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In classical ecological theory the concept population plays a central role. Most models are
formulated in terms of changes in the number/biomass/fraction of interacting populations.
In the passed 30 years slowly alternative viewpoints have been developed. In this paper we
trace some of these alternative developments which lead to viewing ecosystems in terms of
local multilevel information processing and evolution. We will sketch the methodological
developments, indicate some fundamental insight gained through the methodological
innovations and focus our discussion on the central problem of the development and
maintenance of diversity in ecosystems. We will explore the circumstances in which
individual based diversity (plasticity, regulatory adaptation, intelligence) or population
based diversity (speciation) develops.
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1. Introduction

In this paper we discuss three major stages in the
transition of population dynamic models to models which
describe ecosystems as multilevel information processing
systems. The first step is the transition from populations as
the basic unit of description to individuals, localized in
space, as the basic information processing unit. The next
step considers these individuals not as fully predefined
entities, but subject to a Darwinian evolution, and the
realization that evolutionary and ecological timescales
cannot be apriori separated. While in the second step
Darwinian evolution takes place at the phenotypic level, in
the third step the genotype phenotype mapping is taken
into account and is itself evolvable. This allows us to study
the evolution of different modes of information processing,
and under which circumstances these modes may be
favored.

Ecosystem diversity is a fundamental question in ecology
which is also central in ecosystemmanagement. In this paper
we focus our discussion of the methodological developments
around this question. In particular we will focus on the
er B.V. All rights reserved
generation and maintenance of diversity at different levels of
organization. We will contrast “population based diversity” in
which lineages diversify, leading to species with different
roles in the ecosystem, and “individual based diversity” in
which each individual can play different roles through
plasticity, physiological regulation and behavioral versatility.
At the molecular level these twomodes of diversification both
involve duplication and divergence of genes. In the case of
population based diversity in the form of the divergence of
orthologous genes, whereas in the case of individual based
diversity, within genome gene duplications (paralogs) and
their (regulatory) divergence lead to an increased behavioral
repertoire.

The organization of this paper is as follows. In each of the
sections we first describe a major step in modeling methodol-
ogy, we then review a specific example from our own work in
which the power of that methodological step has been
illustrated and finally highlight a fundamental insight
obtained from that study. Thus reading the first subsec-
tions tells the methodological story, reading the last subsec-
tions tells the biological theory developed through the
methodology.
.
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Table 1 – Comparison of Hypercycle models in space (CA
model) and well mixed (ODE model): the differences are
due to spiral wave dynamics (cf. Boerlijst and Hogeweg,
1991a,b)

CA transition rules Properties CA Properties ODE

Decay (d): X−>0 Pos. selection for
d′>d

Pos. selection for d′ >d

Replication (a):
0+nb(X)− >X

Pos. selection on
cxy′>cxy on X and
Y

Pos. selection on cxy′>
cxy only on X

Catalysis (cxy):
0+nb(X)+nb(Y)>X

Stable to
parasite
invasion

Vulnerable to
parasites

ODE (mean field) New hypercycle
can invade

Once only selection

dX/dt=X(a+cxyY)
(T−ΣXi)/T). N number
of species, Y gives
cat. to X

N decreases if
N>6 for similar
catalysis

Increase and decrease
of N only dependent
on catalysis
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2. Spatial pattern formation and multiple
levels of selection

2.1. Adding space to population dynamic models

Every ecosystem is embedded in space. Interactions between
individuals are local. Even in relatively well mixed systems,
like oceans, spatial pattern formation (e.g. plankton clouds) is
prevalent. Classical population models ignore this defining
property of ecosystems. The most straightforward way to
incorporate this basic fact about ecosystems is to consider
individuals localized in space.

Stochastic cellular automata (CA) are the simplest con-
venient formalism in this respect (Hogeweg, 1988) when the
state of the automata represents the type of individual present
at that location. In CA the transition rules depend on the state
of the cell under consideration and its neighbors (however
defined) and thus local interactions between individuals are
established in the model. Local movement of individuals can
be implemented, e.g. as a diffusion process (for an introduc-
tion of Cellular Automata as modeling tool see Toffoli and
Margolus, 1987).

Cellular automata models differ from classical reaction
diffusion systems in considering discrete individuals which
are present in some locations and absent in other locations. In
contrast, in reaction diffusion systems, everything is every-
where but possibly in arbitrary low concentrations. As Durrett
and Levin (1994) pointed out in their paper “the importance of
being discrete...” this is an important, and obviously realistic
difference. Fully individual based models, in which indivi-
duals are embedded in a continuous space, and events take
place in continuous time, are a more versatile alternative
(Hogeweg and Hesper, 1990). For our purpose here (individual
based) CA models do, however, suffice.

The biological assumptions of classical population based
models can be straightforwardly translated into a CA model,
such that the only difference is the spatial embedding and the
local interactions. The classical population basedmodel is than
the first order mean field ‘approximation’ of the CA. I put
‘approximation’ between quotes, because the bottom line will
be that the spatial embedding profoundly alters the properties
of the system and therefore the mean field version does not
describe the system even approximately. Also higher order
mean field approximation fails to capture the properties of the
spatial system because large scale pattern formation plays an
essential role. By implementingwell studied populationmodels
in space we can analyze the influence of space precisely.

2.2. Information accumulation in prebiotic evolution

The issue of individual based vs. ecosystem based informa-
tion accumulation was first posed by Eigen and Schuster
(1979) in the context of prebiotic evolution. Information
accumulation in replicators through Darwinian evolution is
limited by mutation rate (the so called information threshold,
cf. Eigen et al., 1989). Because mutation rate can supposedly
only be reduced by a more sophisticated replication process
they proposed that interacting populations of replicators
might be a potential scenario to overcome the ‘catch 22’ in
early evolution. To this end they proposed the Hypercycle
model, formulated in ordinary differential equations (ODE) in
which replicators cyclically catalyze each others replication
(similar to ODE model in Table 1).

Thus although the problemposedwas an evolutionary one,
where largemutation rates were inherent to the problem, they
studied an ‘ecological’ model of monomorphic populations
and fixed interactions. Evolution only comes in the form of
invasion of mutants, i.e. ecological and evolutionary time-
scales are separated.

So defined hypercycles are not a feasible solution for the
information threshold problem e.g. because they are unstable
to the invasion of ‘parasites’, i.e. molecules who get more
catalysis of their predecessor in the cycle, but do not give
catalysis to their successor, as was first stressed by Maynard
Smith (1979). Indeed it is well known in ecology that
cooperative systems are vulnerable to ‘cheaters’.

2.3. Spatial pattern formation and multiple levels
of selection

All dynamic properties of hypercycles change qualitatively,
when the molecules are embedded in space (Boerlijst and
Hogeweg, 1991a,b) (see Table 1). For N>5 the dynamics of the
CA model give rise to spiral wave patterns (Fig. 1). It is the
dynamics of the spiral wave patterns which alter the fate of
the replicators drastically, and for example expels invading
strong parasites from the system (Fig. 1). Other differences are
listed in Table 1. The 3 crucial aspects of spiral wave dynamics
responsible for these differences are (1) spiral waves form
separate domains; (2) all offspring in the long run originate
from the core of the spirals, and (3) faster rotating spirals
expand their domain into that of slower rotating spirals. For
further details see Boerlijst and Hogeweg (1991a,b).

We conclude that spatial pattern formation leads to the
generation of new levels of selection (here competing spirals)
which may overrule the selection at the level of competing
replicators. Such multilevel dynamics is still overlooked in
most ecological and evolutionary models, but appears to be a
defining property of ecosystems and their evolution.



Fig. 1 –Pattern formation and expulsion of parasites in a spatial model of the hypercycle (cf. Boerlijst and Hogeweg, 1991a,b).
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We cannot conclude, however, that ecosystem based
information accumulation is indeed an adequate scenario of
crossing the information threshold because these results are
obtained from invasion experiments in ‘ecological’ models,
rather than eco-evolutionary models in which timescales are
not apriori separated. Indeed, as shown in Hogeweg and
Takeuchi (2003), spiral wave patterns are not robust against
highmutation rates. Other interaction topologies, especially of
RNA based complementary replication systems are, however,
good candidates for ecosystem based information accumula-
tion (Hogeweg and Takeuchi, 2003).
3. Eco-evolutionary models: interlocking
timescales

3.1. Eco-evolutionary models

Here we extend the previous results to eco-evolutionary
models in which ecological dynamics and mutational
dynamics, are both taken into account simultaneously,
although replication rates and mutation rates will in general
differ by orders of magnitude. Thus we do not consider
monomorphic populations, but ‘quasispecies’ (Eigen et al.,
1989) in which variants are present not because of balanced
competition, but because ofmutational processes. Also in well
mixed systems taking mutational dynamics into account may
change the ecological dynamics profoundly, and evenmore so
the smaller the mutation rate (van der Laan and Hogeweg,
1995). Here we examine the impact in combination with
spatial pattern formation and multiple levels of selection and
sticking close to a classical population dynamic model, fixing
the basic interaction patterns. To do so we assume ‘pheno-
typic mutations’, i.e. mutations only make small changes in
the parameters of the model.

3.2. Evolution of directed migration in host parasitoid
models

Nicholson and Bailey Host-Parasitoid models (1935) were first
studied in a spatial context by Rohani and Miramontes (1995)
in a lattice mapmodel. They studied the directed migration of
parasitoids, seeking to what extent directed mutation of
parasitoids was benefiting the parasitoids. Spatial patterns
formed in the model is a mixture of spiral and chaotic waves
similar to those found in Complex Ginsburg Landau equation
close to the Hopf bifurcation. Savill et al. (1997) extended their
ecological model to an eco-evolutionary model with a muta-
tion rate 3 orders of magnitude smaller than replication rates,
and studied how spatial pattern formation influenced the
direction of selection, as well as how spatial pattern formation
itself was affected by the evolved directional migration. Three
levels of selection play a role: local interaction between host/
parasitoids, spiral and turbulent waves, and competition
between regions of spiral waves and turbulent waves. Their
main conclusion, and title of the publication, was “self-
reinforcing spatial patterns enslave evolution in a host
parasitoid system”. Parasitoids in a particular type of the
spatial pattern evolve migration parameters such that this
type of spatial pattern can out-compete the other types of
spatial pattern. For details see Savill et al. (1997).

3.3. Diversity through time-dependent fitness

The insight from the study of Savill et al. we want to highlight
here, is that in such a multilevel selection system, fitness is
not a static property of the dynamics, but a complex time-
dependent function. This fundamental property of spatial eco-
evolutionary models which is often ignored in discussions on
evolutionary systems has also been stressed by Rauch et al.
(2002). In the system described above, measuring inclusive
fitness as number of offspring in subsequent generation, we
see that over a period of 50 generations the higher the chance
of migrating toward the host, the more offspring. Despite the
different selection pressures in different spatial patterns, this
is true everywhere. However, over a longer time period, it is
the lower chances of migration toward the host who win out.
This is not a transient phenomenon, but true over every
window in time. It is this complex time-dependent fitness
which maintains high diversity in the system.
4. Individual based diversity and population
based diversity as alternative attractors

4.1. Variable genome size

Thepreviousmodels all properly belong to the class dynamical
systems in which the variables and interactions are prede-
fined. For example, despite the fact that the initial question
was posed in terms of information accumulation and length of
RNA strings, the models were formulated in terms of fixed
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length strings and fixed interactions. Also in the type of eco-
evolutionary models discussed in which only the parameters
of the model are subject to mutations, and only a fixed set of
potential values are considered, the structure of the state space
of the model is well defined. In the following sections the
structureof themodel is progressively lesswell definedapriori.

Although evolutionary processes have beenmostly studied
in terms of point mutations in a fixed genome structure, the
current whole genome sequencing projects have revealed that
genome rearrangement involving duplications and deletions
at various scales play a very important role. Indeed complex-
ification of genomes is mainly through gene duplication and
diversification. To model such a processes a variable genome
structure is needed. As a first step we do this by defining
individuals with a variable number of genes, which each has a
predefined function. Such a model can still be reduced to a
fixed genome sizemodel by simply defining ‘empty genes’, but
is nevertheless a useful intermediate to introduce more
flexible model structure of the next sections.

4.2. RM systems as model systems for gene multiplication

As the simplest case of a variable genome structure we review
the study of the accumulation and loss of plasmids carrying
restriction modification (RM) systems in bacteria (Pagie and
Hogeweg, 2000a). Restriction enzymes cut a DNA sequence at a
specific sequence motif. Bacteria can carry plasmids on which
restriction enzymes and protection against them occur
together. The ‘modification’ enzymes methylate the DNA at
the motif such that the restriction enzyme will not cut the
DNA. Thus the bacterial DNA will be protected against the
cutting, whereas foreign DNA (e.g. viruses) may be cut, i.e. the
RM systems can provide a defense mechanism against virus
infections. Pagie and Hogeweg defined a CA model in which
bacteria can carry a variable number of plasmids, each
carrying either both enzymes or only the modification
enzyme (a bacterium with only the restriction enzyme dies),
and viruses which may or may not be modified (methylated)
Fig. 2 –Spatial patterns for individual based (a) and population b
and sudden transition to population based diversity (colors give
intermediate number of plasmids in terms of population size of
based diversity) cf. Pagie and Hogeweg (2000a).
at various DNA motifs. Plasmids are transmitted most often
vertically and occasionally horizontally, and loss of function
mutations occur in both their genes. Viruses can infect hosts
which do not contain restriction enzymes targeting motifs
which are not methylated in their genomes, or with a very
small chance those who do in which case they become
methylated at those sites. They lose methylation when
reproducing in a host without the proper modification
enzyme.

Starting from bacteria without plasmids, characteristic
“predator–prey” waves form of bacteria, virus infected bacteria
and empty space (Fig. 2a). Slowly the bacteria accumulate
plasmids containing RM systems with different specificities.
However, this does not alter the spatio-temporal dynamics of
the system as the virus population also accumulates resistance
(methylation) at all thesemotifs. At some point, however, when
loss of two different restriction enzymes in two subpopulations
occurs, a progressive breakdown of individual based diversity
sets in and it is replaced by population based diversity (Fig. 2c).
Simultaneously the predator/prey waves disappear and a
relatively stationary patch like structure of the different
subpopulations forms (Fig. 2b). Moreover the bacterial density
increases dramatically, and the virus population subsides or
dies out altogether. In the latter case all plasmids are eventually
lost and the cycle can start anew.

4.3. Alternative attractors and scenario's of speciation

Individual based diversity and population based diversity are
alternative attractors in this RM system. Over a large range of
number of RM types in the population theymay occur in either
mode (Fig. 2d). Interestingly, it has indeed been shown that
very similar orthologous genes may function as basis for
population based diversity, where different alleles stably
coexist in a population, and as basis for phenotypic plasticity
by up/down regulation of its expression. A case in point
involving taxonomically very different species, is the popula-
tion based rover and sitter types of Drosophila, and the
ased (b) diversity. (c) Buildup of individual based diversity
number of plasmids per individual). (d) Bistability for
bacteria: (low individual based diversity, high: population
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phenotypic switch to foragers in beeswhich are both regulated
by a very similar (orthologous) PKG (Ben-Shahar et al., 2002).

In the RM systemmodel, a switch from individual based to
population based diversity occurs by complementary loss of
plasmids in the population. It is interesting to speculate about
how frequently a similar scenario may underly speciation.
After gene duplication and specialization or sub-functionali-
zation of the genes differential loss of the genes is both a
mechanism for speciation (because of mating incompatibility)
and an adaptive scenario (niche differentiation). Bioinformatic
sequence analysis of gene loss after whole genome duplica-
tion in yeasts appears to suggest that such a ‘paralog first’
mode of speciation (leading to pseudo (or false) orthologs)
might indeed have occurred (Scannell et al., 2006). From a
dynamical systems point of view it has been demonstrated in
simulation studies by Kaneko and Yomo (2000) (see also
Hogeweg, 2002). Also, at the phenotypic level, developmental
plasticity has been documented to mirror taxonomic diversity
(e.g. Gomez-Mestre and Buchholz, 2006).

However, the opposite route, in which allelic diversity
precedes retention of duplicated genes has also been proposed
(Proulx and Phillips, 2006) and will be discussed in the last
section of this paper. In the case of RM systems this route does,
however, not occur unless first all plasmids are lost.
5. Evolution of information processing in
individuals and ecosystems

5.1. Modeling ‘constructive’ evolution: evolutionary
signatures

In the previous discussed models, the potential phenotypic
repertoire of the individuals is predefined. The genotype–
phenotypemapping, if considered at all, is very simple. This is
certainly not the case in organisms. Nonlinear genotype–
phenotype mapping has profound influence on the evolu-
tionary dynamics. Moreover, the previous models, and all
population genetic models, do not view evolution as a
constructive/creative process, i.e. as a way to create complex
information processing systems (as it clearly has). In contrast
evolutionary computation does use Darwinian mutation/
selection processes as an effective design tool. To this end
an external fitness criterion is (artificially) imposed, as an
effective way to explore the capabilities of the evolutionary
process.

We follow the approach pioneered by Hillis (1990) in using a
co-evolutionary protocol in which ‘problem solvers’ and
‘problem cases’ co-evolve, and the fitness of the solvers
depends on the number of (neighboring) problems solved,
and the fitness of the problem cases is in terms of not being
solved. Here we use this approach to investigate how the
system achieves the higher fitness. We use the term ‘evolu-
tionary signatures’ to denote the properties of the evolved
system which are due to the evolutionary process rather than
due to the structure of the problem to be solved. We use two
different flexible genotype–phenotype mappings: Genetic
programming (GP), i.e. a mapping from LISP programs to
what they compute; and CA's, i.e. the mapping from rules to
the transformation from initial condition (IC) to an attractor.
Both these mappings are multiple to one so that the evolution
can indeed ‘choose’ how to solve a problem.

We focus on three phenomena:
1. information integration due to spatial pattern formation;
2. red queen dynamics and the evolution of evolvability; and
3. ecosystem vs. individual based information processing.

5.2. information integration in evolutionary time

An often cited requirement for ‘sound’ evolutionary explana-
tions is that only immediate fitness benefits should be
considered (e.g. Maynard Smith and Szathmáry, 1995).
Although this requirement is a safeguard against unwar-
ranted inferences, we have seen above that processes at
multiple space- and timescales determine the evolutionary
trajectory of eco-evolutionary processes. In constructive co-
evolutionary models this interplay of multiple timescales is
essential for the evolution of complex behavior (“solving the
problem”). At every generation only a very small subset of
problem cases determine the fitness, yet in the end a problem
solver ‘integrates’ the information seen over many genera-
tions, and can evolve a problem solver for all possible cases.
Indeed Pagie and Hogeweg (1997) (see also Mitchell et al., 2006)
in a function optimization problem, using genetic program-
ming (GP) have shown that under such ‘sparse fitness
evaluation’ better problem solvers evolve than when the
‘complete’ set of problems is presented at every generation.

Spatial pattern formation appears to be essential in this
respect. This was shown by comparing directly a spatial co-
evolutionary system with the same system in which pattern
formation is disrupted by shuffling all individuals at every
generation. (Pagie and Hogeweg, 2000b; see also Pagie and
Mitchell, 2002). They used as paradigm system density
classification in CA (first introduced by Crutchfield and
Mitchell (1995) as paradigm system for ‘emergent computa-
tion’). Thus CA rules are to be evolved which transform an
initial condition with amajority of 0/1 in a homogeneous state
of all 0/1.

In the case of spatial pattern formation they achieve an
average of ca 70–80% accuracy on a random test set, whereas
the shuffled ones are ‘correct’ in just 50% of the cases, which
they achieve by transforming to uniform either 0 or 1
irrespective of the initial condition (Fig. 3b). Note that, no
perfect CA density classifier exists, making this an interesting
paradigm system for ecological ‘problem solving’!

The spatial pattern formation (Fig. 3c), unlike that of the
cases discussed above, is not due to interactions of predefined
species, but involves ‘speciation’ (Fig. 3a): separate lineages
(species) of problem cases emerge: those with majority 0 and
withmajority 1 which form chaotic waves so that the problem
solvers are confronted with these qualitative different cases
at intervals of all different length. Over time ‘smart’ indivi-
duals evolve which sense and process their changing
environment appropriately, i.e. solve the density classifica-
tion problem. Apart from this ‘regulatory adaptation’ they
also continue to change evolutionary to adapt to the changing
set of specific problems they encounter: although their
average performance on a random set of initial conditions is
only 70–80% they solve on average more than 90% of the cases
they encounter.



Fig. 3 –Evolution of density classifiers; (a) Speciation of initial conditions: majority 1 (density 1 between .5 and .6) andmajority 0
(density 1 between .35 and .45); upper line: average fitness (ca. 90%). (b) Evolved performance on randomset of initial conditions:
upper line with spatial pattern formation; lower line shuffled. (c) Space time plot of density in initial conditions: green >.5,
red>.5 (cf. Pagie and Hogeweg, 2000b).
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In the well mixed case, speciation does not occur, the
evolved individuals do not ‘sense’ their environment, and
simply ‘guess’ that all encountered cases will be majority 0 or
1. However, averaged over time they also are ‘correct’ in over
90% of the cases they encounter! This is explained in the next
section.

5.3. Evolution of evolvability: mutational priming

The high fitness on encountered cases of the non-classifiers
evolved in the shuffled case, as described above, is due to the
fact that the population of classifiers is most of the time
converged to either all majority 0 or all majority 1, although
they switch fairly frequently between these states. The non-
classifiers have evolved so as to co-evolve very efficiently in a
red-queen like manner: in the evolved CAs only 1 mutation
suffices to change fromprocessing all ICs to all 1 or all ICs to all
0. We call such optimization of the genotype such that
‘appropriate’ phenotypic change occurs more easily ‘muta-
tional priming’. It is the result of random mutations and
selection, but it makes mutations at the phenotypic level less
random and evolution more powerful (Pagie and Hogeweg,
2000b; Hogeweg, 2005).

5.4. Ecosystem based information processing

Attempts to evolve complex information processing (problem
solving) so far have been conceived, formulated and studied in
terms of information processing at the level of the individuals.
In Section 4 it was shown that evolution can lead to either
individual based diversity (complexity) or population based
diversity (complexity). As discussed above in Section 5.2
evolution of individual based complexity appears to require
complex pattern formation at the level of the ecosystem,
which involves a certain degree diversification (speciation) at
the population level.

de Boer and Hogeweg (in preparation) are currently broad-
ening the perspective of evolution of problem solvers, such
that the problem solvers can be ecosystems as well as
individuals and study which mode of problem solving is
‘chosen’.

Viewing ecosystems as information processing systemswe
add to the previously discussed models an aspect of ecosys-
tems which is largely ignored in population dynamic models,
i.e. the ‘environmental engineering’ which occurs as a side-
effect of the presence of one species which can be used by
other species. This often involves ‘preprocessing’ of food, but
can also involve e.g. retention of water (see e.g. Gilad et al.,
2006) ormore general niche construction (Laland and Sterelny,
2006).

Here we extend the spatial predator–prey co-evolutionary
problem solving systems with ‘leftovers’ and ‘scavengers’.
Otherwise we use the Genetic Programming (GP) based
function optimization model of Pagie and Hogeweg (1997)
mentioned in Section 5.2 in the context of sparse fitness
evaluation. The two CA planes of predator–prey system, i.e.
the plane of Lisp functions and the plane of XY coordinates on
which the function is evaluated, are unaffected by the
addition of the two additional CA planes of leftovers and
scavengers Leftovers are represented as an XY coordinate (i.e.
the original ‘prey’) and a constant representing what is left
after consumption (attempt to solve) of that XY coordinate by



Fig. 4 –Ecosystem based problem solving precedes individual based problem solving in scavenger systems. Upper panel:
number of solved cases (=XY coordinates) through time: black by predator; red by predator and scavenger together. From
t~ 200–550 correct solution of cases is done by the collaborative full solution of the function. From t=550 onward the solutions
are done by the full solution of only the predator. Inserts in upper panel: left: spatial pattern of X coordinates (t=300). Right:
spatial pattern of collaborative solutions (t=300). Lower panel: Speciation of the XY coordinates, depicted in X–Y space (cf. de
Boer and Hogeweg, in preparation).
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the ‘predator’. Scavengers are again Lisp functions which
evolve to consume the leftovers. Preliminary results, using a
very simple function, are shown in Fig. 4.

It turns out that the system first finds an ecosystem based
solution of the function, where part of the polynomial is solved
by the predators and part by the scavengers. Interestingly, in
the prey (and therewith in the leftovers), a complex speciation
process occurs (Fig. 4 lower panel), leading during the period of
ecosystem based solutions to a low-X low-Y subpopulations
and a high-X low-Y subpopulation which form chaotic wave
patterns. Likewise speciation occurs in the evolved Lisp
functions of both the predators and the scavengers. The
subspecies of scavengers solve, in the example shown,
respectively the X3 and the Y3 term, whereas the predators
solve the rest. The spatial patterns coordinate such that the
prey-leftover pairs are often solved completely (yellow in the
insert of Fig. 4) by a predator and a scavenger together.

In the end the predator evolves the complete solution, as
indeed was found in the earlier work of Pagie and Hogeweg
(1997) and Mitchell et al. (2006). As yet it is an open question
when the ecosystembased solution prevails over the individual
based solution. This might be the case when the function
becomes more complex. For now this example shows, in
contrast to the case of RM systems discussed above, a scenario
of ecosystem based complexity preceding individual based
complexity.

The ‘ecosystem first’ scenario is also interesting relative to
the problem of information accumulation in prebiotic evolu-
tion with which we started our discussion on eco-informatic
processes (Section 2). It suggests that irrespective of informa-
tion threshold problems, distributed, ecosystem based, ‘pro-
blem solving’ may more easily evolve initially than individual
based problem solving. In future work we will address this
issue explicitly.
6. Discussion and conclusions

In analogy with bioinformatics (Hogeweg, 1978, see definition
of bioinformatics in Oxford English Dictionary) we use the
term ecoinformatics for the study of informatic processes in
ecosystems. For this we need static, pattern analysis ap-
proaches, as well as dynamic simulation based approaches.
Also similar to bioinformatics the first large scale develop-
ments in ecoinformatics appear to be in pattern analysis
studies and large databases. In this paper we focussed on
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developments for studying the dynamics of information
processing in ecosystems through simulation studies.

We have first reviewed studies which show conclusively
that adding space explicitly to classical population dynamic
models alters their behavior profoundly, due to large scale
pattern formation andmultilevel information processing. The
so-called implicit spatial models, includingmost metapopula-
tion models, as well as low order mean field studies of spatial
models, fail to uncover these phenomena. We emphasized
that in such multilevel systems ecological and evolutionary
timescales cannot be separated, and that processes at multi-
ple timescales determine what evolves.

Next we went beyond spatial eco-evolutionary models
based on population dynamic models, in which the interac-
tions between populations are largely predefined, tomodels in
which the interactions evolve more freely. In doing so we
imported back the methods which are mostly known as
“Biological Inspired Computing” (BIC). We do not use these
models for biological data analysis as is commonly done.
Instead we can call our approach BIBIC (biological inspired
biological inspired computing), as we use them as paradigm
systems for studying ecosystems.

In this context we view ecosystems as problem solving
systems. We used fully artificial problems, but view them as
analogy for ecosystem problems such as: ”how to cope with
e.g. high temperatures, low levels of some nutrients and
drought”, or other problems set by the environment (or
environmental change). We have demonstrated that alter-
native modes of problem solving can evolve, focusing on the
level of diversification: at the level of individuals, which
then may adapt physiologically to different circumstances,
or on the level of populations, leading to speciation or to
optimized red queen evolution. Although we have empha-
sized the different signatures, we should note that they are
interlinked: we have shown that speciation and pattern
formation are essential for the development of general
problem solving individuals as well as problem solving
ecosystems.

Interestingly, from a geological point of view, it has often
been emphasized that species composition of ecosystems
may remain virtually invariant despite large changes in e.g.
climate (see e.g. Cannariato et al., 1999). Obviously, micro-
evolutionary changes are not observable in those studies.
Such ecosystem resilience may be due to physiological
versatility (individual based diversity) or due to evolutionary
‘wiggles’ of the species (compare van der Laan and Hogeweg,
1995) as seen in the examples above. It is, however, tantalizing
to speculate whether information integration processes may
operate on the ecosystem level, when, not only ‘problem
cases’ confronting individuals change over time, but indeed
the problem definition changes over time. We will extend our
studies in the near future to include changing environments
in the form of changing problems (as opposed to problem
cases) at multiple timescales.
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