack of multilevel
selection, and even less so its resolution by larger mutation rates (Chapter 5). The occur-
rence of this effect is limited to repeated genes in our model, even though different lines
of research hint to its generality (Rutten et al., 2016).

6.2 Towards a theory of constructive evolution

At the beginning of this thesis we stated that the evolutionary and functional significance
of novel traits is best understood from a multilevel perspective. Chapter 2 to 5 illustrate
how new functions emerge in multilevel evolutionary models. A multilevel approach has
been recently found to be necessary for the emergence of (any) function in a dramatically
more open-ended model at the interface between Artificial Life and Artificial Chemistry
(Hickinbotham and Hogeweg, 2016).

Although most functional traits are in some sense emergent (emergence should perhaps
be the default expectation), here we mention three examples that are clear-cut enough to
be amenable to theoretical investigation: 1) the repression of reproduction in soma-like
cells of Volvox carteri achieved by germline cells by inducing an environmental stress
response (Nedelcu, 2009), 2) the over-expression of metabolic and regulatory proteins
for their optical properties in the crystallin (Piatigorsky, 2003) and 3) the regulation of
ribosomal gene copy number under caloric excess by exploitation of mutation-inducing
transcriptional dynamics (Jack et al., 2015) (the topic of Chapter 5).

Clearly, challenges remain in understanding the constructive nature of Evolution. Nev-
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Figure 6.2. The evolution of sequence length in the interacting RNAs system (see Chapter
4) with nucleotide insertions and deletions. Sequence and structure of ancestral catalysts and
parasites at selected time points are indicated with A,B,C and D. Brighter colours indicate
larger proportions of the population. 104 individuals are sampled every 104 time steps to
generate the plot.
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ertheless, we are confident that the approach we have taken here will pave the way to
a richer understanding of the evolutionary principles that govern how novel functions
emerge.
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Samenvatting

In dit proefschrift onderzoeken we hoe nieuwe functies kunnen ontstaan door Darwini-
aanse Evolutie. Van het begin af aan, ongeveer vier miljard jaar geleden, heeft evolu-
tie nieuwe eigenschappen, vormen en functies gegenereerd. In dit vroege evolutionaire
stadium bestond er nog geen cellulair leven, en volgens de “RNA Wereld” hypothese
functioneerden in plaats daarvan RNA moleculen zowel als informatie-opslagmedium
(nu de taak van DNA) en als katalysator voor chemische reacties (de huidige rol van
eiwitten). Omdat zulke RNA moleculen elkaar’s replicatie katalyseerden (replicatie is
dus een altruïstische eigenschap), hadden parasieten, die wel gerepliceerd werden maar
die geen tijd besteedden aan het repliceren van anderen, een evolutionair voordeel. Werd
de overlevingskans van replicatoren hierdoor bedreigd? Hoe konden betere replicatoren
evolueren als parasieten een selectief voordeel hadden? In hoofdstuk 2 laten we zien
dat sterke parasieten indirect de evolutie van betere replicatoren stimuleren, dankzij een
terugkoppeling via de ruimtelijke zelforganisatie van deze twee soorten.

Het probleem van de evolutie van altruïstische en coöperatieve eigenschappen beperkt
zich niet tot de RNA wereld, maar geldt ook voor bestaande organismen. Een voorbeeld
is de productie van gedeelde maar kostbare stoffen - zogenaamde publieke goederen -
door meerdere microben. Zelfzuchtige individuen die geen publieke goederen produ-
ceren, kunnen wel profiteren van de coöperatieve individuen, maar het ecosysteem valt
uiteen als niemand publieke goederen produceert. Is er minder selectie voor publiek-
goedproductie als de productiekosten hoger zijn, omdat dan de selectie voor zelfzucht
hoger is? In hoofdstuk 3 laten we zien dat zelfzuchtige individuen inderdaad evolueren
als de productiekosten hoog zijn, en dat ze ruimtelijke patronen vormen met coöper-
atieve individuen. Deze patronen beïnvloeden de evolutie van publiek-goedproductie
door coöperatieve individuen, die meer gaan samenwerken, terwijl zelfzuchtige indi-
viduen dat juist minder gaan doen.

In hoofdstuk 4 geven we RNA-achtige replicatoren een genotype en een fenotype,
namelijk een nucleotide-sequentie en een secundaire structuur door het vouwen van het
RNA. We bestuderen de evolutionaire gevolgen van zo’n complexe genotype-fenotype
vertaling bij hoge mutatiesnelheid. We zien dat een functioneel ecosysteem ontstaat,
waarin nieuwe functies worden uitgevoerd door RNA sequenties die niet gerepliceerd
kunnen worden. Deze sequenties worden daarom alleen gevormd via replicatie en
mutatie van een mastersequentie, die dus de informatie voor het hele ecosysteem bevat.
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Dit ecosysteem verhoogt weer de overlevingskansen van de mastersequentie.

Het stabiliserende effect van mutaties is experimenteel waargenomen in het rRNA gen-
cluster van gist, waar mutaties als gevolg van transcriptie-replicatieconflicten worden
uitgebuit om het aantal rRNA genen te verhogen, afhankelijk van de beschikbaarheid
van voedingsstoffen. In hoofdstuk 5 modelleren we de mutatiedynamica van gist rRNA
en zien dat hogere mutatiesnelheden zorgen voor een stabieler genoom, mits de mutaties
gebiast zijn richting genduplicatie en -deletie. Dit mechanisme werkt ondanks dat het
korte-termijneffect van deze mutaties vrijwel neutraal is, net als voor de gist rRNA genen.

Ten slotte benadrukken de resultaten in dit proefschrift de voordelen van een meerlagige
(“multilevel”) aanpak om de eindeloze vindingrijkheid van evolutie te begrijpen.
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Compendio

L’oggetto di ricerca di questa tesi è il modo in cui nuove funzioni emergono da un pro-
cesso di evoluzione darwiniana. Fin dal suo principio, circa quattro miliardi di anni fa,
l’evoluzione ha generato nuovi tratti e funzioni; in quella fase la vita era molto diversa
da come la conosciamo oggi. Le cellule non esistevano ancora e gli acidi ribonucleici
(RNA), secondo l’ipotesi del mondo a RNA, svolgevano un duplice ruolo: di conserva-
zione dell’informazione genetica (funzione che oggi svolge il DNA) e di catalizzatori di
reazioni chimiche (funzione oggi svolta dalle proteine). Dato che tali RNA catalizzavano
la replicazione gli uni degli altri (in un processo di “replicazione reciproca” come for-
ma di altruismo), la selezione naturale avrebbe dovuto favorire l’evoluzione dei parassiti,
ovvero di quegli RNA replicati in gran numero ma che non replicano altri RNA.

La sopravvivenza dei replicatori è minacciata dalla presenza dei parassiti? Come pos-
sono gli RNA accrescere le loro capacità riproduttive se la selezione naturale favorisce
i parassiti? Nel capitolo 2 si mostra che parassiti più aggressivi generano (in modo in-
diretto) le condizioni ottimali affinché i replicatori si riproducano velocemente a seguito
dell’innesco di un meccanismo a feedback mediato dall’auto organizzazione nello spazio
delle due specie.

Le dinamiche evoluzionistiche di altruismo e cooperazione non si limitano al mondo a
RNA, ma sono presenti tutt’oggi negli organismi moderni. Un esempio è la produzione
da parte dei micro-organismi di sostanze condivise ma energeticamente costose, i co-
siddetti “beni pubblici”. Gli individui egoisti che non apportano alcun bene, possono
sopravvivere approfittando di quei micro-organismi che cooperano, ma se nessuno coo-
pera il sistema può arrivare al collasso. Dato che la selezione favorisce l’egoismo quando
i costi (energetici) di produzione di un bene condiviso sono elevati, come puÃš evolvere
la produzione di un bene comune? Nel capitolo 3 si mostra che con alti costi gli organi-
smi egoisti evolvono organizzandosi nello spazio assieme gli organismi che cooperano.
L’auto-organizzazione di individui che cooperano e di individui egoisti genera le condi-
zioni ideali per aumentare la produzione di bene comune tra gli organismi che cooperano,
e per diminuirla tra quelli egoisti.

Nel capitolo 4 è assegnato ai replicatori genotipo e fenotipo, rispettivamente, una se-
quenza di nucleotidi e la sua (conseguente) struttura secondaria. Il capitolo affronta
le conseguenze evoluzionistiche di un alto tasso di mutazioni su una mappa genotipo-
fenotipo complessa (il ripiegamento dell’RNA). L’evoluzione genera un ecosistema in
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cui nuove funzioni emergono come fenotipi di sequenze che non possono essere repli-
cate, e che sono invece prodotte per mutazione di una sequenza “master”. Dunque tale
sequenza codifica l’informazione per l’intero ecosistema, e l’informazione viene decodi-
ficata dal processo mutazionale. L’ecosistema, dal canto suo, è di importanza critica per
la sopravvivenza della sequenza master.

Le mutazioni genetiche possono quindi essere determinanti nel mantenimento del livello
di fitness individuale.

Per esempio i lieviti sfruttano le mutazioni risultanti dai conflitti tra trascrizione e repli-
cazione del DNA per accrescere il numero di copie del gene per l’rRNA, con un mec-
canismo dipendente dall’abbondanza di risorse. Nel capitolo 5, si studia un modello
di dinamiche mutazionali osservate in lievito e si mostra che le mutazioni possono es-
sere benefiche per l’integrità del genoma nel lungo periodo quando si trovano con una
maggiore frequenza nelle duplicazioni e delezioni di geni. Questo meccanismo funzio-
na nonostante tali mutazioni siano quasi neutrali nel breve-periodo, in accordo con le
osservazioni sul lievito.

In conclusione, i risultati della tesi evidenziano i vantaggi di un approccio multi-livello
nella comprensione dei meccanismi dell’Evoluzione e della sua infinita inventività.
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